JPH0783607A - Control method for scan type probe microscope - Google Patents

Control method for scan type probe microscope

Info

Publication number
JPH0783607A
JPH0783607A JP5231399A JP23139993A JPH0783607A JP H0783607 A JPH0783607 A JP H0783607A JP 5231399 A JP5231399 A JP 5231399A JP 23139993 A JP23139993 A JP 23139993A JP H0783607 A JPH0783607 A JP H0783607A
Authority
JP
Japan
Prior art keywords
needle tip
conductive needle
cantilever
tip portion
probe microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5231399A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kado
博行 加道
Shinichi Yamamoto
伸一 山本
Takao Toda
隆夫 任田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5231399A priority Critical patent/JPH0783607A/en
Publication of JPH0783607A publication Critical patent/JPH0783607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To provide a control method for a scanning probe microscope wherein both an interatomic farce microscope image and a scanning tunnelling microscope image are obtained with the same probe at the same time. CONSTITUTION:At measurement points on a material surface, a bias voltage is applied between a conductive needle tip 1 and a material surface 4, and while they are made to relatively came near each other, the tunnelling current flowing between them is measured, and a position of the conductive needle tip 1 in the direction of Z-axis, at the time the value is a specified value, is taken as scanning tunnelling microscope data. Then, the bias voltage is cut off and the conductive needle tip 1 is brought into contact with the material surface 4, and deflection amount at a free end of a cantilever 3 is measured so that the displacement amount of the cantilever 3 in the direction of Z-axis, at the time the displacement amount is a specified value, is taken as interatomic force microscope data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、探針を用いて物質表面
の構造を分子・原子レベルで調べる原子間力顕微鏡の機
能及び走査トンネル顕微鏡の機能を併有する走査型探針
顕微鏡の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a scanning probe microscope which has both the function of an atomic force microscope and the function of a scanning tunneling microscope for examining the structure of a material surface at the molecular / atomic level using a probe. It is about.

【0002】[0002]

【従来の技術】近年、固体表面を原子・分子レベルで観
察できる走査型探針顕微鏡として走査トンネル顕微鏡や
原子間力顕微鏡が開発されている。まず、走査トンネル
顕微鏡の原理を説明する。先端を先鋭化した導電性針先
部を物質表面に数nm程度まで接近させ、導電性針先部
と物質表面との間にバイアス電圧を印加すると、導電性
針先部と試料表面との間にトンネル電流が流れる。この
トンネル電流を一定にするように、Z軸方向の位置制御
用圧電体と制御回路とにより導電性針先部と物質表面と
の間の距離をフィードバック制御しながら、物質表面を
走査する。トンネル電流は、物質表面の電子雲の違いや
電位変化を反映するため、このフィードバック制御量を
画像化することにより、物質表面を構成している個々の
原子や分子を区別することが可能となる。
2. Description of the Related Art In recent years, a scanning tunneling microscope and an atomic force microscope have been developed as a scanning probe microscope capable of observing a solid surface at an atomic / molecular level. First, the principle of the scanning tunneling microscope will be described. When a conductive needle tip with a sharpened tip is brought close to the material surface by about several nm and a bias voltage is applied between the conductive needle tip and the material surface, a gap between the conductive needle tip and the sample surface is obtained. A tunnel current flows through. The material surface is scanned while feedback controlling the distance between the conductive needle tip portion and the material surface by the Z-axis position control piezoelectric body and the control circuit so as to keep the tunnel current constant. Since the tunnel current reflects the difference in the electron cloud and the potential change on the surface of the material, it is possible to distinguish the individual atoms and molecules that make up the surface of the material by imaging this feedback control amount. .

【0003】次に原子間力顕微鏡の原理を説明する。原
子間力顕微鏡では微小な力を検出するために、導電性針
先部を有する長さ100μmから200μm程度のカン
チレバーが用いられる。物質表面を導電性針先部に近づ
けると、導電性針先部と物質表面間に働く原子間力によ
りカンチレバーにたわみが生じる。このたわみ量を一定
に保つように、Z軸方向の位置制御用圧電体と制御回路
とによりカンチレバーと物質表面間の距離をフィードバ
ック制御しながら、物質表面を走査する。カンチレバー
のたわみ量(すなわち導電性針先部と物質表面間に働く
力)は物質表面の凹凸を反映するため、このフィードバ
ック制御量を画像化することにより、物質表面を構成し
ている原子や分子を区別することが可能となる。
Next, the principle of the atomic force microscope will be described. In the atomic force microscope, a cantilever having a conductive needle tip and a length of about 100 μm to 200 μm is used to detect a minute force. When the material surface is brought close to the conductive needle tip, the cantilever is bent by the atomic force acting between the conductive needle tip and the material surface. The surface of the substance is scanned while the distance between the cantilever and the substance surface is feedback-controlled by the piezoelectric body for position control in the Z-axis direction and the control circuit so as to keep this amount of deflection constant. The amount of deflection of the cantilever (that is, the force acting between the conductive needle tip and the substance surface) reflects the unevenness of the substance surface. Therefore, by imaging this feedback control amount, the atoms and molecules that make up the substance surface can be visualized. Can be distinguished.

【0004】[0004]

【発明が解決しようとする課題】走査トンネル顕微鏡や
原子間力顕微鏡などの走査型探針顕微鏡では、金属、半
導体、絶縁体などの物質表面の原子の配列を観察するこ
とができる。しかし、導電性針先部を有するカンチレバ
ーを物質表面に数nmの距離まで接近させた場合、ファ
ンデアワールス力等の引力が働き、カンチレバーが物質
表面側にたわみ、導電性針先部をその位置に静止させる
ことが不可能である。そのため、走査トンネル顕微鏡の
機能と原子間力顕微鏡の機能とを同じ探針を用いて同時
に達成する装置はまだ開発されておらず、物質表面の原
子種の同定等は不可能であった。本発明は以上のような
問題点を解決するためになされたものであり、原子間力
顕微鏡の機能と走査トンネル顕微鏡の機能とを併有する
走査型探針顕微鏡の制御方法を得ることを目的としてい
る。
With a scanning probe microscope such as a scanning tunneling microscope or an atomic force microscope, it is possible to observe the arrangement of atoms on the surface of a substance such as metal, semiconductor or insulator. However, when a cantilever having a conductive needle tip is brought close to the surface of the material by a distance of several nm, attractive force such as van der Waals force acts, causing the cantilever to bend toward the surface of the material, and the conductive needle tip is positioned at that position. It is impossible to stand still. Therefore, an apparatus that simultaneously achieves the function of the scanning tunneling microscope and the function of the atomic force microscope by using the same probe has not been developed yet, and identification of atomic species on the surface of the substance has been impossible. The present invention has been made to solve the above problems, and an object thereof is to obtain a control method for a scanning probe microscope having both the function of an atomic force microscope and the function of a scanning tunneling microscope. There is.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の走査型探針顕微鏡の制御方法は、物質表面
の各測定点において、カンチレバーの自由端近傍に設け
られた導電性針先部と物質表面との間にバイアス電圧を
印加し、前記導電性針先部を前記物質表面に接近または
接触させ、前記導電性針先部と前記物質表面との間に流
れるトンネル電流及び前記導電性針先部と前記物質表面
との間に生じる力を検出しつつ前記物質の表面状態を計
測する走査型探針顕微鏡の制御方法であって、前記各測
定点において、前記導電性針先部と前記物質表面とが離
れた状態から前記物質表面と前記カンチレバーの固定端
とを相対的に接近させ、前記トンネル電流と前記導電性
針先部と前記物質表面との間に生じる力とを測定するこ
とように構成されている。上記構成において、導電性針
先部と物質表面との間に流れるトンネル電流が所定の設
定値以上になったとき、バイアス電圧を切ることが好ま
しい。また、導電性針先部と物質表面との間に流れるト
ンネル電流が所定の設定値になった時点における導電性
針先部の位置またはカンチレバーの変位にもとずいて表
面状態を画像化することが好ましい。または、導電性針
先部の基準位置における導電性針先部と物質表面との間
に流れるトンネル電流値またはカンチレバーの変位にも
とずいて表面状態を画像化することが好ましい。また
は、カンチレバーの変位が所定の設定値になった時点に
おける導電性針先部の位置またはトンネル電流値にもと
ずいて表面状態を画像化することが好ましい。または、
導電性針先部と物質表面との間に流れるトンネル電流値
が所定の設定値になった時点における導電性針先部の位
置またはカンチレバーの変位にもとずいて表面状態を画
像化することが好ましい。さらに、導電性針先部を物質
表面から引き離した後、前記物質表面のある測定点から
次の測定点へカンチレバーを相対的に移動させることが
好ましい。
In order to achieve the above object, a method of controlling a scanning probe microscope according to the present invention is a conductive needle provided near a free end of a cantilever at each measurement point on a material surface. A bias voltage is applied between the tip and the material surface, the conductive needle tip approaches or contacts the material surface, and a tunnel current flowing between the conductive needle tip and the material surface and the A method for controlling a scanning probe microscope that measures a surface state of the substance while detecting a force generated between a conductive needle tip portion and the substance surface, wherein the conductive needle tip is provided at each of the measurement points. Section and the substance surface are separated from each other, the substance surface and the fixed end of the cantilever are relatively brought close to each other, and the tunnel current and the force generated between the conductive needle tip and the substance surface are Configured to measure There. In the above configuration, it is preferable to turn off the bias voltage when the tunnel current flowing between the conductive needle tip portion and the substance surface reaches or exceeds a predetermined set value. In addition, imaging the surface state based on the position of the conductive needle tip portion or the displacement of the cantilever when the tunnel current flowing between the conductive needle tip portion and the substance surface reaches a predetermined set value. Is preferred. Alternatively, it is preferable to image the surface state based on the tunnel current value flowing between the conductive needle tip portion and the material surface at the reference position of the conductive needle tip portion or the displacement of the cantilever. Alternatively, it is preferable to image the surface state based on the position of the conductive needle tip portion or the tunnel current value at the time when the displacement of the cantilever reaches a predetermined set value. Or
It is possible to image the surface state based on the position of the conductive needle tip or the displacement of the cantilever when the tunnel current flowing between the conductive needle tip and the material surface reaches a predetermined set value. preferable. Further, it is preferable to move the cantilever relatively from one measurement point on the substance surface to the next measurement point after the conductive needle tip is separated from the substance surface.

【0006】[0006]

【作用】物質表面の各測定点において、まず、導電性針
先部と物質表面との間にバイアス電圧を印加し、導電性
針先部と物質表面を相対的に接近させながら、導電性針
先部と物質表面との間に流れるトンネル電流を測定し、
トンネル電流が所定の設定値になった時点における導電
性針先部のZ軸方向における位置を走査トンネル顕微鏡
データとして記憶する。次に、バイアス電圧を切り、導
電性針先部を物質表面に接触させカンチレバーの自由端
のたわみ量を測定する。たわみ量が所定の設定値になっ
た時点におけるカンチレバーのZ軸方向における変位量
を原子間力顕微鏡データとして記憶する。そして、導電
性針先部を物質表面から引き離した後、物質表面のある
測定点から次の測定点へカンチレバーをX軸方向及び/
又はY軸方向に相対的に移動させる。すなわち、本発明
の走査型探針顕微鏡の制御方法によれば、一つの測定点
において、導電性針先部を物質表面から離れた位置から
物質表面にZ軸方向に相対的に近づけ、さらに物質表面
から引き離すように制御しているので、ファンデルワー
ルス力等の引力により導電性針先部が試料表面に接触し
たとしても、物質表面と導電性針先部を相対的に引き離
すことにより、各測定点において1nm程度の距離にお
けるトンネル電流を測定することが可能となる。その結
果、原子間力顕微鏡の機能と走査トンネル顕微鏡の機能
とを複合化することが可能となり、これらの像から原子
種の同定等を行い得る。同様に、導電性針先部の基準位
置における導電性針先部と物質表面との間に流れるトン
ネル電流値またはカンチレバーの変位、カンチレバーの
変位が所定の設定値になった時点における導電性針先部
の位置またはトンネル電流値、または導電性針先部と物
質表面との間に流れるトンネル電流値が所定の設定値に
なった時点における導電性針先部の位置またはカンチレ
バーの変位にもとずいて表面状態を画像化しても、原子
間力顕微鏡像及び走査トンネル顕微鏡像が得られる。
Function At each measurement point on the material surface, first, a bias voltage is applied between the conductive needle tip and the material surface to bring the conductive needle tip and the material surface relatively close to each other. Measure the tunnel current flowing between the tip and the material surface,
The position in the Z-axis direction of the conductive needle tip portion when the tunnel current reaches a predetermined set value is stored as scanning tunneling microscope data. Next, the bias voltage is cut off, the conductive needle tip is brought into contact with the material surface, and the amount of deflection of the free end of the cantilever is measured. The displacement amount of the cantilever in the Z-axis direction at the time when the deflection amount reaches a predetermined set value is stored as atomic force microscope data. After separating the conductive needle tip from the material surface, move the cantilever from one measurement point on the material surface to the next measurement point in the X-axis direction and / or
Alternatively, it is moved relatively in the Y-axis direction. That is, according to the control method of the scanning probe microscope of the present invention, at one measurement point, the conductive needle tip portion is brought relatively close to the material surface in the Z-axis direction from a position distant from the material surface, and Since it is controlled so as to separate from the surface, even if the conductive needle tip comes into contact with the sample surface due to attractive force such as Van der Waals force, by separating the material surface and the conductive needle tip relatively, It becomes possible to measure the tunnel current at a distance of about 1 nm at the measurement point. As a result, it becomes possible to combine the function of the atomic force microscope and the function of the scanning tunneling microscope, and it is possible to identify the atomic species from these images. Similarly, the value of the tunnel current flowing between the conductive needle tip portion and the substance surface at the reference position of the conductive needle tip portion or the displacement of the cantilever, the conductive needle tip when the displacement of the cantilever reaches a predetermined set value. Position or tunnel current value, or the position of the conductive needle tip or the displacement of the cantilever at the time when the tunnel current value flowing between the conductive needle tip and the material surface reaches a predetermined set value. Even if the surface state is imaged, an atomic force microscope image and a scanning tunneling microscope image can be obtained.

【0007】[0007]

【実施例】本発明の走査型探針顕微鏡の制御方法の一実
施例を図1から図4までを用いて説明する。図1は、本
発明の走査型探針顕微鏡の制御方法の一実施例に適する
走査型探針顕微鏡の構成を示す図である。図1におい
て、探針(プローブ)100は薄膜カンチレバー3と導
電性針先部(チップ)1とで構成されている。導電性針
先部1は白金イリジウム合金等で形成されている。薄膜
カンチレバー3は、例えば厚さ0.5μm、長さ200μm、幅
40μmの矩形状窒化珪素等である。導電性針先部1は、
薄膜カンチレバー3の自由端近傍に接着剤等で固定され
ている。薄膜カンチレバー3の導電性針先部1が接着さ
れている側の面には、金属薄膜2が設けられており、導
電性針先部1に流れる電流は金属薄膜2により外部に取
り出される。試料4は導電性試料台8の上に載置され、
導電性試料台8に電気的に接続されている。導電性試料
台8は、X軸、Y軸及びZ軸の3方向の位置制御用圧電
体5、6及び7で構成されたチューブ型の微動機構に取
り付けられている。導電性試料台8には電圧発生装置9
が接続され、また探針100には電流測定装置10が接
続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a scanning probe microscope control method according to the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing the configuration of a scanning probe microscope suitable for one embodiment of the control method of the scanning probe microscope of the present invention. In FIG. 1, a probe (probe) 100 is composed of a thin film cantilever 3 and a conductive needle tip portion (chip) 1. The conductive needle tip portion 1 is formed of platinum iridium alloy or the like. The thin film cantilever 3 has, for example, a thickness of 0.5 μm, a length of 200 μm, and a width.
It is 40 μm rectangular silicon nitride or the like. The conductive needle tip 1 is
It is fixed near the free end of the thin film cantilever 3 with an adhesive or the like. A metal thin film 2 is provided on the surface of the thin film cantilever 3 to which the conductive needle tip portion 1 is adhered, and the current flowing through the conductive needle tip portion 1 is taken out by the metal thin film 2. The sample 4 is placed on the conductive sample table 8,
It is electrically connected to the conductive sample table 8. The conductive sample stage 8 is attached to a tube type fine movement mechanism composed of position-controlling piezoelectric bodies 5, 6 and 7 in three directions of X axis, Y axis and Z axis. A voltage generator 9 is attached to the conductive sample table 8.
, And the current measuring device 10 is connected to the probe 100.

【0008】電圧発生装置9により発生されたバイアス
電圧を導電性試料台8を介して試料4と探針100との
間に印加する。導電性針先部1と試料4との間に流れる
トンネル電流は電流測定装置10により検出される。試
料4の水平面内(X軸方向及びY軸方向)の走査および
垂直方向(Z軸方向)の制御は、コンピュータ11と圧
電体駆動装置12により所定の電圧を発生し、発生した
電圧をX軸、Y軸及びZ軸方向の位置制御用圧電体5、
6及び7に印加することにより行った。カンチレバー3
の自由端のたわみ量及びねじれ量は、出力5mWの半導
体レーザー13から出射されたレーザー光をレンズ14
によりカンチレバー自由端の背面に集光し、その反射光
を2分割フォトダイオード15により検出する光てこに
より測定した。
The bias voltage generated by the voltage generator 9 is applied between the sample 4 and the probe 100 via the conductive sample stage 8. The tunnel current flowing between the conductive needle tip portion 1 and the sample 4 is detected by the current measuring device 10. Scanning of the sample 4 in the horizontal plane (X-axis direction and Y-axis direction) and control in the vertical direction (Z-axis direction) are performed by generating a predetermined voltage by the computer 11 and the piezoelectric body driving device 12, and generating the generated voltage on the X-axis. , A piezoelectric body 5 for position control in the Y-axis and Z-axis directions,
6 and 7 were applied. Cantilever 3
The deflection amount and the twist amount at the free end of the laser light emitted from the semiconductor laser 13 having an output of 5 mW are measured by the lens 14
Was collected on the back surface of the free end of the cantilever, and the reflected light was measured by an optical lever detected by the two-divided photodiode 15.

【0009】以下、超高真空中でInSb結晶の(11
0)へき開面を観察した場合における、走査型探針顕微
鏡の操作方法について述べる。テルル(Te)をドープ
したnタイプのInSb結晶を導電性試料台8に載置
し、超高真空中でへき開することにより(110)清浄
表面を露出させ、これを試料4として用いた。本実施例
では、各測定点において、試料4に+1.0Vのバイア
ス電圧を印加し、導電性針先部1が試料4に接近し、導
電性針先部1と試料4との間に流れるトンネル電流が
0.1nA以上になった時点で、バイアス電圧を切っ
た。また、導電性針先部1が試料4から斥力を受け、カ
ンチレバー自由端に発生するたわみ量が、10nm以上
になった時点で、Z軸方向に導電性針先部1を試料4か
ら引き離すように設定した。さらに、トンネル電流及び
たわみ量が設定値になった時点における導電性針先部1
のZ軸方向の位置をその測定点におけるそれぞれ走査ト
ンネル顕微鏡像データ及び原子間力顕微鏡像データとし
てコンピュータ11に取り込んだ。
Hereinafter, in InSb crystal (11
0) A method of operating the scanning probe microscope when observing the cleavage plane will be described. An n-type InSb crystal doped with tellurium (Te) was placed on a conductive sample stage 8 and cleaved in an ultrahigh vacuum to expose a (110) clean surface, which was used as a sample 4. In this embodiment, at each measurement point, a bias voltage of +1.0 V is applied to the sample 4, the conductive needle tip 1 approaches the sample 4, and flows between the conductive needle tip 1 and the sample 4. The bias voltage was cut off when the tunnel current exceeded 0.1 nA. Further, when the conductive needle tip portion 1 receives a repulsive force from the sample 4 and the amount of deflection generated at the free end of the cantilever reaches 10 nm or more, the conductive needle tip portion 1 is separated from the sample 4 in the Z-axis direction. Set to. Further, the conductive needle tip portion 1 at the time when the tunnel current and the deflection amount reach the set values.
The position in the Z-axis direction of was measured by the computer 11 as scanning tunneling microscope image data and atomic force microscope image data at the measurement points.

【0010】次に、測定時におけるX軸及びZ軸方向の
位置制御用圧電体5及び7に印加する電圧16及び17
と、カンチレバー3のたわみ量18と、試料4に印加し
たバイアス電圧19と、トンネル電流20との関係を図
2に示す。カンチレバー3の自由端のたわみ量及び導電
性針先部1と試料4との間に流れるトンネル電流を検出
しながら、Z軸方向の位置制御用圧電体7に印加する電
圧を徐々に増加し、導電性針先部1を試料4表面に接近
させた。トンネル電流が設定値になった時点における、
Z軸方向の位置制御用圧電体7に印加した電圧21を走
査トンネル顕微鏡像データとしてコンピュータ11に記
憶させた。同時に、試料4に印加したバイアス電圧を切
った。さらに、Z軸方向の位置制御用圧電体7に印加す
る電圧を徐々に増加し、導電性針先部1を試料4の表面
に接触させた。導電性針先部1が試料4の表面に接触し
た後、カンチレバー3は徐々にたわむ。カンチレバー3
の自由端のたわみ量が設定値になった時点における、Z
軸方向の位置制御用圧電体7に印加した電圧22を原子
間力顕微鏡像データとしてコンピュータ11に記憶させ
た。それと同時に、Z軸方向の位置制御用圧電体7に印
加している電圧を低下させ、導電性針先部1を試料4か
ら50nm引き離した。その後、X軸方向の位置制御用
圧電体5に所定の電圧を印加し、試料4をX軸方向に所
定距離だけ移動させた。その後、再び試料4にバイアス
電圧を印加し、Z軸方向の位置制御用圧電体7に印加す
る電圧を徐々に増加し、同じ操作を繰り返した。各測定
点における測定間隔は1m秒程度であった。このような
測定を256回X軸方向に繰り返し、1ライン分の走査
を終了した。次にY軸方向の位置制御用圧電体6により
試料4をY軸方向に所定距離だけ移動させ、同様の操作
によりさらに1ラインの走査を行った。Y軸方向に25
6回の走査した後、全測定点において交互に2つづつコ
ンピュータ11に取り込まれた256×256組の電圧
データを走査トンネル顕微鏡像及び原子間力顕微鏡像と
して画像化した。
Next, the voltages 16 and 17 applied to the piezoelectric bodies 5 and 7 for position control in the X-axis and Z-axis directions at the time of measurement.
2 shows the relationship among the deflection amount 18 of the cantilever 3, the bias voltage 19 applied to the sample 4, and the tunnel current 20. While detecting the deflection amount of the free end of the cantilever 3 and the tunnel current flowing between the conductive needle tip portion 1 and the sample 4, the voltage applied to the Z-axis position control piezoelectric body 7 is gradually increased, The conductive needle tip portion 1 was brought close to the surface of the sample 4. When the tunnel current reaches the set value,
The voltage 21 applied to the piezoelectric body 7 for position control in the Z-axis direction was stored in the computer 11 as scanning tunneling microscope image data. At the same time, the bias voltage applied to Sample 4 was turned off. Further, the voltage applied to the piezoelectric body 7 for position control in the Z-axis direction was gradually increased to bring the conductive needle tip portion 1 into contact with the surface of the sample 4. After the conductive needle tip portion 1 contacts the surface of the sample 4, the cantilever 3 gradually bends. Cantilever 3
When the amount of deflection at the free end of
The voltage 22 applied to the axial position control piezoelectric body 7 was stored in the computer 11 as atomic force microscope image data. At the same time, the voltage applied to the piezoelectric body 7 for position control in the Z-axis direction was lowered, and the conductive needle tip portion 1 was separated from the sample 4 by 50 nm. Then, a predetermined voltage was applied to the position controlling piezoelectric body 5 in the X-axis direction, and the sample 4 was moved in the X-axis direction by a predetermined distance. After that, a bias voltage was applied to the sample 4 again, the voltage applied to the Z-axis direction position control piezoelectric body 7 was gradually increased, and the same operation was repeated. The measurement interval at each measurement point was about 1 msec. Such measurement was repeated 256 times in the X-axis direction, and scanning for one line was completed. Next, the sample 4 was moved in the Y-axis direction by a predetermined distance by the Y-axis position control piezoelectric body 6, and one line was further scanned by the same operation. 25 in the Y-axis direction
After scanning 6 times, the voltage data of 256 × 256 sets captured in the computer 11 alternately at every measurement point were imaged as a scanning tunneling microscope image and an atomic force microscope image.

【0011】上記方法により得られた走査トンネル顕微
鏡像および原子間力顕微鏡像の概略を図3及び図4に示
す。図3における丸印23の領域はトンネル電流が流れ
易い領域を示し、In原子の配列を示している。図4に
おける大きな丸印24の領域は試料表面が他の領域より
高い領域を示し、小さな丸印25の領域は他の領域より
も少し高い領域を示している。図3と図4を重ね合わせ
ると、図3の丸印は図4の小さな丸印と合致し、これら
はIn原子を表わしている。したがって、図4の大きな
丸はSb原子に対応することがわかる。すなわち、従来
の走査トンネル顕微鏡では、印加電圧の極性によりIn
かSbのどちらかの原子を表示できるだけであったが、
本発明の走査型探針顕微鏡によれば両方の原子を表示で
き、得られた走査トンネル顕微鏡像と原子間力顕微鏡像
とを比較することにより原子種の同定も可能である。
An outline of the scanning tunneling microscope image and the atomic force microscope image obtained by the above method is shown in FIGS. 3 and 4. A region indicated by a circle 23 in FIG. 3 is a region where a tunnel current easily flows, and shows an arrangement of In atoms. A large circle 24 in FIG. 4 indicates a region where the sample surface is higher than other regions, and a small circle 25 indicates a region slightly higher than the other regions. When FIG. 3 and FIG. 4 are overlapped, the circles in FIG. 3 match the small circles in FIG. 4, which represent In atoms. Therefore, it can be seen that the large circles in FIG. 4 correspond to Sb atoms. That is, in the conventional scanning tunneling microscope, In
I could only display either atom of Sb or Sb,
According to the scanning probe microscope of the present invention, both atoms can be displayed, and the atomic species can be identified by comparing the obtained scanning tunneling microscope image with the atomic force microscope image.

【0012】なお、上記実施例では、トンネル電流値、
あるいはカンチレバーのたわみ量(変位)が所定の設定
値になった時点におけるデータを画像化した場合につい
て説明したが、所定の基準位置におけるトンネル電流値
やカンチレバーのたわみ量、トンネル電流値が所定の設
定値になった時点におけるカンチレバーのたわみ量、又
はカンチレバーのたわみ量が所定の設定値になった時点
におけるトンネル電流値を画像化することによっても、
各種表面情報が得られた。
In the above embodiment, the tunnel current value,
Alternatively, the case where the data at the time when the deflection amount (displacement) of the cantilever reaches a predetermined set value is imaged has been described, but the tunnel current value at the predetermined reference position, the cantilever deflection amount, and the tunnel current value are set to the predetermined values. Also by imaging the deflection amount of the cantilever at the time when the value reaches the value, or the tunnel current value when the deflection amount of the cantilever reaches the predetermined set value,
Various surface information was obtained.

【0013】[0013]

【発明の効果】以上のように、本発明によれば、物質表
面の各測定点において導電性針先部と物質表面との間に
バイアス電圧を印加し、導電性針先部と物質表面を相対
的に接近させながら、導電性針先部と物質表面との間に
流れるトンネル電流を測定し、トンネル電流が所定の設
定値になった時点における導電性針先部のZ軸方向にお
ける位置を走査トンネル顕微鏡データとして記憶し、次
にバイアス電圧を切り、導電性針先部を物質表面に接触
させカンチレバーの自由端のたわみ量を測定し、たわみ
量が所定の設定値になった時点におけるカンチレバーの
Z軸方向における変位量を原子間力顕微鏡データとして
記憶するように構成したので、原子間力顕微鏡像と走査
トンネル顕微鏡像を同じ探針で同時に得ることができ、
また、これらの像から原子種の同定等が可能な走査型探
針顕微鏡が得られるという効果を有する。
As described above, according to the present invention, a bias voltage is applied between the conductive needle tip portion and the substance surface at each measurement point on the substance surface so that the conductive needle tip portion and the substance surface are separated from each other. While relatively approaching, the tunnel current flowing between the conductive needle tip and the material surface is measured, and the position of the conductive needle tip in the Z-axis direction at the time when the tunnel current reaches a predetermined set value is determined. It is stored as scanning tunneling microscope data, then the bias voltage is cut off, the conductive needle tip is brought into contact with the material surface, and the amount of deflection of the free end of the cantilever is measured.The cantilever at the time when the amount of deflection reaches the specified value Since the displacement amount in the Z-axis direction is stored as atomic force microscope data, an atomic force microscope image and a scanning tunneling microscope image can be simultaneously obtained with the same probe,
Further, there is an effect that a scanning probe microscope capable of identifying atomic species and the like can be obtained from these images.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の走査型探針顕微鏡の制御方法に適する
走査型探針顕微鏡の構成を示す図
FIG. 1 is a diagram showing a configuration of a scanning probe microscope suitable for a control method of the scanning probe microscope of the present invention.

【図2】本発明の走査型探針顕微鏡の制御方法の一実施
例におけるX軸及びZ軸方向の位置制御用圧電体への印
加電圧、カンチレバーのたわみ量、試料に印加したバイ
アス電圧及びトンネル電流の時間変化の関係を示す図
FIG. 2 is a diagram showing a scanning probe microscope control method according to an embodiment of the present invention, wherein a voltage applied to a piezoelectric body for position control in the X-axis and Z-axis directions, a deflection amount of a cantilever, a bias voltage applied to a sample, and a tunnel. Diagram showing the relationship of current change over time

【図3】本発明の走査型探針顕微鏡の制御方法によりに
得られた走査トンネル顕微鏡像を示す図
FIG. 3 is a diagram showing a scanning tunneling microscope image obtained by the control method of the scanning probe microscope of the present invention.

【図4】本発明の走査型探針顕微鏡の制御方法によりに
得られた原子間力顕微鏡像を示す図
FIG. 4 is a diagram showing an atomic force microscope image obtained by the control method of the scanning probe microscope of the present invention.

【符号の説明】[Explanation of symbols]

1 : 導電性針先部 2 : 金属薄膜 3 : 薄膜カンチレバー 4 : 試料 5 : X軸方向の位置制御用圧電体 6 : Y軸方向の位置制御用圧電体 7 : Z軸方向の位置制御用圧電体 8 : 導電性試料台 9 : 電圧発生装置 10 : 電流測定装置 11 : コンピュータ 12 : 圧電体駆動装置 13 : 半導体レーザー 14 : 集光レンズ 15 : 2分割フォトダイオード 16 : X軸方向の位置制御用圧電体に印加する
電圧 17 : Z軸方向の位置制御用圧電体に印加する
電圧 18 : カンチレバー自由端のたわみ量 19 : 試料に印加するバイアス電圧 20 : トンネル電流 21 : トンネル電流が設定値になった時点での
印加電圧 22 : たわみ量が設定値になった時点での印加
電圧 23 : In原子 24 : Sb原子 25 : In原子 100 : 探針
1: Conductive needle tip 2: Metal thin film 3: Thin film cantilever 4: Sample 5: Piezoelectric body for position control in X-axis direction 6: Piezoelectric body for position control in Y-axis direction 7: Piezoelectric for position control in Z-axis direction Body 8: Conductive sample stand 9: Voltage generator 10: Current measuring device 11: Computer 12: Piezoelectric body driving device 13: Semiconductor laser 14: Condensing lens 15: Two-division photodiode 16: For position control in the X-axis direction Voltage applied to the piezoelectric body 17: Voltage applied to the piezoelectric body for position control in the Z-axis direction 18: Deflection amount of the free end of the cantilever 19: Bias voltage applied to the sample 20: Tunnel current 21: Tunnel current reaches the set value Applied voltage at the time point 22: Applied voltage at the time when the amount of deflection reaches the set value 23: In atom 24: Sb atom 25: In atom 10 : Probe

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 物質表面の各測定点において、カンチレ
バーの自由端近傍に設けられた導電性針先部と物質表面
との間にバイアス電圧を印加し、前記導電性針先部を前
記物質表面に接近または接触させ、前記導電性針先部と
前記物質表面との間に流れるトンネル電流及び前記導電
性針先部と前記物質表面との間に生じる力を検出しつつ
前記物質の表面状態を計測する走査型探針顕微鏡の制御
方法であって、前記各測定点において、前記導電性針先
部と前記物質表面とが離れた状態から前記物質表面と前
記カンチレバーの固定端とを相対的に接近させ、前記ト
ンネル電流と前記導電性針先部と前記物質表面との間に
生じる力とを測定することを特徴とする走査型探針顕微
鏡の制御方法。
1. A bias voltage is applied between a conductive needle tip portion provided near a free end of a cantilever and a material surface at each measurement point on the material surface, and the conductive needle tip portion is moved to the material surface. The surface state of the substance while detecting the tunnel current flowing between the conductive needle tip and the substance surface and the force generated between the conductive needle tip and the substance surface. A method for controlling a scanning probe microscope for measuring, wherein at each of the measurement points, the substance surface and the fixed end of the cantilever are relatively moved from a state where the conductive needle tip portion and the substance surface are separated from each other. A method for controlling a scanning probe microscope, wherein the tunneling current and the force generated between the conductive needle tip portion and the substance surface are measured by approaching each other.
【請求項2】 導電性針先部と物質表面との間に流れる
トンネル電流が所定の設定値以上になったとき、バイア
ス電圧を切ることを特徴とする請求項1記載の走査型探
針顕微鏡の制御方法。
2. The scanning probe microscope according to claim 1, wherein the bias voltage is cut off when the tunnel current flowing between the conductive needle tip portion and the material surface exceeds a predetermined set value. Control method.
【請求項3】 導電性針先部と物質表面との間に流れる
トンネル電流が所定の設定値になった時点における導電
性針先部の位置またはカンチレバーの変位にもとずいて
表面状態を画像化することを特徴とする請求項1または
2に記載の走査型探針顕微鏡の制御方法。
3. A surface state is imaged based on the position of the conductive needle tip portion or the displacement of the cantilever when the tunnel current flowing between the conductive needle tip portion and the material surface reaches a predetermined set value. The method for controlling a scanning probe microscope according to claim 1 or 2, characterized by:
【請求項4】 導電性針先部の基準位置における導電性
針先部と物質表面との間に流れるトンネル電流値または
カンチレバーの変位にもとずいて表面状態を画像化する
ことを特徴とする請求項1または2に記載の走査型探針
顕微鏡の制御方法。
4. The surface state is imaged based on the tunnel current value flowing between the conductive needle tip and the material surface at the reference position of the conductive needle tip or the displacement of the cantilever. The control method of the scanning probe microscope according to claim 1.
【請求項5】 カンチレバーの変位が所定の設定値にな
った時点における導電性針先部の位置またはトンネル電
流値にもとずいて表面状態を画像化することを特徴とす
る請求項1または2に記載の走査型探針顕微鏡の制御方
法。
5. The surface state is imaged based on the position of the conductive needle tip portion or the tunnel current value at the time when the displacement of the cantilever reaches a predetermined set value. A method for controlling the scanning probe microscope according to.
【請求項6】 導電性針先部と物質表面との間に流れる
トンネル電流値が所定の設定値になった時点における位
置またはカンチレバーの変位にもとずいて表面状態を画
像化することを特徴とする請求項1または2に記載の走
査型探針顕微鏡の制御方法。
6. The surface state is imaged based on the position or the displacement of the cantilever at the time when the tunnel current value flowing between the conductive needle tip and the material surface reaches a predetermined set value. The method for controlling the scanning probe microscope according to claim 1 or 2.
【請求項7】 導電性針先部を物質表面から引き離した
後、前記物質表面のある測定点から次の測定点へカンチ
レバーを相対的に移動させることを特徴とする請求項1
から6のいずれかに記載の走査型探針顕微鏡の制御方
法。
7. The cantilever is relatively moved from one measurement point on the substance surface to the next measurement point after the conductive needle tip is separated from the substance surface.
7. The method for controlling the scanning probe microscope according to any one of 1 to 6.
JP5231399A 1993-09-17 1993-09-17 Control method for scan type probe microscope Pending JPH0783607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5231399A JPH0783607A (en) 1993-09-17 1993-09-17 Control method for scan type probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5231399A JPH0783607A (en) 1993-09-17 1993-09-17 Control method for scan type probe microscope

Publications (1)

Publication Number Publication Date
JPH0783607A true JPH0783607A (en) 1995-03-28

Family

ID=16923000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5231399A Pending JPH0783607A (en) 1993-09-17 1993-09-17 Control method for scan type probe microscope

Country Status (1)

Country Link
JP (1) JPH0783607A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009036528A (en) * 2007-07-31 2009-02-19 Shimadzu Corp Measuring method of surface physical properties, and microfabrication method
JP4697852B2 (en) * 2002-10-17 2011-06-08 インテル・コーポレーション Fusion using a model of scanning probe microscopy images to detect and identify molecular structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697852B2 (en) * 2002-10-17 2011-06-08 インテル・コーポレーション Fusion using a model of scanning probe microscopy images to detect and identify molecular structures
JP2009036528A (en) * 2007-07-31 2009-02-19 Shimadzu Corp Measuring method of surface physical properties, and microfabrication method

Similar Documents

Publication Publication Date Title
US5376790A (en) Scanning probe microscope
US5929438A (en) Cantilever and measuring apparatus using it
US6265718B1 (en) Scanning probe microscope with scan correction
US5448399A (en) Optical system for scanning microscope
US5289004A (en) Scanning probe microscope having cantilever and detecting sample characteristics by means of reflected sample examination light
US5253516A (en) Atomic force microscope for small samples having dual-mode operating capability
JP2516292B2 (en) Atomic force microscope
JP2743761B2 (en) Scanning probe microscope and atomic species identification method
JP2915554B2 (en) Barrier height measurement device
JP2003501647A (en) Atomic force microscope and driving method thereof
JP2000065718A (en) Scanning probe microscope(spm) probe and spm device
JPH0642953A (en) Interatomic force microscope
JP3069923B2 (en) Cantilever probe, atomic force microscope, information recording / reproducing device
JP2001124798A (en) Contacting type micro prober
JPH0783607A (en) Control method for scan type probe microscope
JP3161116B2 (en) Micro gap width measuring apparatus and method
EP0449221A2 (en) Scanning probe microscope
JPH0850872A (en) Sample surface observation method, interatomic force microscope, fine working method, and fine working device
JP2945436B2 (en) Scanning probe microscope
JPH0549921B2 (en)
KR100424540B1 (en) Cantilever construction composed of multiple actuators for AFM, AFM system having the cantilever construction and measurement method for properties of material by using the AFM
JPH0771951A (en) Controlling method for scanning probing microscope
JPH09325079A (en) Scanning temperature microscope
JP3008583B2 (en) Atomic force microscope and control method thereof
JPH0727560A (en) Scanning type probe microscope and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Effective date: 20071206

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Effective date: 20080204

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Effective date: 20080408

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080902

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110912

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees