JPH0783650A - Measured data correction and measured angle error detection in scanning probe microscope - Google Patents

Measured data correction and measured angle error detection in scanning probe microscope

Info

Publication number
JPH0783650A
JPH0783650A JP22562093A JP22562093A JPH0783650A JP H0783650 A JPH0783650 A JP H0783650A JP 22562093 A JP22562093 A JP 22562093A JP 22562093 A JP22562093 A JP 22562093A JP H0783650 A JPH0783650 A JP H0783650A
Authority
JP
Japan
Prior art keywords
sample
plane
probe
measurement
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22562093A
Other languages
Japanese (ja)
Inventor
Noboru Yamamoto
登 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP22562093A priority Critical patent/JPH0783650A/en
Publication of JPH0783650A publication Critical patent/JPH0783650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To provide a measured data correction method in the Z-axis direction and to provide a measurement accuracy detection method regarding a scanning probe microscope which measures the surface shape of a sample at an atomic measure. CONSTITUTION:A standard sample which is provided with a plurality of stages of X-Y plane parts having flat parts on X-Y planes is prepared. Differences in level on the X-Y plane parts are worked in advance to a prescribed value Hn and an angle is worked to 90 deg.. While the interval between the tip of a probe and the standard sample is kept at an atomic measure T, the probe is scanned from the X-Y plane part at the uppermost stage of the standard sample along its plane direction, and the length Hi of an oblique line and a measured difference hi in level are measured whenever the X-Y plane part comes down by one stage. Hi/hi gives a correction factor in the X-axis direction in positions of the individual X-Y plane parts, and cos<-1>(hi/ri) gives an angle error.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋭い探針を用いて試料
の表面形状等を原子的尺度で計測する走査型プローブ顕
微鏡、特に、その計測データ補正方法および計測角度誤
差検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope for measuring the surface shape and the like of a sample with an atomic scale using a sharp probe, and more particularly to a measurement data correction method and a measurement angle error detection method.

【0002】[0002]

【従来の技術】近年、量子効果を利用した走査型プロー
ブ顕微鏡が原子的尺度で物体表面の状態を観察する手段
として注目されている。走査型プローブ顕微鏡には、動
作原理によって走査型トンネル顕微鏡(STM),走査
型原子間力顕微鏡(SAFM),走査型磁気力顕微鏡
(SMFM)などがある。
2. Description of the Related Art In recent years, a scanning probe microscope utilizing the quantum effect has attracted attention as a means for observing the state of an object surface on an atomic scale. The scanning probe microscope includes a scanning tunneling microscope (STM), a scanning atomic force microscope (SAFM), a scanning magnetic force microscope (SMFM), etc., depending on the operation principle.

【0003】いずれも鋭く尖った探針を試料表面に極め
て接近させ、この時両者間に作用する量子効果を利用し
て原子的尺度で表面の凹凸形状等を測定するものであ
る。このうち、STMは、二つの導電性物体を原子的尺
度迄近接させると固体内電子の波動関数が相互に重畳
し、仕事間関数φより低い電圧Vを印加するとトンネル
電流が流れるとの現象を利用したものである。
In both cases, a sharply pointed probe is brought very close to the sample surface, and at this time, the quantum effect that acts between the two is used to measure the surface irregularities and the like on an atomic scale. Among them, in STM, when two conductive objects are brought close to each other on an atomic scale, wave functions of electrons in a solid are superposed on each other, and a tunnel current flows when a voltage V lower than a work function φ is applied. It was used.

【0004】波動関数が金属の外の大気中で減衰する距
離は、通常の金属の清浄表面の場合φ=1〜5eVであ
るから0.1〜0.2nmである。仮に、φ=5eVの
金属同士を1nmに近づけると、トンネル電流値は約1
nAとなり、両者の距離が0.1nm増減することによ
り電流値は1桁増減する。したがって、このトンネル電
流値が一定になるよう監視しながら探針のZ座標を制御
すれば試料の凹凸形状が測定できる。
The distance at which the wave function is attenuated in the atmosphere outside the metal is 0.1 to 0.2 nm because φ = 1 to 5 eV for a clean surface of a normal metal. If metals of φ = 5 eV are brought close to 1 nm, the tunnel current value is about 1
The current value increases or decreases by one digit as the distance between the two increases or decreases by 0.1 nm. Therefore, if the Z coordinate of the probe is controlled while monitoring the tunnel current value to be constant, the uneven shape of the sample can be measured.

【0005】一方、SAFMは電気導電性のない材料表
面や有機材料表面をnmスケールで観察するのに適して
いる。これは無極性の物質表面間に、遠距離では分散力
による微弱な(約10-9N)引力が、また近距離では斥
力が働く現象を利用している。通常は、この微弱な力を
増幅して観察するため、探針は板バネ状のカンチレバー
部に接続されており、そのレバーの曲がりを圧電素子な
どの変位量測定系で検出しつつ両者間に一定の力が作用
するようにZ軸方向の動きを制御してX−Y平面を走査
するのである。
On the other hand, SAFM is suitable for observing the surface of a material having no electrical conductivity or the surface of an organic material on the nm scale. This utilizes a phenomenon in which a weak (about 10 −9 N) attractive force due to a dispersive force is exerted at a long distance and a repulsive force is exerted at a short distance between nonpolar substance surfaces. Usually, in order to amplify and observe this weak force, the probe is connected to a leaf spring-shaped cantilever part, and the bending of the lever is detected by a displacement amount measurement system such as a piezoelectric element, and between them, The movement in the Z-axis direction is controlled so that a constant force acts, and the XY plane is scanned.

【0006】SMFMは強磁性体探針と磁性体試料間に
作用する相互引力(〜10-10N)を検出測定するもの
で0.01〜0.1μmの分解態が得られている。とこ
ろで、これら走査型プローブ顕微鏡においては、試料表
面の微細形状等を観察するための走査手段として、粗位
置駆動系と微位置駆動系が設けられている。粗位置駆動
系にはY字型三脚のそれぞれを保持台に静電吸着してク
ランプしておき、一脚ずつ吸引力を解除して移動させた
り、圧電素子で移動させる電気系駆動方式やテコを利用
してマイクロメータの動きを縮小する機械系駆動方式が
用いられている。
The SMFM is for detecting and measuring the mutual attractive force ( -10 -10 N) acting between the ferromagnetic probe and the magnetic sample, and a decomposition state of 0.01-0.1 μm has been obtained. By the way, in these scanning probe microscopes, a coarse position drive system and a fine position drive system are provided as scanning means for observing the fine shape and the like of the sample surface. For the coarse position drive system, each of the Y-shaped tripods is electrostatically adsorbed and clamped on the holding table, and the attraction force is released and moved one by one, or the electric system drive method or lever A mechanical drive system is used to reduce the movement of the micrometer by utilizing.

【0007】もっとも重要なのは、nmオーダーで試料
台または探針の動きを制御する微位置駆動系である。代
表的な走査型プローブ顕微鏡であるSTMの標準的な構
成を図3に示す。
The most important one is a fine position drive system that controls the movement of the sample stage or the probe on the order of nm. A standard configuration of the STM, which is a typical scanning probe microscope, is shown in FIG.

【0008】図3では、微動装置駆動系は互いに直交す
るX,Y,Z軸系の微動機構と電気制御系から成り、微
動機構は探針に接続されている。微動機構は、圧電セラ
ミックス,たとえばPZTなどから成る三本の直交アー
ム(X,Y,Z)とその表面に設けられた電極から形成
されているのが普通である。試料台に垂直なZ軸方向の
微動機構に印加する電圧を制御することによって、試料
と探針間の距離を一定に保つことができる。1V印加に
対して1nm程度変形する素子を作ることは容易であ
り、X−Y面内をラスター走査すれば試料表面の形状が
Z軸微動素子への印加電圧としてウエーブメモリに記録
され、マイクロコンピュータに読み込まれる。したがっ
て、三軸方向の圧電素子への印加電圧を座標値とする画
面を画像として出力すれば、試料の表面形状を拡大表示
することができる。分解能は、X−Y方向で約100p
m,Z軸方向で1pmである。
In FIG. 3, the fine movement device drive system comprises an X, Y and Z axis fine movement mechanism and an electric control system which are orthogonal to each other, and the fine movement mechanism is connected to the probe. The fine movement mechanism is usually formed by three orthogonal arms (X, Y, Z) made of piezoelectric ceramics such as PZT and electrodes provided on the surface thereof. By controlling the voltage applied to the fine movement mechanism in the Z-axis direction perpendicular to the sample stage, the distance between the sample and the probe can be kept constant. It is easy to fabricate an element that deforms about 1 nm with application of 1 V, and if raster scanning is performed in the XY plane, the shape of the sample surface is recorded in the wave memory as the voltage applied to the Z-axis fine movement element, and the microcomputer is used. Read in. Therefore, the surface shape of the sample can be magnified and displayed by outputting as an image a screen with the coordinate values of the voltages applied to the piezoelectric elements in the three axis directions. The resolution is about 100p in the XY direction.
It is 1 pm in the m and Z axis directions.

【0009】[0009]

【発明が解決しようとする課題】上記した従来技術の微
動機構で用いられる圧電材料には,圧力と電圧の関係間
に非直線性とヒステリシスという好ましくない現象があ
る。たとえば、前記したPZTは印加電圧に対して直線
範囲で1nm/Vの変位を行い、拡大走査範囲は1μm
程度である。しかし、このような大振幅動作では非直線
性が顕著になる。また、20%程度のヒステリシスがあ
り、大電圧印加後クリーピングといわれる長期の緩和現
象も観察されている。なお、このヒステリシスは、電圧
幅やスタート時の電圧値によっても変化し、軌跡が異な
ると指摘されている。このためSTMやSAFMでは微
動機構に用いる圧電素子のヒステリシスカーブを予め数
式化し、この数式にパラメータをあてはめることによっ
て走査座標の補正を行なっている。図3で示したよう
に、X−Yライター・スキャナーに予め用意したテスト
パターン(位置補正,角度補正用)を組み込んでおき、
予備計測段階でこれを走査する。テストパターンを実測
して得た数値(x,y,ψ)と、テストパターンの真の
値(X,Y,Φ)との比から、現時点における装置の補
正係数を算出し、試料の実測定段階に適用すれば正確な
値が得られることになる。
The piezoelectric material used in the fine movement mechanism of the prior art described above has an undesirable phenomenon of non-linearity and hysteresis in the relationship between pressure and voltage. For example, the PZT described above makes a displacement of 1 nm / V in the linear range with respect to the applied voltage, and the enlarged scanning range is 1 μm.
It is a degree. However, in such a large amplitude operation, the non-linearity becomes remarkable. Further, there is a hysteresis of about 20%, and a long-term relaxation phenomenon called creeping after applying a large voltage is also observed. It is pointed out that this hysteresis changes depending on the voltage width and the voltage value at the time of start, and the locus is different. Therefore, in the STM and SAFM, the hysteresis curve of the piezoelectric element used for the fine movement mechanism is made into a mathematical expression in advance, and the parameters are applied to this mathematical expression to correct the scanning coordinates. As shown in FIG. 3, a test pattern (for position correction and angle correction) prepared in advance is incorporated in the XY writer scanner,
This is scanned in the preliminary measurement stage. From the ratio of the numerical value (x, y, ψ) obtained by actually measuring the test pattern and the true value (X, Y, Φ) of the test pattern, the correction coefficient of the device at the present time is calculated, and the actual measurement of the sample is performed. If applied to the stage, an accurate value will be obtained.

【0010】同じ補正式がZ軸方向にも適用され、Z軸
微動測定値の補正が行なわれるが、Z軸方向,すなわち
高さ方向には真の値の保証されたテストパターンがない
ために、補正値の精度が確認できないという問題点があ
った。本発明の目的は、Z軸方向の探針の位置および測
定精度を正確に与えることができる走査型プローブ顕微
鏡の計測データ補正方法および精度検出方法を提供する
ことである。
The same correction formula is applied to the Z-axis direction to correct the Z-axis fine movement measurement value, but there is no test pattern with a guaranteed true value in the Z-axis direction, that is, the height direction. However, there is a problem that the accuracy of the correction value cannot be confirmed. An object of the present invention is to provide a measurement data correction method and an accuracy detection method for a scanning probe microscope that can accurately provide the position of the probe in the Z-axis direction and the measurement accuracy.

【0011】[0011]

【課題を解決するための手段】本発明は、X−Y平面試
料台に垂直なZ軸方向に保持された探針を前記試料台上
に載置された試料表面に近接させ、圧電素子によって該
表面と前記探針先端部の距離を一定にしつつ前記試料台
を移動させて、試料の表面形状を測定する走査型プロー
ブ顕微鏡において、Z軸方向に既知の段差Hi(ここに
i=1〜n)を有するn個のX−Y 平面部の面を第1
段から第n段まで複数段備えた標準試料を用意し、前記
各X−Y 平面部の面方向に前記探針を走査することに
よって、既知の段差Hi(i=1〜n)と測定段差h
i(i=1〜n)とが補正係数kiを介して一致するよう
なその補正係数ki(i=1〜n)を求めて記憶してお
き、この補正係数ki(i=1〜n)で被計測材料の計
測時の圧電素子のヒステリシス補正を行わせるようにし
た走査型プローブ顕微鏡の計測データ補正方法を開示す
る。
According to the present invention, a probe held in the Z-axis direction perpendicular to an XY plane sample stage is brought close to a sample surface mounted on the sample stage, and a piezoelectric element is used. In a scanning probe microscope that measures the surface shape of a sample by moving the sample table while keeping the distance between the surface and the tip of the probe constant, a known step Hi (where i = 1) in the Z-axis direction. The first of the n XY planes having
A standard sample having a plurality of stages from the stage to the n-th stage is prepared, and the known step H i (i = 1 to n) is measured by scanning the probe in the surface direction of each XY plane portion. Step h
i (i = 1~n) and is stores Searching for the correction coefficient k i (i = 1~n) to conform via the correction coefficient k i, the correction coefficient k i (i = 1 (1) to (n) disclose a method for correcting measurement data of a scanning probe microscope, which is configured to perform hysteresis correction of a piezoelectric element when measuring a material to be measured.

【0012】さらに本発明は、X−Y平面試料台に垂直
なZ軸方向に保持された探針を前記試料台上に載置され
た試料表面に近接させ、圧電素子によって該表面と前記
探針先端部の距離を一定にしつつ前記試料台を移動させ
て、試料の表面形状を測定する走査型プローブ顕微鏡に
おいて、Z軸方向に既知の段差Hi(ここにi=1〜
n)を有するn個のX−Y 平面部を第1段から第n段
まで複数段備えると共に、隣合うX−Y 平面部のZ軸
方向の角度を正確に90゜に設定した前記標準試料を試
料台に載置し、前記走査型プローブ顕微鏡の探針を前記
X−Y 平面部の面方向に走査しながらZ座標の変化を
計測して、前記探針がX−Y 平面部を1段完全に降り
る迄の斜線方向をなす計測軌跡の長さri(i=1〜
n)およびX−Y 平面部の計測段差hiを測定記録し、
θi=cos-1(hi/ri)を演算して求めたθiを評価
用の測定角度誤差とする走査型プローブ顕微鏡の計測角
度誤差検出方法を開示する。
Further, according to the present invention, a probe held in the Z-axis direction perpendicular to the XY plane sample stage is brought close to the sample surface placed on the sample stage, and the surface and the probe are detected by a piezoelectric element. In a scanning probe microscope that measures the surface shape of a sample by moving the sample table while keeping the distance of the tip of the needle constant, a known step H i (where i = 1 to 1) in the Z-axis direction.
The standard sample in which a plurality of n X-Y plane portions having n) are provided from the first stage to the n-th stage, and the angle of the adjacent X-Y plane portions in the Z-axis direction is accurately set to 90 °. Is mounted on a sample table, the change of Z coordinate is measured while scanning the probe of the scanning probe microscope in the surface direction of the XY plane, and the probe moves the XY plane to 1 The length r i (i = 1 to 1) of the measurement trajectory in the diagonal direction until the step is completely descended
n) and the measurement step h i of the XY plane portion are recorded,
Disclosed is a measurement angle error detection method for a scanning probe microscope in which θ i = cos −1 (h i / r i ) is calculated and θ i is a measurement angle error for evaluation.

【0013】[0013]

【作用】各X−Y 平面部の段差Hiは既知であり、測定
段差誤差hiとは本来、Hi=hiとなるべきである。然
るに、Hi≠hiとなることがあり、これは圧電素子のヒ
ステリシス特性によって生じたものである。そこで、本
発明では、補正係数kiを介してHiとhiとが一致すよ
うなその補正係数kiを各段毎に求め、補正係数kiで被
計測材料の計測時の圧電素子のヒステリシス補正を行わ
せることとした。更に相隣合う段差が90゜の角度を有
している場合であっても、計測軌跡がこの90゜段差の
部分では90゜段差の軌跡とはならず、斜線の軌跡とな
る。そこで本発明では、この斜線の軌跡から斜線の角度
θiを求めて、計測時の計測軌跡の評価を行わしめるよ
うにした。
The step H i of each XY plane is known, and the measured step error h i should be H i = h i . However, H i ≠ h i may occur, which is caused by the hysteresis characteristic of the piezoelectric element. Therefore, in the present invention, the correction coefficient through k i Searching for the correction coefficient k i as to match the H i and h i for each stage, the correction coefficient k i in the piezoelectric element at the time of measurement of the measured material It was decided to perform the hysteresis correction of. Further, even when the adjacent steps have an angle of 90 °, the measurement locus does not become a 90 ° step locus in this 90 ° step portion, but becomes a diagonal locus. Therefore, in the present invention, the angle θ i of the diagonal line is obtained from the trajectory of the diagonal line, and the measurement locus at the time of measurement is evaluated.

【0014】[0014]

【実施例】図1は本発明の一実施例におけるSTMのZ
軸方向の探針座標補正係数決定を行うための説明図およ
び予備測定段階のフローチャートを示す。図1(A)に
おいて1は探針,2は標準試料,3は標準試料のベース
である。この実施例においては、簡単のためにX−Y平
面部数を4段とし、各段の段差Hiはすべて等しく、Hi
=a(i=1〜4)とした。標準試料2を装置のX−Y
ステージに据えつける時、標準試料2の下面に設けられ
た標準試料のベース3を調節して各段に平面部がX−Y
平面に正確に一致するようにする。図示していないが、
探針1は図3のようにして圧電素子からなる微動機構に
接続されている。探針1は最初のX−Y平面部4のX−
Y平面上に配置されている。予備測定段階は、まずテス
トパターンを用いてX−Y平面で行うが、この段階は本
発明に直接に関係しない故に、動作説明は省略する。こ
の後で、本発明の実施例となる図1(B)に示したプロ
グラムに沿ってZ軸方向の予備測定を行う。図1(B)
において、まず「開始」によつて探針1は図1(A)の
X−Y 平面部の面方向へと移動開始する。これが「X
−Y 平面部方向に探針移動」のプロセスである。探針
1はX−Y 平面部4からX−Y 平面部3に降りてこの
時の測定段差h4を検出する。なお、予備測定段階にお
いても実測段階と同じように探針1と試料X−Y平面と
の距離は、一定の原子的尺度T(たとえば1nm)を保
持するように探針1のZ座標は制御されている。ここで
図1に示すように、hiとは原子的尺度Tからの計測段
差であり、本来hi=Hiであるべきである。しかし、圧
電素子にヒステリシス特性があるとhi≠Hiとなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a Z of STM in one embodiment of the present invention.
An explanatory view and a flow chart of a preliminary measurement step for determining a probe coordinate correction coefficient in the axial direction are shown. In FIG. 1A, 1 is a probe, 2 is a standard sample, and 3 is a standard sample base. In this embodiment, for the sake of simplicity, the number of XY plane portions is four, and the steps H i of each step are all equal and H i.
= A (i = 1 to 4). Standard sample 2 is XY of the device
When installed on the stage, the base 3 of the standard sample provided on the lower surface of the standard sample 2 is adjusted so that the flat portion is XY in each stage.
Try to match the plane exactly. Although not shown,
The probe 1 is connected to a fine movement mechanism composed of a piezoelectric element as shown in FIG. The probe 1 is the first X-Y plane portion X-
It is arranged on the Y plane. The preliminary measurement step is first performed in the XY plane using the test pattern, but since this step is not directly related to the present invention, the operation description is omitted. After that, preliminary measurement in the Z-axis direction is performed according to the program shown in FIG. 1B, which is an embodiment of the present invention. Figure 1 (B)
First, the probe 1 starts to move in the plane direction of the XY plane portion of FIG. 1A by "start". This is "X
The process of "moving the probe in the Y-plane direction". The probe 1 descends from the XY plane portion 4 to the XY plane portion 3 and detects the measurement step h 4 at this time. In the preliminary measurement stage as well as in the actual measurement stage, the Z coordinate of the probe 1 is controlled so that the distance between the probe 1 and the sample XY plane maintains a constant atomic scale T (for example, 1 nm). Has been done. Here, as shown in FIG. 1, h i is a measurement step from the atomic scale T and should originally be h i = H i . However, if the piezoelectric element has a hysteresis characteristic, then h i ≠ H i .

【0015】X−Y 平面部4からX−Y 平面部1を経
てX−Y平面に平行な標準試料のベース3表面まで探針
1を移動させると各X−Y 平面部の計測段差h1〜h4
が全て検出される。ここで、平面部位4の計測探針先端
を図1のような位置Z4にするための、圧電素子への印
加電圧をV4、以下平面部位3、2、1についても同様
に位置Z3、Z2、Z1にするような印可電圧をV3
2、V1とすると、このVとZとの関数関係がヒステリ
シス特性を描く。本来hi=Hiであるべきであるが、こ
のヒステリシス特性が存在すると、hi≠Hiとなる。そ
こで、hiとHiとがある係数を介して一致するようなそ
の係数を見つける。この係数がヒステリシス特性の影響
をなくするための補正係数ki=(i=1〜n)とな
る。この補正係数を見つけるための手順は以下となる。
検出された段差hi(i=1〜4)が全てHi,すなわち
aに等しいかどうかのチェックを行う。「NO」であれ
ば、次に「(a/hi)を補正係数に変換」するプロセ
スへ進む。次に再測定のため「探針をX−Y 平面部4
に移動」すると共に、マイクロコンピュータ等の制御機
器(図示せず)に「新補正係数のプログラムセット」を
行う。
When the probe 1 is moved from the XY plane portion 4 to the surface of the base 3 of the standard sample which is parallel to the XY plane through the XY plane portion 1, a measurement step h 1 of each XY plane portion is obtained. ~ H 4
Are all detected. Here, for the measurement probe tip plane portion 4 at a position Z 4 as shown in FIG. 1, the voltage applied to the piezoelectric element V 4, the following positions Similarly for flat site 3,2, l Z 3 , Z 2 , Z 1 are applied voltages V 3 ,
Assuming V 2 and V 1 , this functional relationship between V and Z draws a hysteresis characteristic. Originally, it should be h i = H i , but if this hysteresis characteristic exists, h i ≠ H i . Then, find the coefficient such that h i and H i match via a certain coefficient. This coefficient becomes a correction coefficient k i = (i = 1 to n) for eliminating the influence of the hysteresis characteristic. The procedure for finding this correction coefficient is as follows.
It is checked whether all the detected steps h i (i = 1 to 4) are equal to H i , that is, a. If "NO", then proceed to the process of "converting (a / h i ) into a correction coefficient". Next, for re-measurement, “Tip the probe in the XY plane section 4
"Move to" and simultaneously perform "program setting of new correction coefficient" in a control device (not shown) such as a microcomputer.

【0016】再び「X−Y 平面部方向に探針移動」を
行って「段差hi検出」に入る。ただし、今回のhiは実
測値が上記補正係数kiで補正されている。h1〜h4
全てを測定し終えた後、この測定値がhi,すなわちa
に等しくなっているかどうかのチェックを行う。前回の
測定値hiの検出が今回も再現性よく行われたならば、
今回の測定によってhi(i=1〜4)=aが確認さ
れ、予備測定段階は「終了」する。しかし、hi(n=
1〜4)≠aであれば、再び補正プロセスに入り、hi
(i=1〜4)=aが達成される迄ルーチン測定を繰り
返す。すべてのX−Y 平面部4〜1でhi=Hiとなる
ような補正係数kiが見つかれば、これを最適な補正係
数kiとして記憶しておく。
The "movement of the probe in the X-Y plane direction" is performed again to enter the "step h i detection". However, the actual measurement value of h i this time is corrected by the correction coefficient k i . After the measurement of all of h 1 to h 4 is completed, this measurement value is h i , that is, a
Check if it is equal to. If the previous measurement value h i was detected with good reproducibility,
The current measurement confirms h i (i = 1 to 4) = a, and the preliminary measurement step “ends”. However, h i (n =
1-4) .noteq.a, the correction process is re-entered and h i
Routine measurements are repeated until (i = 1-4) = a is achieved. If it finds h i = H i become such a correction coefficient k i in all the X-Y plane portion 4 to 1, stores it as optimum correction coefficient k i.

【0017】予備測定段階が終了後、X−Y平面試料台
に被検試料を設置し、試料台をX,Y方向に走査しつつ
その表面形状を実測する。この時、探針1は試料表面と
Tなる距離を保持するよう微動機構が調節する。X−Y
平面の座標(x,y)およびZ軸座標は、前記した予備
測定段階において決定された補正係数によって較正さ
れ、ウェーブメモリに出力される。一旦メモリされた補
正情報は、画像装置に入力され、拡大した試料の表面形
状としてディスプレイされる。
After the preliminary measurement step is completed, the sample to be inspected is set on the XY plane sample table, and the surface shape is measured while scanning the sample table in the X and Y directions. At this time, the fine movement mechanism adjusts the probe 1 so as to maintain the distance T with respect to the sample surface. XY
The coordinates (x, y) of the plane and the Z-axis coordinates are calibrated by the correction coefficient determined in the preliminary measurement step and output to the wave memory. The correction information once stored in memory is input to the image device and displayed as the enlarged surface shape of the sample.

【0018】一方、図2は実施例による顕微鏡の計測角
度誤差検出方法を示す図である。図2(A)に示すよう
に、多段X−Y 平面部(図例では4段)を有する標準
試料2のX−Y 平面部角度は、所定角、例えば90゜
に精密加工されている。図では、簡単のためにX−Y
平面部1および標準試料のベースは省略してある。ま
た、各X−Y 平面部が試料台のX軸に沿って形成され
るようにして標準試料が試料台(図示せず)に載置され
ている。したがって、探針1のX−Y 平面部に沿う移
動は、Y軸およびZ軸方向に限られる。
On the other hand, FIG. 2 is a diagram showing a measuring angle error detecting method of the microscope according to the embodiment. As shown in FIG. 2A, the angle of the XY plane portion of the standard sample 2 having a multi-stage XY plane portion (four steps in the illustrated example) is precisely processed to a predetermined angle, for example, 90 °. In the figure, for simplicity, XY
The flat portion 1 and the base of the standard sample are omitted. A standard sample is placed on a sample table (not shown) such that each XY plane is formed along the X axis of the sample table. Therefore, the movement of the probe 1 along the XY plane is limited to the Y-axis and Z-axis directions.

【0019】さて、測定精度の検出プロセスは、図2
(B)で示すようなチャートに沿って行われるが、最初
探針1は図2(A)のX−Y 平面部4平坦部にある。
この位置で、前記したようにZ軸微動機構を調節して探
針1と標準試料2との間隔をTに保持する。しかる後、
「開始」と共に「X−Y 平面部に沿って探針移動」を
行う。まずY軸方向に探針1を走査するとX−Y 平面
部4のエッジをやや過ぎた個所からZ軸方向へのシフト
も加わる。Z軸方向へのシフトは、X−Y 平面部3の
平坦部からTだけ離れた位置まで続くが、この時の探針
1の軌跡は図に点線で示したように段間で斜線を形成す
るのが普通である。勿論前記した図1の場合も、正確に
は図2(A)のような斜めの軌跡になるのであるが、図
1のZ軸位置補正ではX−Y 平面部の平坦部間の高さ
のみが重要なので、簡単のため省略したものである。
Now, the process of detecting the measurement accuracy is shown in FIG.
As shown in FIG. 2B, the probe 1 is first located on the flat portion of the XY plane portion 4 of FIG. 2A.
At this position, the Z-axis fine movement mechanism is adjusted as described above to maintain the distance between the probe 1 and the standard sample 2 at T. After that,
Along with "start", "probe movement along the XY plane" is performed. First, when the probe 1 is scanned in the Y-axis direction, a shift in the Z-axis direction is added from a position slightly past the edge of the XY plane portion 4. The shift in the Z-axis direction continues up to a position away from the flat portion of the XY plane portion 3 by T, but the locus of the probe 1 at this time forms oblique lines between steps as shown by the dotted lines in the figure. It is normal to do. Of course, also in the case of FIG. 1 described above, to be precise, an oblique locus as shown in FIG. 2A is obtained, but in the Z-axis position correction of FIG. 1, only the height between the flat portions of the XY plane portion is obtained. Is important, so it is omitted for simplicity.

【0020】このように探針1の軌跡が段間で斜線を描
くのは、探針1の先端が原子的尺度で尖鋭でないことに
加えて、その形状も様々であるためである。通常、探針
1は直径0.1mm程度のタングステン線などを電解研
磨して用いるが、完全に探針の先端部の曲率および形状
を制御することは、困難である。探針1の軌跡がX−Y
平面部4の平坦部からX−Y 平面部3の平坦部までを
カバーすると「斜線長さr4の検出」が完了する。この
時、Z軸方向の探針1の移動距離を測定すると「段差h
4の検出」ができる。r4とh4から、前記した斜線の傾
き角度θ4
The reason why the trajectory of the probe 1 draws a slanted line between the steps is that the tip of the probe 1 is not sharp on an atomic scale and the shape thereof is also various. Normally, the probe 1 is used by electrolytically polishing a tungsten wire or the like having a diameter of about 0.1 mm, but it is difficult to completely control the curvature and shape of the tip of the probe. The trajectory of probe 1 is XY
When covering the flat portion of the flat portion 4 to the flat portion of the X-Y plane portion 3 "detection of the oblique line length r 4" is completed. At this time, when the moving distance of the probe 1 in the Z-axis direction is measured, the “step h
4 detections ”are possible. From r 4 and h 4 , the inclination angle θ 4 of the above-mentioned diagonal line is

【数1】θ4=cos-1(h4/r4) と計算できる。これが「角度θ4の算出」である。この
θ4値を「記録」後「i=1」か否かをチェックする。
ここに、iはX−Y 平面部番号である。最初は勿論
「NO」であるため、次のX−Y 平面部へ探針を移動
するルーチンに入る。「i=1」になったら作業は終了
する。長さr4の代わりにそのX−Y方向での幅d4を検
出してもよい。この時には下記となる。
## EQU1 ## It can be calculated that θ 4 = cos -1 (h 4 / r 4 ). This is the “calculation of the angle θ 4 ”. After "recording" this θ 4 value, it is checked whether or not "i = 1".
Where i is the XY plane part number. At first, of course, the answer is "NO", so the routine enters to move the probe to the next XY plane. When “i = 1”, the work ends. Instead of the length r 4 , the width d 4 in the XY direction may be detected. At this time, it becomes the following.

【数2】θ4=tan-1(d4/h4) 同様に、傾き角度θ3、θ2、θ1を求める。そしてこれ
らをメモリに格納しておく。θ4〜θ1は各段差における
計測軌跡の様子を示す値となり、いわゆる計測そのもの
が持つ角度誤差(いわゆる計測角度誤差)を意味する。
[Equation 2] θ 4 = tan −1 (d 4 / h 4 ) Similarly, the tilt angles θ 3 , θ 2 , and θ 1 are obtained. Then, these are stored in the memory. θ 4 to θ 1 are values indicating the state of the measurement trajectory at each step, and mean the so-called measurement angle error (so-called measurement angle error).

【0021】hiは、図1で示したZ軸方向の補正を含
んでいないため、圧電特性による誤差を含む。これを避
ける場合には、予め図1に示したZ軸方向の予備測定を
行って係数補正したhiを用いる必要がある。そして、
試料表面の形状等を測定する場合には、例えば、測定さ
れた角度誤差θiと予め設定した角度(90゜)との差
を補正量として用い、実際の測定値を補正する。
Since h i does not include the correction in the Z-axis direction shown in FIG. 1, it includes an error due to the piezoelectric characteristic. In order to avoid this, it is necessary to use pre-measurement in the Z-axis direction shown in FIG. 1 in advance and use the coefficient-corrected h i . And
When measuring the shape of the sample surface, for example, the difference between the measured angle error θ i and the preset angle (90 °) is used as a correction amount to correct the actual measurement value.

【0022】以上実施例に基づいて本発明を説明した
が、本発明はこれらにとどまるものではない。STM以
外にもSAFMやSMFMにも適用可能である。また、
前記実施例ではZ軸方向の測定値を較正する標準試料の
段差hiをすべてaとしたが、勿論各X−Y 平面部毎に
その段差が異なっていて構わない。又、角度を補正する
場合、差を用いたが測定された角度誤差θiと設定角度
との比を補正量としても良い。
Although the present invention has been described based on the embodiments, the present invention is not limited to these. It is also applicable to SAFM and SMFM other than STM. Also,
In the above-mentioned embodiment, the steps h i of the standard sample for calibrating the measurement value in the Z-axis direction are all set to a, but of course the steps may be different for each XY plane section. Further, when the angle is corrected, the difference may be used, but the ratio between the measured angle error θ i and the set angle may be used as the correction amount.

【0023】[0023]

【発明の効果】以上述べたように本発明によれば走査型
プローブ顕微鏡のZ軸方向の走査精度を確認し、測定値
のZ座標を補正することができる。その結果、走査型プ
ローブ顕微鏡の精度向上に資することができると考えら
れる。
As described above, according to the present invention, the scanning accuracy of the scanning probe microscope in the Z-axis direction can be confirmed and the Z coordinate of the measured value can be corrected. As a result, it is considered that the accuracy of the scanning probe microscope can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例によるZ座標の補正プロセスを説明する
ための図である。
FIG. 1 is a diagram for explaining a Z coordinate correction process according to an embodiment.

【図2】実施例による顕微鏡のZ軸方向の精度検出プロ
セスを説明するための図である。
FIG. 2 is a diagram for explaining an accuracy detection process in the Z-axis direction of the microscope according to the embodiment.

【図3】STMの一般回路構成を示す図である。FIG. 3 is a diagram showing a general circuit configuration of an STM.

【符号の説明】[Explanation of symbols]

1 探針 2 標準試料 3 標準試料のベース 1 probe 2 standard sample 3 standard sample base

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 X−Y平面試料台に垂直なZ軸方向に保
持された探針を前記試料台上に載置された試料表面に近
接させ、圧電素子によって該表面と前記探針先端部の距
離を一定にしつつ前記試料台を移動させて、試料の表面
形状を測定する走査型プローブ顕微鏡において、Z軸方
向に既知の段差Hi(ここにi=1〜n)を有するn個
のX−Y 平面部の面を第1段から第n段まで複数段備
えた標準試料を用意し、前記各X−Y 平面部の面方向
に前記探針を走査することによって、既知の段差H
i(i=1〜n)と測定段差hi(i=1〜n)とが補正
係数kiを介して一致するようなその補正係数ki(i=
1〜n)を求めて記憶しておき、この補正係数ki(i
=1〜n)で被計測材料の計測時の圧電素子のヒステリ
シス補正を行わせるようにした走査型プローブ顕微鏡の
計測データ補正方法。
1. A probe held in a Z-axis direction perpendicular to an XY plane sample stage is brought close to a sample surface placed on the sample stage, and a piezoelectric element is used to provide the surface and the tip of the probe. In the scanning probe microscope for measuring the surface shape of the sample by moving the sample table while keeping the distance of n constant, the number of n steps having a known step H i (where i = 1 to n) in the Z-axis direction is measured. By preparing a standard sample having a plurality of stages of the XY plane portion from the first stage to the n-th stage, and scanning the probe in the plane direction of each XY plane portion, a known step H
i (i = 1~n) and the measurement step h i (i = 1~n) thereof and as to match via a correction coefficient k i correction coefficient k i (i =
1 to n) are calculated and stored, and the correction coefficient k i (i
= 1 to n), the method for correcting the measurement data of the scanning probe microscope is adapted to perform the hysteresis correction of the piezoelectric element during the measurement of the material to be measured.
【請求項2】 X−Y平面試料台に垂直なZ軸方向に保
持された探針を前記試料台上に載置された試料表面に近
接させ、圧電素子によって該表面と前記探針先端部の距
離を一定にしつつ前記試料台を移動させて、試料の表面
形状を測定する走査型プローブ顕微鏡において、Z軸方
向に既知の段差Hi(ここにi=1〜n)を有するn個
のX−Y 平面部を第1段から第n段まで複数段備える
と共に、隣合うX−Y 平面部のZ軸方向の角度を90
゜に設定した標準試料を試料台に載置し、前記走査型プ
ローブ顕微鏡の探針を前記X−Y 平面部方向に走査し
ながらZ座標の変化を計測して、前記探針がX−Y 平
面部を1段完全に降りる迄の斜線方向をなす計測軌跡の
長さri(ここにi=1〜n)およびX−Y 平面部の計
測段差hiを測定記録し、θi=cos-1(hi/ri)を
演算して求めたθiを評価用測定角度誤差とする走査型
プローブ顕微鏡の計測角度誤差検出方法。
2. A probe held in the Z-axis direction perpendicular to an XY plane sample stage is brought close to a sample surface placed on the sample stage, and the surface and the probe tip end portion are formed by a piezoelectric element. In the scanning probe microscope for measuring the surface shape of the sample by moving the sample table while keeping the distance of n constant, the number of n steps having a known step H i (where i = 1 to n) in the Z-axis direction is measured. A plurality of XY plane portions from the first stage to the nth stage are provided, and the angle in the Z-axis direction of the adjacent XY plane portions is 90.
The standard sample set at a temperature of 0 ° is placed on a sample table, and the change in Z coordinate is measured while scanning the probe of the scanning probe microscope in the direction of the XY plane. Measure and record the length r i (i = 1 to n) of the measurement locus in the oblique direction until completely descending the flat part by one step and the measurement step h i of the XY flat part, and θ i = cos A measurement angle error detection method for a scanning probe microscope in which θ i obtained by calculating −1 (h i / r i ) is used as an evaluation measurement angle error.
JP22562093A 1993-09-10 1993-09-10 Measured data correction and measured angle error detection in scanning probe microscope Pending JPH0783650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22562093A JPH0783650A (en) 1993-09-10 1993-09-10 Measured data correction and measured angle error detection in scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22562093A JPH0783650A (en) 1993-09-10 1993-09-10 Measured data correction and measured angle error detection in scanning probe microscope

Publications (1)

Publication Number Publication Date
JPH0783650A true JPH0783650A (en) 1995-03-28

Family

ID=16832174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22562093A Pending JPH0783650A (en) 1993-09-10 1993-09-10 Measured data correction and measured angle error detection in scanning probe microscope

Country Status (1)

Country Link
JP (1) JPH0783650A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7562564B2 (en) 2003-01-30 2009-07-21 Hitachi, Ltd. Scanning probe microscope and sample observing method using this and semiconductor device production method
JP2009536325A (en) * 2006-05-10 2009-10-08 カール ツァイス インドゥストリーレ メステクニーク ゲーエムベーハー Method and apparatus for contacting a surface point of a workpiece

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7562564B2 (en) 2003-01-30 2009-07-21 Hitachi, Ltd. Scanning probe microscope and sample observing method using this and semiconductor device production method
JP2009536325A (en) * 2006-05-10 2009-10-08 カール ツァイス インドゥストリーレ メステクニーク ゲーエムベーハー Method and apparatus for contacting a surface point of a workpiece

Similar Documents

Publication Publication Date Title
JP2574942B2 (en) Electrical probe
US5214389A (en) Multi-dimensional high-resolution probe for semiconductor measurements including piezoelectric transducer arrangement for controlling probe position
JPH0348102A (en) Detecting apparatus of very small displacement, piezoelectric actuator having this detecting apparatus and scanning probe microscope having this piezoelectric actuator
US5155359A (en) Atomic scale calibration system
JPH08233836A (en) Scanning probe microscope, standard device for calibrating height direction thereof and calibration method
JPH0783650A (en) Measured data correction and measured angle error detection in scanning probe microscope
JP2002156409A (en) Measuring sonde for detecting electrical signal in integrated circuit, method for using the measuring sonde, method for manufacturing the measuring sonde and measuring system by the measuring sonde
JP3325258B2 (en) Scanning probe microscope
JP2001024038A (en) Probe positioning method and apparatus and method of evaluating member using the same
EP1436636B1 (en) Method and apparatus for sub-micron imaging and probing on probe station
JP3118108B2 (en) Scanning probe microscope and its measuring method
JPH03122514A (en) Observing apparatus for surface
JP3090295B2 (en) Needle tip shape measurement device, standard sample, and needle tip shape measurement method
JP3106239B2 (en) Probe scanning device
JPH036405A (en) Scanning tunnelling microscope
JP2003028772A (en) Scanning probe microscope and its measurement setting method
JPH0666512A (en) Scanning type tunnel microscope
JPH08146013A (en) Scanning type probe microscope
CN108027389B (en) Positioning arm and method for placing a scanning head on a support surface
JPH01227448A (en) Prober for wafer
JP2003315241A (en) Scanning probe microscope
JPH0225702A (en) Scanning type tunnel microscope and scanning type tunnel spectroscope
JP2002014025A (en) Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
JPH0771913A (en) Fine adjustment, and scanning type probe microscope
JP4448508B2 (en) Scanning probe microscope