JPH0783908A - Method for analyzing beryllium by liquid chromatography - Google Patents

Method for analyzing beryllium by liquid chromatography

Info

Publication number
JPH0783908A
JPH0783908A JP25013293A JP25013293A JPH0783908A JP H0783908 A JPH0783908 A JP H0783908A JP 25013293 A JP25013293 A JP 25013293A JP 25013293 A JP25013293 A JP 25013293A JP H0783908 A JPH0783908 A JP H0783908A
Authority
JP
Japan
Prior art keywords
beryllium
complex
hydroxy
analyzing
disulfonaphthalene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25013293A
Other languages
Japanese (ja)
Other versions
JP3300499B2 (en
Inventor
Takao Yotsuyanagi
隆夫 四ツ柳
Hitoshi Hoshino
仁 星野
Takashi Nomura
岳志 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP25013293A priority Critical patent/JP3300499B2/en
Publication of JPH0783908A publication Critical patent/JPH0783908A/en
Application granted granted Critical
Publication of JP3300499B2 publication Critical patent/JP3300499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To relatively simply determine a small amount of beryllium with an extremely high sensitivity by setting sample ion as a non-dissociation com plex by a specific complex reagent and then' isolating and analyzing the sample liquid containing the complex using liquid chromatography. CONSTITUTION:1-(2,4-dihydroxy-phenylazo)-8-hydroxy-3,6 disulfonaphthalene, or 1-(2-hydroxy-4-diethylamlno 1-phenylazo)-8-hydroxy-3,6-disulfonaphthalene is used as a complex reagent. These two types of complex reagents creates two 6-member rings incorporating beryllium ion and form a complex. The sample liquid containing the complex is injected into the column, the complex is isolated and analyzed by liquid chromatography, and then beryllium concentration is determined. It is desirable to used kinetics discrimination(KD) - HPLC as the HPLC(high performance liquid chromatography) most suited for ultra- high-sensitivity detection of beryllium and beryllium can be determined with the ultra high sensitivity of PPt level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微量で有毒なベリリウ
ムを、液体クロマトグラフィーにより超高感度で定量す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantifying a trace amount of toxic beryllium by liquid chromatography with an extremely high sensitivity.

【0002】[0002]

【従来の技術】ベリリウム(Be)の自然界における分布
は比較的少なく、天然水中で数ng/l(即ちppt)
のオーダーである。しかし、その毒性は強く、人体に対
して著しく障害性の高い有毒元素に挙げられている。特
に、空気中の浮遊粒子として吸収した場合、気管、気管
支、肺等に刺激症状が強く現れ、慢性中毒での死亡率が
高くなっている。又、最近ではベリリウムの発癌性につ
いても関心が寄せられている。
2. Description of the Related Art Beryllium (Be) has a relatively small distribution in nature and has a few ng / l (ie ppt) in natural water.
Is the order. However, it is highly toxic and is listed as a toxic element that is extremely harmful to the human body. In particular, when absorbed as airborne particles, irritation symptoms strongly appear in the trachea, bronchi, lungs, etc., and the mortality rate due to chronic poisoning is high. Recently, there has been much interest in the carcinogenicity of beryllium.

【0003】この様に毒性の強いベリリウムであるが、
最近では宇宙ロケット、航空機、原子炉、エンジン用合
金材料等の各種工業用原料として用途が広がっている。
かかる状況から、ベリリウムによる環境汚染、特に労働
環境への悪影響が懸念され、日本においては屋内作業環
境における許容基準を0.002mg/m3と定めてい
る。このため、ベリリウムの高感度な分析方法が求めら
れている。
Although beryllium is highly toxic,
Recently, it has been widely used as various industrial raw materials such as space rockets, aircrafts, nuclear reactors, and alloy materials for engines.
Under such circumstances, there is concern that beryllium may cause environmental pollution, particularly adverse effects on the working environment. In Japan, the allowable standard for indoor working environments is set at 0.002 mg / m 3 . Therefore, a highly sensitive analysis method for beryllium is required.

【0004】微量ベリリウムの分析方法としては、モー
リンの蛍光法、2−メチルオキシン法、アルミノン比色
法等が古くから知られている。最近では、FIA法によ
る蛍光定量法(渡辺、高橋、青木、「分析化学」41、11
(1992)参照)、原子吸光分析法(L.C.Robles,C.Garci
a-Olalla,M.T.Alemany,A.J.Allert、Analys
t、116、735 (1991)参照)、ICP発光分光分析法
(P.Schrael、Mikrochim.Acta、II、355
(1989)参照)等が高感度定量法として報告されてい
る。
As a method for analyzing a trace amount of beryllium, a morin fluorescence method, a 2-methyloxine method, an aluminone colorimetric method and the like have long been known. Recently, a fluorometric method by FIA method (Watanabe, Takahashi, Aoki, "Analytical Chemistry" 41, 11
(1992)), atomic absorption spectrometry (LCRobles, C. Garci)
a-Olalla, MTAlemany, AJAllert, Analys
t, 116, 735 (1991)), ICP emission spectroscopy (P. Schrael, Mikrochim. Acta, II, 355).
(1989)) is reported as a highly sensitive quantitative method.

【0005】しかしながら、上記した従来のベリリウム
の分析方法は、感度的に満足できるものでなかったり、
装置そのものが高価であったりすることから、高感度で
あり且つ通常の分析装置を用いた比較的簡単な分析方法
の開発が求められている。特に微量のベリリウムの定量
が必要なことから、前記原子吸光分析法及びICP発光
分光分析法の検出限界である2ppb及び0.2ppb
を越える超高感度の分析方法の提供が望まれている。
However, the above-mentioned conventional method for analyzing beryllium is not satisfactory in terms of sensitivity,
Since the device itself is expensive, it is required to develop a relatively simple analysis method with high sensitivity and using a normal analysis device. In particular, since it is necessary to quantify a very small amount of beryllium, the detection limits of 2 ppb and 0.2 ppb, which are the detection limits of the atomic absorption spectrometry and ICP emission spectrometry
It is desired to provide an ultra-sensitive analysis method that exceeds the limit.

【0006】一方、液体クロマトグラフィー、特に高速
液体クロマトグラフィー(HPLC)は、近年の科学技術
の進歩により分析カラムに関する技術と分析機器の性能
が飛躍的に向上した結果、高性能な分析法として広範囲
に利用されている。中でも、非極性の固定相と極性の移
動相を用いた逆相分配(RP)−HPLCは、生化学関連
の分析分野で利用されているイオン対(IP)−HPLC
の手法を導入することにより、イオン性化学種の分析が
可能になっている。
On the other hand, liquid chromatography, especially high performance liquid chromatography (HPLC), has been widely used as a high-performance analytical method as a result of the dramatic improvement in the technology relating to analytical columns and the performance of analytical instruments due to the recent progress in science and technology. Is used for. Among them, reverse phase partitioning (RP) -HPLC using a non-polar stationary phase and a polar mobile phase is an ion pair (IP) -HPLC used in the biochemical-related analytical field.
By introducing the method described in (1), it is possible to analyze ionic species.

【0007】かかるRP−IP−HPLCを用いた微量
金属イオンの定量法が研究され(星野、四ツ柳、青村、
「分析化学」27、315 (1978)参照)、試料イオンを錯体
化試薬により非解離性の錯体とし、この錯体を含む試料
液を液体クロマトグラフィーにより分離分析することに
よって、ppbないしサブppbレベルの検出限界が得
られるようになっている。しかし、ベリリウムの分析に
ついては、錯体化試薬の選択を含め、最適化された分析
方法が知られていなかった。
A method for quantifying trace metal ions using such RP-IP-HPLC has been studied (Hoshino, Yotsuyanagi, Aomura,
“Analytical Chemistry” 27, 315 (1978)), a sample ion is made into a non-dissociative complex with a complexing reagent, and a sample solution containing this complex is separated and analyzed by liquid chromatography to obtain a ppb or sub-ppb level. The detection limit is obtained. However, for the analysis of beryllium, an optimized analysis method including selection of a complexing reagent has not been known.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる従来
の事情に鑑み、液体クロマトグラフィーを用いた比較的
簡単な方法により、微量のベリリウムを超高感度で定量
することのできるベリリウムの分析方法を提供すること
を目的とする。
In view of such conventional circumstances, the present invention is a method for analyzing beryllium capable of quantifying a very small amount of beryllium with ultrahigh sensitivity by a relatively simple method using liquid chromatography. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供するベリリウムの分析方法は、試料イ
オンを錯体化試薬により非解離性の錯体とし、この錯体
を含む試料液を分離分析する液体クロマトグラフィーに
よるものであり、ベリリウムイオンの錯体化試薬とし
て、1−(2,4−ジヒドロキシ−1−フェニルアゾ)
−8−ヒドロキシ−3,6−ジスルフォナフタレン、又
は1−(2−ヒドロキシ−4−ジエチルアミノ−1−フ
ェニルアゾ)−8−ヒドロキシ−3,6−ジスルフォナ
フタレンを用いることを特徴とする。
In order to achieve the above object, a method for analyzing beryllium provided by the present invention is such that a sample ion is made into a non-dissociative complex with a complexing reagent, and a sample solution containing this complex is separated and analyzed. 1- (2,4-dihydroxy-1-phenylazo) as a beryllium ion complexing reagent.
It is characterized in that -8-hydroxy-3,6-disulfonaphthalene or 1- (2-hydroxy-4-diethylamino-1-phenylazo) -8-hydroxy-3,6-disulfonaphthalene is used.

【0010】[0010]

【作用】ベリリウム原子の有効半径はわずかに0.89
Åと金属リチウムの1.22Åよりもかなり小さいの
で、ベリリウムの錯体化試薬としてキレートサイトの小
さいキレート試薬について検討を重ねた結果、1−
(2,4−ジヒドロキシ−1−フェニルアゾ)−8−ヒ
ドロキシ−3,6−ジスルフォナフタレン、又は1−(2
−ヒドロキシ−4−ジエチルアミノ−1−フェニルア
ゾ)−8−ヒドロキシ−3,6−ジスルフォナフタレン
が有効であることを見いだした。
[Function] The effective radius of the beryllium atom is only 0.89.
Since it is much smaller than 1.22Å of Å and metallic lithium, as a result of repeated studies on a chelating reagent having a small chelate site as a beryllium complexing reagent, 1-
(2,4-dihydroxy-1-phenylazo) -8-hydroxy-3,6-disulfonaphthalene, or 1- (2
-Hydroxy-4-diethylamino-1-phenylazo) -8-hydroxy-3,6-disulfonaphthalene was found to be effective.

【0011】錯体化試薬として用いる1−(2,4−ジ
ヒドロキシ−1−フェニルアゾ)−8−ヒドロキシ−
3,6−ジスルフォナフタレンは、H−レゾルシノール
(Resorcinol)とも呼ばれ、下記化1に示す化学式によ
り表される。
1- (2,4-dihydroxy-1-phenylazo) -8-hydroxy-used as a complexing reagent
3,6-Disulfonaphthalene is also called H-resorcinol and is represented by the chemical formula shown below.

【0012】[0012]

【化1】 [Chemical 1]

【0013】又、1−(2−ヒドロキシ−4−ジエチル
アミノ−1−フェニルアゾ)−8−ヒドロキシ−3,6
−ジスルフォナフタレンは、ベリロン(Beryllon)III
とも呼ばれ、下記化2に示す化学式により表される。
Further, 1- (2-hydroxy-4-diethylamino-1-phenylazo) -8-hydroxy-3,6
-Disulfonaphthalene is Beryllon III
It is also referred to as a chemical formula and is represented by the chemical formula shown below.

【0014】[0014]

【化2】 [Chemical 2]

【0015】上記2種類の錯体化試薬は、ベリリウムイ
オン(Be2+)を取り込んで6員環を2つ作ることにより
錯体を形成し、しかもそのキレートサイトが小さいため
にベリリウム以外の金属イオンの多くとは錯体を作らな
いものと考えられる。又、2つの試薬は構造が非常に類
似しているため、錯形成挙動においても似ていることが
認められる。これら錯体化試薬によるベリリウムイオン
との錯形成反応は比較的短時間で完了するが、低濃度で
は反応を完全に行うため例えば100℃程度に加熱する
ことが好ましい。
The above-mentioned two kinds of complexing reagents form a complex by incorporating beryllium ion (Be 2+ ) to form two 6-membered rings, and since the chelate site is small, metal ions other than beryllium can be used. Most are believed not to form a complex. It is also observed that the two reagents are very similar in structure and therefore similar in complexing behavior. The complex formation reaction with beryllium ions by these complexing reagents is completed in a relatively short time, but it is preferable to heat to about 100 ° C., for example, in order to complete the reaction at a low concentration.

【0016】錯体化試薬として1−(2,4−ジヒドロ
キシ−1−フェニルアゾ)−8−ヒドロキシ−3,6−
ジスルフォナフタレン(以下、H−レゾルシノールと称
す)を用いた場合、下記化3に示す化学式を有するベリ
リウムの錯体が得られ、この錯体はpH5以上でOH基
が解離して更に化4に示す化学式の錯体となる。
1- (2,4-dihydroxy-1-phenylazo) -8-hydroxy-3,6-as a complexing reagent
When disulfonaphthalene (hereinafter, referred to as H-resorcinol) is used, a beryllium complex having a chemical formula shown in the following chemical formula 3 is obtained, and this complex has a chemical formula shown in the chemical formula 4 in which an OH group is dissociated at pH 5 or higher. Becomes a complex of.

【0017】[0017]

【化3】 [Chemical 3]

【0018】[0018]

【化4】 [Chemical 4]

【0019】上記化3及び化4の化学式を有する錯体
は、図4に示すとおり吸光度のピーク波長が450〜5
50nmにあり、図5に示すpH挙動からpH7.5〜
10の範囲で吸光度が極大値となることが判る。従っ
て、H−レゾルシノールとベリリウムイオンとの錯体形
成並びに吸光度の測定は、pH7.5〜10の範囲で行
うことが好ましい。
As shown in FIG. 4, the complex having the chemical formulas (3) and (4) has an absorbance peak wavelength of 450 to 5
It is at 50 nm, and the pH behavior shown in FIG.
It can be seen that the absorbance becomes maximum in the range of 10. Therefore, it is preferable that the complex formation of H-resorcinol and beryllium ion and the measurement of the absorbance are performed in the range of pH 7.5 to 10.

【0020】又、錯体化試薬として1−(2−ヒドロキ
シ−4−ジエチルアミノ−1−フェニルアゾ)−8−ヒ
ドロキシ−3,6−ジスルフォナフタレン(以下、ベリ
ロンIIIと称す)を用いた場合、下記化5に示す化学式
を有する錯体が形成される。この錯体は、図6に示すご
とく吸光度のピーク波長がやはり450〜550nmに
あり、図7に示すpH挙動からpH6〜12の範囲でほ
ぼ一定の吸光度を示すことが判る。従って、ベリロン I
IIとベリリウムイオンとの錯体形成並びに吸光度の測定
は、pH6〜12の範囲で行うことが好ましい。
When 1- (2-hydroxy-4-diethylamino-1-phenylazo) -8-hydroxy-3,6-disulfonaphthalene (hereinafter referred to as berylon III) is used as a complexing reagent, A complex having the chemical formula shown in Formula 5 is formed. As shown in FIG. 6, the peak wavelength of the absorbance of this complex is still 450 to 550 nm, and it can be seen from the pH behavior shown in FIG. 7 that the absorbance is almost constant in the range of pH 6 to 12. Therefore, beryllon I
The complex formation between II and beryllium ion and the measurement of the absorbance are preferably carried out in the pH range of 6 to 12.

【0021】[0021]

【化5】 [Chemical 5]

【0022】この様にして、試料液に錯体化試薬を加え
てベリリウムイオンの錯体を予め形成した後、この錯体
を含む試料液をカラムに注入し、液体クロマトグラフィ
ーにより前記錯体を分離分析することにより、ベリリウ
ムの濃度を定量することができる。特に高速液体クロマ
トグラフィー(HPLC)は高性能な分析法であり、中で
も逆相分配(RP)−HPLCは吸光光度検出器によりp
pbないしサブppbレベルの検出が可能であることか
ら望ましい方法である。
In this way, after the complexing reagent is added to the sample solution to form a beryllium ion complex in advance, the sample solution containing this complex is injected into the column, and the complex is separated and analyzed by liquid chromatography. Thus, the concentration of beryllium can be quantified. In particular, high performance liquid chromatography (HPLC) is a high-performance analytical method, and among them, reverse phase partition (RP) -HPLC is performed by an absorptiometric detector.
It is a desirable method because it can detect pb or sub-ppb levels.

【0023】しかしながら、従来のRP−HPLC(図
3のB法)は、図3に示すように、金属イオンM、M’
と錯体化試薬Lの錯体ML、M’Lを予め形成した後、
これをインジェクターIからカラムに注入するが、カラ
ム中で錯体ML、M’Lが分解することを防止するため
に溶離液に錯体化試薬Lを添加している。このため、吸
光光度検出器Dによる出力に錯体化試薬Lのバックグラ
ウンドが表れ、その上に錯体ML、M’Lのピークが記
録されるので、錯体形成時のスペクトルシフトが大きく
ないと錯体スペクトルのピークだけを増幅できず、超高
感度検出が難しいという不都合がある。
However, according to the conventional RP-HPLC (method B in FIG. 3), as shown in FIG.
And the complex ML and M′L of the complexing reagent L are formed in advance,
This is injected from the injector I into the column, but the complexing reagent L is added to the eluent in order to prevent decomposition of the complexes ML and M′L in the column. Therefore, the background of the complexing reagent L appears in the output from the absorptiometric detector D, and the peaks of the complexes ML and M'L are recorded on the background, so that the spectrum of the complex spectrum should be large unless the spectrum shift during complex formation is large. However, there is a disadvantage that it is not possible to amplify only the peak of, and it is difficult to detect with high sensitivity.

【0024】そこで更に検討を重ねた結果、ベリリウム
の超高感度検出に最も適した方法として、溶離液に錯体
化試薬Lを含まない速度論的識別(KD)−HPLC法
(図3のA法)が好ましいことが判明した。即ち、この
方法では図3に示すように、予め形成した錯体ML、
M’Lの中で解離反応活性な錯体MLをカラム中で積極
的に解離させ、速度論的に安定な(解離不活性な)錯体
M’Lのみを検出する。従って、錯体化試薬と錯体が分
離されるため、両者のスペクトルの重なりが問題となら
ず、吸光光度検出器で超高感度な検出が可能である。
As a result of further studies, as a method most suitable for the ultrasensitive detection of beryllium, a kinetic discrimination (KD) -HPLC method (method A in FIG. 3) containing no complexing reagent L in the eluent was used. ) Was found to be preferable. That is, in this method, as shown in FIG.
The complex ML that is active in dissociation reaction in M′L is positively dissociated in the column, and only the kinetically stable (dissociatively inactive) complex M′L is detected. Therefore, since the complexing reagent and the complex are separated, the overlapping of the spectra of the both does not pose a problem, and supersensitive detection is possible with an absorptiometric detector.

【0025】本発明におけるH−レゾルシノール又はベ
リロンIIIとベリリウムとの前記化3、化4、化5に示
す各錯体は、このKD−HPLC法において解離不活性
な錯体であることが確認された。しかし、本発明におけ
る錯体化試薬の場合、この試薬と錯体の吸光度のピーク
が重なりやすいため、さまざまな分離条件について最適
化が必要である。
It was confirmed by the KD-HPLC method that each complex of H-resorcinol or beryllone III and beryllium shown in Chemical formula 3, Chemical formula 4 or Chemical formula 5 in the present invention was a dissociatively inactive complex. However, in the case of the complexing reagent according to the present invention, the absorbance peaks of this reagent and the complex are likely to overlap with each other, and therefore optimization is required for various separation conditions.

【0026】例えば、液体クロマトグラフィーの溶離液
について、その溶媒をメタノールとすることにより、錯
体のピークを錯体化試薬のピークよりも前にすることが
できる。又、溶離液のpHにより、保持時間及びピーク
の高さが変動する。保持時間が長くなると分離が良くな
る反面、ピークの高さは小さくなるので、この関係を最
適化するpH範囲としてpH8〜9の範囲が好ましい。
For example, with respect to the eluent of liquid chromatography, the peak of the complex can be made earlier than the peak of the complexing reagent by using methanol as the solvent. In addition, the retention time and peak height vary depending on the pH of the eluent. The longer the retention time, the better the separation but the smaller the peak height. Therefore, the pH range for optimizing this relationship is preferably pH 8-9.

【0027】更に、溶離液は溶媒のほかにテトラブチル
アンモニウムブロミド(TBAB)及び/又はエチレン
ジアミン四酢酸(EDTA)を含むことが好ましい。テ
トラブチルアンモニウムブロミドは、液相クロマトグラ
フィーにおけるイオン対形成剤として公知であるが、本
発明方法においては特に5×10-3〜2×10-2mol
/kgの濃度範囲においてその効果が顕著であることが
解った。又、エチレンジアミン四酢酸は、流路の管壁か
ら溶出するアルミニウムや鉄をマスキングするほか、本
発明における錯体化試薬と錯体の分離を極めて良くする
効果がある。
Further, the eluent preferably contains tetrabutylammonium bromide (TBAB) and / or ethylenediaminetetraacetic acid (EDTA) in addition to the solvent. Tetrabutylammonium bromide is known as an ion pair forming agent in liquid phase chromatography, but in the method of the present invention, it is particularly 5 × 10 −3 to 2 × 10 −2 mol.
It was found that the effect was remarkable in the concentration range of / kg. Further, ethylenediaminetetraacetic acid has an effect of masking aluminum and iron eluted from the tube wall of the flow channel, and has an effect of remarkably improving the separation of the complexing reagent and the complex in the present invention.

【0028】カラムから溶出液は通常のごとく吸光光度
検出器に導かれ、そこで検出された吸光度のパターンか
ら、試料液中に含まれるベリリウム濃度が求められる。
その際、吸光度の測定波長としては、図4及び図6から
判るように、いずれの錯体化試薬の場合にも450〜5
50nmの範囲内が好ましい。
The eluate from the column is guided to an absorptiometric detector as usual, and the concentration of beryllium contained in the sample solution is determined from the pattern of the absorbance detected there.
At that time, as can be seen from FIGS. 4 and 6, the measurement wavelength of the absorbance is 450 to 5 in any of the complexing reagents.
A range of 50 nm is preferable.

【0029】[0029]

【実施例】Be2+を含む溶液に、錯体化試薬として1×
10-3mol/dm3のH−レゾルシノール、即ち1−
(2,4−ジヒドロキシ−1−フェニルアゾ)−8−ヒ
ドロキシ−3,6−ジスルフォナフタレンを1ml加
え、更に0.1mol/dm3のトリス緩衝液を5ml加
えてpH8.5とした後、沸騰水浴中で25分間加熱し
て錯体を形成させ、その後室温まで冷却した。
EXAMPLE 1 × as a complexing reagent was added to a solution containing Be 2+.
10 −3 mol / dm 3 of H-resorcinol, namely 1-
1 ml of (2,4-dihydroxy-1-phenylazo) -8-hydroxy-3,6-disulfonaphthalene was added, and 5 ml of 0.1 mol / dm 3 Tris buffer was added to adjust the pH to 8.5 and then boiled. Heated in water bath for 25 minutes to allow complex formation and then cooled to room temperature.

【0030】得られた錯体を含む試料液の100μl
を、高速液体クロマトグラフの分析カラムに注入した。
分析カラムには、ビニルアルコールコポリマーにオクタ
デシル基を化学結合させたAsahipak ODP−
50(旭化成(株)の商品名)を用いた。
100 μl of the sample solution containing the obtained complex
Was injected into the analytical column of a high performance liquid chromatograph.
Asahipak ODP-, which was obtained by chemically bonding an octadecyl group to a vinyl alcohol copolymer, was used for the analytical column.
50 (trade name of Asahi Kasei Co., Ltd.) was used.

【0031】その後、移動相として錯体化試薬を含まな
い溶離液を0.5ml/minの流速で流し、錯体を分
離させた。溶離液は、溶媒としてのメタノール38.1
重量%、テトラブチルアンモニウムブロミド1.29×
10-2mol/kg、及びエチレンジアミン四酢酸1.
0×10-4mol/kgを含み、2.5×10-2mol
/kgのトリス緩衝液でpH8.8に調整したものを用
いた。
Then, an eluent containing no complexing reagent as a mobile phase was caused to flow at a flow rate of 0.5 ml / min to separate the complex. The eluent is methanol as a solvent 38.1
% By weight, tetrabutylammonium bromide 1.29 ×
10 -2 mol / kg, and ethylenediaminetetraacetic acid 1.
2.5 × 10 -2 mol including 0 × 10 -4 mol / kg
What was adjusted to pH 8.8 with 1 / kg of Tris buffer was used.

【0032】分析カラムから得られた溶出液を吸光光度
検出器に導き、測定波長500nmにて吸光度を測定し
た。検出器の記録計に出力されたクロマトグラムの典型
例を図1に示した。図1のクロマトグラムから判るよう
に、本発明方法によるBeのピークは錯体化試薬Lのピ
ークより前に現れ且つBeのピークの分離能は高く、良
好なピーク形状を示していた。
The eluate obtained from the analytical column was introduced into an absorptiometric detector, and the absorbance was measured at a measurement wavelength of 500 nm. A typical example of the chromatogram output to the recorder of the detector is shown in FIG. As can be seen from the chromatogram in FIG. 1, the peak of Be according to the method of the present invention appeared before the peak of the complexing reagent L and the resolution of the peak of Be was high, indicating a good peak shape.

【0033】試料液中に含まれるBe2+の濃度を変え
て、上記と同様の操作を繰り返すことにより得られた各
クロマトグラムから、図2に示す検量線が得られた。こ
の検量線は、Be2+濃度10-8〜10-6mol/dm3
の範囲で相関係数0.9999と極めて良好な直線性を
示し、理論検出限界(S/N=3)は2.0×10-10
ol/dm3(1.8ppt)であった。
The calibration curve shown in FIG. 2 was obtained from each chromatogram obtained by repeating the same operation as above while changing the concentration of Be 2+ contained in the sample solution. This calibration curve shows a Be 2+ concentration of 10 −8 to 10 −6 mol / dm 3.
Shows a very good linearity with a correlation coefficient of 0.99999, and the theoretical detection limit (S / N = 3) is 2.0 × 10 -10 m
It was ol / dm 3 (1.8 ppt).

【0034】又、錯体化試薬としてベリロンIII、即ち
1−(2−ヒドロキシ−4−ジエチルアミノ−1−フェ
ニルアゾ)−8−ヒドロキシ−3,6−ジスルフォナフ
タレンを用いた場合にも、上記実施例の場合と同様にし
て、ほぼ同程度の感度でBe2+濃度を定量できる。原子
吸光分析法及びICP発光分光分析法の検出限界がそれ
ぞれ2ppb及び0.2ppbであり、従来のRP−H
PLCの検出限界も同程度であることと比較すると、本
発明方法が他に類を見ない超高感度の定量方法であるこ
とが理解される。尚、超微量検出の有効手段である前段
濃縮を行えば、更に低濃度のベリリウムを確実に定量で
きるものと思われる。
Also, when berylon III, that is, 1- (2-hydroxy-4-diethylamino-1-phenylazo) -8-hydroxy-3,6-disulfonaphthalene, was used as the complexing reagent, The Be 2+ concentration can be quantified with almost the same sensitivity as in the above case. The detection limits of atomic absorption spectrometry and ICP emission spectrometry are 2 ppb and 0.2 ppb, respectively.
Comparing with the fact that the detection limit of PLC is similar, it is understood that the method of the present invention is an unprecedented ultrasensitive quantitative method. In addition, it is considered that the lower concentration of beryllium can be reliably quantified by performing the first-stage concentration, which is an effective means for detecting an ultratrace amount.

【0035】[0035]

【発明の効果】本発明によれば、各種工業用原料として
用途が広がりつつあるにも拘らず極めて毒性の強いベリ
リウムを、pptレベルの超高感度で選択的に分離定量
することができる。
EFFECTS OF THE INVENTION According to the present invention, beryllium, which is extremely toxic despite its widespread use as various industrial raw materials, can be selectively separated and quantified with a super high sensitivity of ppt level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法により得られたクロマトグラムの典
型例である。
FIG. 1 is a typical example of a chromatogram obtained by the method of the present invention.

【図2】本発明方法によるBe2+濃度と吸光度との関係
を示す検量線である。
FIG. 2 is a calibration curve showing the relationship between Be 2+ concentration and absorbance according to the method of the present invention.

【図3】高速液体クロマトグラフィーのKD−HPLC
法とRP−HPLC法とを比較した説明図である。
FIG. 3 KD-HPLC of high performance liquid chromatography
It is explanatory drawing which compared the method and RP-HPLC method.

【図4】錯体化試薬H−レゾルシノールとBeの錯体に
おけるスペクトルのpH挙動を示すグラフである。
FIG. 4 is a graph showing a pH behavior of a spectrum of a complex of a complexing reagent H-resorcinol and Be.

【図5】錯体化試薬H−レゾルシノールとBeの錯体に
おけるスペクトルの固定波長での吸光度とpHの関係を
示すグラフである。
FIG. 5 is a graph showing the relationship between the absorbance at a fixed wavelength of the spectrum and pH of the complex of the complexing reagent H-resorcinol and Be.

【図6】錯体化試薬ベリロンIIIとBeの錯体における
スペクトルのpH挙動を示すグラフである。
FIG. 6 is a graph showing the pH behavior of a spectrum of a complex of the complexing reagent berylon III and Be.

【図7】錯体化試薬ベリロンIIIとBeの錯体における
スペクトルの固定波長での吸光度とpHの関係を示すグ
ラフである。
FIG. 7 is a graph showing the relationship between the absorbance at a fixed wavelength of the spectrum and the pH of the complex of the complexing reagent berylon III and Be.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 試料イオンを錯体化試薬により非解離性
の錯体とし、この錯体を含む試料液を分離分析する液体
クロマトグラフィーにおいて、ベリリウムイオンの錯体
化試薬として1−(2,4−ジヒドロキシ−1−フェニ
ルアゾ)−8−ヒドロキシ−3,6−ジスルフォナフタ
レン、又は1−(2−ヒドロキシ−4−ジエチルアミノ
−1−フェニルアゾ)−8−ヒドロキシ−3,6−ジス
ルフォナフタレンを用いることを特徴とするベリリウム
の分析方法。
1. A liquid chromatograph for converting a sample ion into a non-dissociative complex with a complexing reagent and separating and analyzing a sample liquid containing the complex, 1- (2,4-dihydroxy-) as a complexing reagent for beryllium ion. 1-phenylazo) -8-hydroxy-3,6-disulfonaphthalene or 1- (2-hydroxy-4-diethylamino-1-phenylazo) -8-hydroxy-3,6-disulfonaphthalene is used Beryllium analysis method.
【請求項2】 試料液に錯体化試薬を加えてベリリウム
イオンの錯体を予め形成させ、この錯体を含む試料液を
カラムに注入した後、錯体化試薬を含まない溶離液を用
いて前記錯体を溶出し、吸光光度検出器により検出する
ことを特徴とする、請求項1に記載のベリリウムの分析
方法。
2. A complexing reagent is added to a sample solution to form a complex of beryllium ions in advance, a sample solution containing this complex is injected into a column, and then the complex is formed using an eluent containing no complexing reagent. The method for analyzing beryllium according to claim 1, which is eluted and detected by an absorptiometric detector.
【請求項3】 錯体化試薬として1−(2,4−ジヒド
ロキシ−1−フェニルアゾ)−8−ヒドロキシ−3,6
−ジスルフォナフタレンを用い、pH7.5〜10にて
ベリリウムイオンの錯体を形成させることを特徴とす
る、請求項1又は2に記載のベリリウムの分析方法。
3. 1- (2,4-dihydroxy-1-phenylazo) -8-hydroxy-3,6 as a complexing reagent
-A method for analyzing beryllium according to claim 1 or 2, characterized in that a complex of beryllium ions is formed at a pH of 7.5 to 10 using disulfonaphthalene.
【請求項4】 錯体化試薬として1−(2−ヒドロキシ
−4−ジエチルアミノ−1−フェニルアゾ)−8−ヒド
ロキシ−3,6−ジスルフォナフタレンを用い、pH6
〜12にてベリリウムイオンの錯体を形成させることを
特徴とする、請求項1又は2に記載のベリリウムの分析
方法。
4. 1- (2-Hydroxy-4-diethylamino-1-phenylazo) -8-hydroxy-3,6-disulfonaphthalene is used as a complexing reagent at pH 6
The method for analyzing beryllium according to claim 1 or 2, characterized in that a complex of beryllium ions is formed in a range of ~ 12.
【請求項5】 液体クロマトグラフィーの溶離液が、溶
媒としてメタノールを含むことを特徴とする、請求項1
又は2に記載のベリリウムの分析方法。
5. The liquid chromatography eluent contains methanol as a solvent.
Or the method for analyzing beryllium according to 2.
【請求項6】 溶離液が溶媒のほかにテトラブチルアン
モニウムブロミド及び/又はエチレンジアミン四酢酸を
含むことを特徴とする、請求項5に記載のベリリウムの
分析方法。
6. The method for analyzing beryllium according to claim 5, wherein the eluent contains tetrabutylammonium bromide and / or ethylenediaminetetraacetic acid in addition to the solvent.
【請求項7】 溶離液のpHを8〜9の範囲とすること
を特徴とする、請求項5又は6に記載のベリリウムの分
析方法。
7. The method for analyzing beryllium according to claim 5, wherein the pH of the eluent is in the range of 8-9.
【請求項8】 吸光光度検出器における吸光度の測定波
長として、450〜550nmの範囲内にある波長を用
いることを特徴とする、請求項2に記載のベリリウムの
分析方法。
8. The method for analyzing beryllium according to claim 2, wherein a wavelength in the range of 450 to 550 nm is used as the wavelength for measuring the absorbance in the absorptiometry detector.
JP25013293A 1993-09-10 1993-09-10 Analysis of beryllium by liquid chromatography Expired - Fee Related JP3300499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25013293A JP3300499B2 (en) 1993-09-10 1993-09-10 Analysis of beryllium by liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25013293A JP3300499B2 (en) 1993-09-10 1993-09-10 Analysis of beryllium by liquid chromatography

Publications (2)

Publication Number Publication Date
JPH0783908A true JPH0783908A (en) 1995-03-31
JP3300499B2 JP3300499B2 (en) 2002-07-08

Family

ID=17203311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25013293A Expired - Fee Related JP3300499B2 (en) 1993-09-10 1993-09-10 Analysis of beryllium by liquid chromatography

Country Status (1)

Country Link
JP (1) JP3300499B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062286A (en) * 2000-08-23 2002-02-28 Univ Nihon High performance liquid chromatography system
JP2004347582A (en) * 2003-05-23 2004-12-09 Shino Test Corp Reagent used for measuring metal in sample by flow separation analysis method and measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062286A (en) * 2000-08-23 2002-02-28 Univ Nihon High performance liquid chromatography system
JP4565247B2 (en) * 2000-08-23 2010-10-20 学校法人日本大学 High performance liquid chromatography system
JP2004347582A (en) * 2003-05-23 2004-12-09 Shino Test Corp Reagent used for measuring metal in sample by flow separation analysis method and measuring method

Also Published As

Publication number Publication date
JP3300499B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
Brown et al. Development of a coupled liquid chromatography-isotope dilution inductively coupled plasma mass spectrometry method for lead speciation
Moldovan et al. High resolution sector field ICP-MS and multicollector ICP-MS as tools for trace metal speciation in environmental studies: a review
Zachariadis et al. Determination of lead by on-line solid phase extraction using a PTFE micro-column and flame atomic absorption spectrometry
Hill et al. High-performance liquid chromatography–isotope dilution inductively coupled plasma mass spectrometry for speciation studies: an overview
Gledhill Electrospray ionisation-mass spectrometry of hydroxamate siderophores
Chiba et al. Determination of alkylmercury in seawater in the nanogram per liter level by gas chromatography/atmospheric pressure helium microwave-induced plasma emission spectrometry
Ganjei et al. Quantitative ion probe measurement using matrix ion species ratios
Tolosa et al. Simultaneous analysis of the antifouling agents: tributyltin, triphenyltin and IRGAROL 1051 in marina water samples
Shigetoshi et al. Extractive alkylation and gas chromatographic analysis of sulfide
Krupp et al. Precise isotope-ratio measurements of lead species by capillary gas chromatography hyphenated to hexapole Multicollector ICP–MS
Liu et al. Rapid determination of cyanide in human plasma and urine by gas chromatography–mass spectrometry with two-step derivatization
Mazan et al. Inorganic selenium speciation using HPLC-ICP-hexapole collision/reaction cell-MS
Vilanó et al. Liquid chromatography-UV irradiation-hydride generation-atomic fluorescence spectrometry for selenium speciation
Abrankó et al. Solid phase microextraction for the determination of chromium in sea-water
Betowski et al. Identification of dyes by thermospray ionization and mass spectrometry/mass spectrometry
Hossain et al. Rapid speciation analysis of Cr (VI) and Cr (III) by reversed-phase high-performance liquid chromatography with UV detection
JPH0783908A (en) Method for analyzing beryllium by liquid chromatography
Coetzee et al. The separation and simultaneous determination of V (IV) and V (V) species complexed with EDTA by IC-ICP-OES
Tao et al. Inductively coupled plasma atomic emission spectrometric determination of cadmium in biological and environmental materials using electrothermal vaporization after in situ alkylation
Chen et al. Determination of tin in steels by non-dispersive atomic fluorescence spectrometry coupled with flow-injection hydride generation in the presence of L-cysteine
Cheong et al. Determination of phosphate in seawater by ion chromatography inductively coupled plasma sector field mass spectrometry
Aggarwal et al. Determination of tellurium in urine by isotope dilution gas chromatography/mass spectrometry using (4-fluorophenyl) magnesium bromide as a derivatizing agent and a comparison with electrothermal atomic absorption spectrometry
Akatsuka et al. Preconcentration of trace cadmium from seawater using a dynamically coated column of quaternary ammonium salt on C18-bonded silica gel and determination by graphite-furnace atomic absorption spectrometry
Xiao-Song et al. Determination of molybdenum, chromium and vanadium by ion-pair high-pressure liquid chromatography based on precolumn chelation with 4-(2-pyridylazo) resorcinol
Lin et al. Determination of iron, cobalt and nickel as chelates with 4-(2-thiazolylazo) resorcinol by reversed-phase high-performance liquid chromatography

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees