JPH0783565B2 - Ground fault point recognition device for distribution lines - Google Patents

Ground fault point recognition device for distribution lines

Info

Publication number
JPH0783565B2
JPH0783565B2 JP2025342A JP2534290A JPH0783565B2 JP H0783565 B2 JPH0783565 B2 JP H0783565B2 JP 2025342 A JP2025342 A JP 2025342A JP 2534290 A JP2534290 A JP 2534290A JP H0783565 B2 JPH0783565 B2 JP H0783565B2
Authority
JP
Japan
Prior art keywords
ground fault
section
current detection
detection value
fault current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2025342A
Other languages
Japanese (ja)
Other versions
JPH03230731A (en
Inventor
健 玉城
節也 山崎
和之 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2025342A priority Critical patent/JPH0783565B2/en
Publication of JPH03230731A publication Critical patent/JPH03230731A/en
Publication of JPH0783565B2 publication Critical patent/JPH0783565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、配電線の地絡発生および地絡点を認識する装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an apparatus for recognizing a ground fault occurrence and a ground fault point of a distribution line.

B.発明の概要 本発明は、配電線の各開閉器点に設置された複数の子局
と、各子局を制御する親局とから地絡点認識装置を構成
し、 子局において、配電線の零相電流を計測してその最大値
を地絡電流検出値として取り扱い、この地絡電流検出値
を親局に対し送信すると共に、 親局において、各子局からの地絡電流検出値を受信し、
地絡電流検出値の分布状況に基づいて、開閉器間を単位
として地絡発生の有無を判別することとし、 地絡事故に至る前の軽微な地絡状態や、断続的または非
継続的な非絡事故の発生と、その発生区間を認識するこ
とを可能とするものである。
B. Outline of the Invention The present invention comprises a ground fault point recognition device composed of a plurality of slave stations installed at respective switch points of a distribution line, and a master station for controlling each slave station. The zero-phase current of the wire is measured and the maximum value is treated as the ground fault current detection value, and this ground fault current detection value is sent to the master station, and the master station also detects the ground fault current value from each slave station. Received
Based on the distribution of the ground fault current detection value, the presence or absence of a ground fault is determined for each switch as a unit, and a slight ground fault condition before the occurrence of a ground fault accident, or intermittent or non-continuous It is possible to recognize the occurrence of a non-entrance accident and the section in which it occurs.

C.従来の技術 配電系統は地域に面的な広がりをもつ膨大かつ重要な設
備であるが、風水害、雷、その他の要因による事故発生
のおそれが多い。このため配電線に事故が発生した場合
の保護措置が講じられている。
C. Conventional technology The distribution system is an enormous and important facility that spreads across the area, but there are many risks of accidents due to wind and flood damage, lightning, and other factors. For this reason, protective measures are taken in the event of an accident in the distribution line.

第16図は、配電線の地絡事故例を示す。Figure 16 shows an example of a ground fault in a distribution line.

配電線1(1A,1B…1n)に地絡が発生した場合、変電所
2のバンク母線201に接続された接地形計器用変圧器(G
PT)202で地絡電圧V0を検出し、この地絡電圧V0で地絡
過電圧継電器(OVG)203が動作する。また、各フィーダ
毎に設置された零相変流器ZCT204にて地絡電流I0を検出
し、地絡電圧V0および地絡電流I0の両方の要素で地絡方
向継電器(DG)205が動作する。
When a ground fault occurs on the distribution line 1 (1A, 1B ... 1n), the ground type instrument transformer (G) connected to the bank bus 201 of the substation 2
The ground fault voltage V 0 is detected by PT) 202, and the ground fault overvoltage relay (OVG) 203 operates at this ground fault voltage V 0 . Further, to detect the ground fault current I 0 at the zero-phase current transformer ZCT204 installed in each feeder, earth fault directional relay (DG) 205 on both the ground voltage V 0 and the ground fault current I 0 element Works.

OVG203およびDG205の動作によって地絡事故を把握し、
地絡発生フィーダのフィーダ遮断器(FCB)206(206A,2
06B…206n)が遮断される。
Understand the ground fault accident by the operation of OVG203 and DG205,
Feeder circuit breaker (FCB) 206 (206A, 2)
06B ... 206n) is shut off.

ここで、特殊な地絡状態や高抵抗地絡時においてはDG20
5が動作せず、OVG203のみが動作する、いわゆる微地絡
状態があり、この場合にはFCB206を自動遮断させること
ができず、地絡発生フィーダを即座に認識することがで
きない。
In a special ground fault condition or high resistance ground fault, DG20
There is a so-called micro-ground fault state in which 5 does not operate and only OVG203 operates. In this case, the FCB 206 cannot be automatically shut off, and the ground fault occurrence feeder cannot be immediately recognized.

この場合、微地絡発生フィーダを特定するために、FCB2
06A,206B…を、手動または自動シーケンス制御によりOV
G203が作動を停止するまで順番に遮断していき、検出さ
れたフィーダのFCB206に投入禁止をかける操作を行う。
In this case, the FCB2
06A, 206B ... OV by manual or automatic sequence control
It shuts off in order until G203 stops its operation, and prohibits the feeding of the detected FCB206 of the feeder.

この後、地絡が発生した区間を特定する。After this, the section where the ground fault has occurred is specified.

第16図に示すように、地絡発生フィーダが配電線1Aであ
る場合、FCB206Aを遮断した際に、OVG203が作動を停止
するので、FCB206Aに投入禁止をかけることになる。
As shown in FIG. 16, when the ground fault generating feeder is the distribution line 1A, the OVG203 stops operating when the FCB206A is cut off, and therefore the FCB206A is prohibited from being turned on.

地絡電流I0の大きな事故が発生し、OVG203およびDG205
の両者が動作して、FCB206aが遮断されると、区間開閉
器DM1〜DM3は無電源状態となって自動的に無電圧開放と
なる。
A large accident of ground fault current I 0 occurred and OVG203 and DG205
When both of them operate and the FCB 206a is shut off, the section switches DM 1 to DM 3 are automatically switched to a non-voltage open state.

一定時間経過した後、変電所2内の再閉路制御機能によ
りFCB206Aは再度投入される。これによって、まず区間
開閉器DM1に電圧が印加される。
After a certain period of time, the FCB206A is turned on again by the reclosing control function in the substation 2. As a result, first, a voltage is applied to the section switch DM 1 .

ここで区間開閉器DM1〜DM3には、投入遅延時限Xが設定
されている。区間開閉器DM1は、電圧の印加時からX時
限後投入される。区間開閉器DM2も同様にX時限後投入
される。区間2に地落が発生し、その状態が継続してい
る場合、区間開閉器DM2が投入された時点で再度OVG203
およびDG205が動作する。
Here, a closing delay time period X is set for each of the section switches DM 1 to DM 3 . The section switch DM 1 is turned on after the X time period has elapsed since the voltage was applied. The section switch DM 2 is also turned on after the X time limit. If a landslide occurs in section 2 and the situation continues, OVG203 is restarted when the section switch DM 2 is turned on.
And DG205 works.

変電所2では、FCB206Aを投入してから再遮断するまで
の時間を監視しており、この時間から地絡が発生した区
間を認識する。この場合、再遮断までの時間は2Xとなる
ので、区間2を特定することができる。
The substation 2 monitors the time from when the FCB206A is turned on to when the FCB206A is turned off again. From this time, the section where the ground fault has occurred is recognized. In this case, since the time until re-interruption is 2X, the section 2 can be specified.

この後、検出された区間において、保守員が地絡点を捜
索し、事故要因を調べていた。
After that, in the detected section, maintenance personnel searched for a ground fault and investigated the cause of the accident.

D.発明が解決しようとする課題 しかしながら、上記の従来の技術では、地絡発生区間を
特定するにあたり、地絡発生フィーダのFCB206を再遮断
する必要があるため、そのフィーダ内の健全な区間に対
して複数回の停電が余儀なくされる問題があった。
D. Problem to be Solved by the Invention However, in the above-mentioned conventional technique, in identifying the ground fault occurrence section, it is necessary to re-block the FCB206 of the ground fault occurrence feeder, so that a healthy section in the feeder On the other hand, there was a problem that power outages were forced to occur multiple times.

また、地絡点の直前の区間開閉器が投入される際に、地
絡状態が継続していなければ、地絡発生区間を特定する
ことができない問題点があった。
Further, when the section switch immediately before the ground fault point is turned on, the ground fault occurrence section cannot be specified unless the ground fault state continues.

配電系統の事故モードとして最も多いのは、配電線の絶
縁碍子の一時的リークや、配電線への樹木の一時的な接
触による断続的な地絡事故である。
The most common failure mode of the distribution system is temporary leakage of the insulator of the distribution line and intermittent ground fault due to temporary contact of trees with the distribution line.

この種の地絡事故は、再閉路制御が行われる時点では地
絡が解消していることが多いので、地絡事故発生区間の
認識が不可能となり、平常運転に戻ってしまう。しか
し、事故要因が根本的に除去されてはいないので、同様
の事故が繰り返し発生する可能性がある。
In this type of ground fault, the ground fault is often resolved at the time when the reclosing control is performed, so that it becomes impossible to recognize the section where the ground fault has occurred, and the normal operation is resumed. However, similar accidents may occur repeatedly because the accident factors have not been fundamentally removed.

さらに、地絡が発生した区間が検出できても、地絡事故
点がその区間内の部分開閉器で仕切られたどの部分であ
るかは判明していないので、その捜索は1区間全てにわ
たることとなり、多くの時間を費やす問題点があった。
Furthermore, even if the section where the ground fault occurs can be detected, it is not known which part of the section is divided by the partial switch in the section, so the search must cover the entire section. There was a problem that spends a lot of time.

さらに、DG205が動作しない微地絡事故の場合、1バン
クのフィーダのFCBを順次遮断して微地絡発生フィーダ
を特定する必要があるが、もしも微地絡発生フィーダが
遮断操作の最終順であった場合には、1バンクのすべて
のFCBを遮断させることとなり、バンク全停電事故と同
様に広範囲な停電が余儀なくされる問題があった。ま
た、地絡発生区間の特定の際と同様に、地絡状態が継続
していなければ、地絡発生フィーダを特定できない問題
点があった。
Furthermore, in the case of a micro-ground fault accident in which the DG205 does not operate, it is necessary to sequentially shut off the FCBs of the feeders in one bank to identify the feeder that causes the micro-ground fault. In that case, all the FCBs in one bank would be shut off, and there was a problem that a wide-range power outage would be forced as in the case of a bank all-outage accident. Further, similarly to the case of specifying the ground fault occurrence section, there is a problem that the ground fault occurrence feeder cannot be specified unless the ground fault condition continues.

さらに、地絡事故が発生した後に、地絡発生区間等の検
出を行う手順であるので、地絡事故として認識されない
OVG203もDG205も動作しないような軽微な地絡状態につ
いては、地絡発生区間等を検出することは不可能であっ
た。軽微な地絡状態であっても、碍子への塩分付着等の
ように、次第に地絡事故に発展していく可能性をもって
いるにもかかわらず、予防保全対策を実施することはで
きなかった。
Furthermore, it is not recognized as a ground fault because it is the procedure to detect the ground fault occurrence section etc. after the ground fault occurs.
It was impossible to detect the ground fault occurrence section and so on for a slight ground fault condition in which neither OVG203 nor DG205 operated. Even in the case of a slight ground fault, preventive maintenance measures could not be implemented despite the possibility of gradually developing into a ground fault accident, such as salt adhesion to the insulator.

電力需要家へのサービスおよび電力供給信頼度の面から
みて、これらの問題点を解消することが望まれる。
It is desirable to solve these problems in terms of service to power consumers and reliability of power supply.

本発明は、このような事情に鑑み、OVGのみが動作する
微地絡事故や、OVGも動作しないような地絡事故となる
前の軽微な地絡状態であっても、FCBの遮断動作を伴わ
ずに地絡状態および地絡点を認識でき、さらに従来は地
絡点の検出が不可能であった断続的地絡点をも認識でき
る装置を提供することを目的とする。
In view of such circumstances, the present invention provides a fine ground fault accident in which only OVG operates, and even in a slight ground fault condition before a ground fault accident in which OVG does not operate, the FCB shutoff operation is performed. An object of the present invention is to provide a device capable of recognizing a ground fault state and a ground fault point without being accompanied, and further capable of recognizing an intermittent ground fault point, which has been conventionally impossible to detect.

E.課題を解決するための手段 本発明は、上記の目的を達成するために、配電線の各開
閉器点に設置された複数の子局と、各子局を制御する親
局とから地絡点認識装置を構成し、各子局および親局に
次の手段を設けたものである。
E. Means for Solving the Problems The present invention, in order to achieve the above object, comprises a plurality of slave stations installed at each switch point of a distribution line and a master station that controls each slave station. The entanglement recognition device is configured, and the following means are provided in each slave station and master station.

すなわち子局には、次の手段を設ける。That is, the following means are provided in the slave station.

配電線の零相電流を計測する零相電流検出部。 Zero-phase current detector that measures the zero-phase current of the distribution line.

零相電流検出部の検出信号の最大値を地絡電流検出
値として記憶する地絡電流記憶部。
A ground fault current storage unit that stores the maximum value of the detection signal of the zero-phase current detection unit as a ground fault current detection value.

地絡電流検出値を親局に対し送信する地絡電流検出
値送信部。
A ground fault current detection value transmission unit that transmits the ground fault current detection value to the master station.

また親局には、次の手段を設ける。In addition, the following means will be provided in the master station.

各子局からの地絡電流検出値を受信する地絡電流検
出値受信部。
A ground fault current detection value receiving unit that receives the ground fault current detection value from each slave station.

各子局からの地絡電流検出値に基づいて、開閉器間
を単位とし、地絡電流検出値の大きさを比較判定して電
源側から地絡発生の有無を順次判別する地絡認識部。
「地絡電流検出値の差」の大小を認識する手法として、
各地絡電流検出値の差をとり、その大きさを判定する態
様の他、各地絡電流検出値の比をとり、その大きさを判
定する態様などをとることができる。
Based on the ground fault current detection value from each slave station, the ground fault recognition unit that sequentially determines the presence or absence of the ground fault from the power supply side by comparing and determining the magnitude of the ground fault current detection value in units of switches. .
As a method of recognizing the magnitude of the "difference in ground fault current detection value",
In addition to a mode in which the difference between the local-fault current detection values is determined and the magnitude thereof is determined, a mode in which the ratio of the local-fault current detection values is determined and the magnitude is determined can be employed.

さらに、この地絡認識部は、次の手段を備えている。Further, the ground fault recognition section includes the following means.

電源区間および末端区間以外の非分岐区間を判別対
象とし、前後の地絡電流検出値の差が大きいときに、そ
の非分岐区間に地絡点があると判断する非分岐区間判別
部。
A non-branch section determination unit that determines a non-branch section other than the power supply section and the terminal section and determines that there is a ground fault point in the non-branch section when the difference between the front and rear ground fault current detection values is large.

分岐区間を判別対象とし、分岐負荷側の地絡電流検
出値を互いに比較し、それらの差がすべて小さいとき
は、電源側の領域、すなわちその分岐区間またはその分
岐区間より電源側の区間に地絡点があると判断すると共
に、それらの差のいずれかが大きいときは、負荷側の領
域、すなわち分岐した負荷側のいずれかに地絡点がある
と判断する地絡領域判別部。
When the branch section is the target of discrimination, the ground fault current detection values on the branch load side are compared with each other, and if all the differences are small, the area on the power supply side, that is, the ground section or the section on the power supply side from the branch section A ground fault area determination unit that determines that there is a fault point and, if any of these differences is large, determines that there is a ground fault point in the load side region, that is, in any of the branched load sides.

電源側の領域に地絡点がある場合、その分岐区間の
電源側の地絡電流検出値に対する各分岐負荷側の地絡電
流検出値の差をとり、いずれもその差が大きいときは、
その分岐区間に地絡点があると判断し、その差がいずれ
も小さいときは、その分岐区間よりも電源側に地絡点が
あると判断する分岐区間判別部。
When there is a ground fault point in the area on the power supply side, the difference between the ground fault current detection value on each branch load side and the ground fault current detection value on the power supply side in that branch section is taken.
A branch section discriminating unit that judges that there is a ground fault point in the branch section and judges that there is a ground fault point on the power supply side of the branch section when the difference is small.

負荷側の領域に地絡点がある場合、負荷側の地絡電
流検出値を比較し、地絡電流検出値が最大の負荷側に地
絡点があると判断する負荷側特定部。
When there is a ground fault point in the area on the load side, the load side identification unit that compares the ground fault current detection values on the load side and determines that the ground side fault point is on the load side with the maximum ground fault current detection value.

末端区間を判別対象とし、その末端区間の電源側の
地絡電流検出値の大きさを判定し、地絡電流検出値が或
る値よりも大きいときは、その末端区間に地絡点がある
と判断し、小さいときは、電源区間に地絡点があると判
断する末端区間判別部。
The end section is used as a determination target, the magnitude of the ground fault current detection value on the power supply side of the end section is determined, and when the ground fault current detection value is larger than a certain value, there is a ground fault point in the end section. When it is small, the terminal section discriminating unit that judges that there is a ground fault point in the power source section.

F.作用 本発明によれば、各開閉器点に設置した子局にて配電線
の零相電流を計測し、各子局の零相電流の最大値を地絡
電流検出値として親局に送信する。
F. Action According to the present invention, the zero-phase current of the distribution line is measured at the slave station installed at each switch point, and the maximum value of the zero-phase current of each slave station is sent to the master station as the ground fault current detection value. Send.

配電線に地絡状態が発生すると、地絡発生箇所の前段の
開閉器点では地絡発生箇所に向かって電源側より他フィ
ーダの対地静電容量を介した大きな地絡電流が流れ、地
絡発生箇所の後段の開閉器点では地絡発生箇所に向かっ
て自フィーダ後段部分のみの対地静電容量を介した若干
の地絡電流が流れる。したがって地絡発生地点の前後で
は、地絡電流の差が最も大きくなる。
When a ground fault occurs in the distribution line, a large ground fault current flows from the power supply side to the ground fault occurrence point toward the ground fault occurrence point from the power supply side via the ground capacitance of another feeder, causing a ground fault. At the switch point at the latter stage of the generation point, a small amount of ground fault current flows toward the ground fault generation point through the ground capacitance only at the rear stage of the own feeder. Therefore, the difference in the ground fault current is the largest before and after the ground fault occurrence point.

この現象に鑑みて、親局では、各子局からの地絡電流検
出値に基づいて、開閉器間を単位として地絡発生の有無
を順次判別していく。
In consideration of this phenomenon, the master station sequentially determines whether or not a ground fault has occurred in units of switches based on the ground fault current detection value from each slave station.

すなわち、電源区間および末端区間以外の非分岐区間に
ついては、前後において地絡電流検出値の差が大きいか
どうかを確認し、そのような区間があれば、その区間に
て地絡が発生したものと判断する。
That is, for non-branch sections other than the power section and the terminal section, check whether there is a large difference in the ground fault current detection values before and after, and if there is such a section, a ground fault has occurred in that section. To judge.

また、分岐区間(電源区間が分岐区間であればこれらも
含む)については、まず、分岐負荷側の地絡電流検出値
を相互に比較することにより、地絡電流の分布状況を確
認し、電源側の領域または負荷側の領域のどちらに地絡
点があるのかを判断する。
Regarding the branch section (including the branch section if the power section is a branch section), first check the distribution status of the ground fault currents by comparing the ground load current detection values on the branch load side with each other, It is determined whether the ground fault point exists in the side area or the load side area.

そして、電源側の領域に地絡点がある場合、分岐区間の
電源側の地絡電流検出値と各分岐負荷側の地絡電流検出
値とを比較し、その分岐区間に地絡点があるかどうかを
判断する。その分岐区間に地絡点がない場合は、電源区
間に地絡点があることが判る。
When there is a ground fault point in the area on the power supply side, the ground fault current detection value on the power supply side of the branch section is compared with the ground fault current detection value on each branch load side, and there is a ground fault point on the branch section. Determine if If there is no ground fault in the branch section, it is known that the power section has a ground fault.

また、負荷側の領域に地絡点がある場合、地絡電流検出
値が最大の負荷側に地絡点があると判断し、その負荷側
の区間について判別を行っていく。
If the load side region has a ground fault point, it is determined that the load side having the maximum ground fault current detection value has the ground fault point, and the section on the load side is determined.

このようにして判別を行った結果、判別対象が末端区間
になった場合、その末端区間の電源側の地絡電流検出値
の大きさで末端区間に地絡点があるかどうかを判断す
る。末端区間に地絡点がない場合、電源区間に地絡点が
あることが判る。
As a result of the determination in this way, when the determination target is the terminal section, it is determined whether or not there is a ground fault point in the terminal section based on the magnitude of the ground fault current detection value on the power supply side of the terminal section. If there is no ground fault in the terminal section, it can be seen that there is a ground fault in the power section.

G.実施例 以下、図面を用いて、本発明の実施例を説明する。G. Examples Examples of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の構成を示す。FIG. 1 shows the configuration of an embodiment of the present invention.

変電所2では、地絡事故が発生した場合、FCB206によ
り、事故が発生した配電線1に対する電力の供給を遮断
する。また事故情報送信部207により、地絡事故に関す
る情報を地絡点認識装置の親局6(後述する)に送信す
る。
In the substation 2, when a ground fault occurs, the FCB 206 shuts off the power supply to the distribution line 1 in which the fault occurred. In addition, the accident information transmitting unit 207 transmits information about the ground fault to the master station 6 (described later) of the ground fault recognition device.

配電線1,1…は、変電所2から供給される電力を送電す
るものである。この配電線1には、所定の間隔をもって
開閉器3,3…が複数設置されている。
The distribution lines 1, 1 ... Transmit electric power supplied from the substation 2. A plurality of switches 3, 3, ... Are installed on the distribution line 1 at predetermined intervals.

各開閉器3は、配電線1に設けられた接点301と、これ
らの接点301を操作する操作コイル302を備えている。ま
た零相変流器(ZCT)303により、配電線1に流れる零相
電流を検出し、開閉操作検出部304により、接点301の開
閉動作を検出する。開閉器制御器4,4…は、各開閉器3,3
…に付設され、各開閉器3,3…の動作を制御する。
Each switch 3 includes a contact 301 provided on the distribution line 1 and an operation coil 302 for operating the contact 301. Further, the zero-phase current transformer (ZCT) 303 detects the zero-phase current flowing through the distribution line 1, and the opening / closing operation detection unit 304 detects the opening / closing operation of the contact 301. Switch controllers 4,4 ... are each switch 3,3
It is attached to ... and controls the operation of each switch 3, 3.

本実施例による地絡点認識装置は、各開閉器3,3…に付
設される子局5,5…と、各子局5,5…を制御する親局6と
から構成される。各子局5,5…と親局6は情報伝送路7
により接続されている。
The ground fault point recognizing device according to the present embodiment is composed of slave stations 5, 5 ... Attached to the switches 3, 3, ... And a master station 6 for controlling each slave station 5, 5. Each slave station 5, 5 ... and the master station 6 have an information transmission line 7
Connected by.

子局5,5…を設置する開閉器として区間開閉器のみを対
象とする態様(第2図参照)や、区間開閉器と区間内の
部分開閉器とを対象とする態様(第3図参照)などを選
択することができる。
A mode in which only the section switches are targeted as switches for installing the slave stations 5, 5 ... (Refer to FIG. 2), or a mode in which the section switches and partial switches within the section are targeted (Refer to FIG. 3) ) Etc. can be selected.

子局5では、補助CT501によりZCTの出力を受信し、受信
した信号を増幅器502により次段の信号処理に必要なレ
ベルに増幅する。そしてA/D変換器503により定期的にサ
ンプリングしてA/D変換した後、ノズル等の影響を除去
するため、平滑化演算部504により平滑化したうえで、
最大値記憶部505により電流検出値の最大値をとって地
絡電流検出値I0として記憶する。この最大記憶部505
は、FCB206が開となって無電源状態となっても記憶内容
が消去されず、記憶内容の初期化はリセット信号によっ
て行われるものとする。情報伝送部506は、地絡電流検
出値I0の送信その他、親局6に対する情報伝送を行う。
In the slave station 5, the ZCT output is received by the auxiliary CT 501, and the received signal is amplified by the amplifier 502 to a level required for the signal processing of the next stage. Then, after periodically sampling and A / D converting by the A / D converter 503, in order to remove the influence of the nozzles, etc., after smoothing by the smoothing calculation unit 504,
The maximum value storage unit 505 takes the maximum value of the current detection value and stores it as the ground fault current detection value I 0 . This maximum storage unit 505
The stored contents are not erased even if the FCB 206 is opened and there is no power supply, and the stored contents are initialized by the reset signal. The information transmission unit 506 performs transmission of the ground fault current detection value I 0 and other information transmission to the master station 6.

一方、親局6には、事故情報受信部601と情報伝送部602
とが設けられている。変電所2からの事故情報を事故情
報受信部601で収集する他、各子局5,5…から地絡電流検
出値I0を収集し、情報処理部603により地絡点認識に関
する所定の情報処理を行う。604はCRTやキーボード等の
表示操作部、605は記録部である。
On the other hand, the master station 6 has an accident information receiving unit 601 and an information transmitting unit 602.
And are provided. The accident information receiving unit 601 collects the accident information from the substation 2, and the ground fault current detection value I 0 is collected from each slave station 5, 5 ... Perform processing. Reference numeral 604 is a display operation unit such as a CRT or keyboard, and 605 is a recording unit.

次に、この地絡点認識装置の動作を説明する。Next, the operation of this ground fault point recognition device will be described.

親局6では、各子局5,5…に対し子局選択信号と地絡電
流要求信号(省略可能)を出力し、各子局5,5…の地絡
電流検出値I0を収集する。すなわち、この信号を受け
て、該当する子局5では、最大値記憶部505に記憶され
た地絡電流検出値I0を親局6に返信する。親局6は、地
絡電流検出値I0の受信を確認し、子局5で記憶している
必要がないと判断した場合に、子局5に対しリセット指
令信号を送信し、この信号を受けて子局5は最大値記憶
部505を初期化する。
The master station 6 outputs a slave station selection signal and a ground fault current request signal (can be omitted) to each slave station 5, 5 ... And collects the ground fault current detection value I 0 of each slave station 5, 5 ... . That is, in response to this signal, the corresponding slave station 5 returns the ground fault current detection value I 0 stored in the maximum value storage unit 505 to the master station 6. When the master station 6 confirms the reception of the ground fault current detection value I 0 and determines that the slave station 5 does not need to store it, it transmits a reset command signal to the slave station 5, and sends this signal. In response, the slave station 5 initializes the maximum value storage unit 505.

親局6において、地絡点が認識されると、情報処理部60
3は、地絡点を認識した旨および地絡区間(地絡部分)
をCRTにより表示するなど、配電線の運転管理者に対す
る通知処理を実行する。また必要に応じて収集データの
記録や、事故復旧手順作成おび自動復旧操作などの処理
を実行する。
When the ground fault is recognized in the master station 6, the information processing unit 60
3 indicates that the ground fault point is recognized and the ground fault section (ground fault portion)
Is displayed on the CRT and other notification processing is performed to the operation manager of the distribution line. If necessary, the collected data will be recorded, accident recovery procedures will be created, and automatic recovery operations will be performed.

地絡電流検出値I0の収集は、フィーダ単位、バンク単位
または全子局一括などの単位で行い、該当する子局5,5
…に対して順次収集を行って行く。収集のタイミング
は、次にあげるものが考えられる。
The ground fault current detection value I 0 is collected in units of feeders, banks, or all slave stations collectively.
... will be sequentially collected. The following may be considered as the timing of collection.

日毎または月毎等の定期的収集。 Regular collection such as daily or monthly.

この場合、全開閉器点を対象とする。この定期的収集に
より、地絡事故として認められない軽微な地絡状態を認
識することができる。
In this case, all switch points are targeted. By this periodical collection, it is possible to recognize a minor ground fault condition that is not recognized as a ground fault accident.

変電所2からの地絡事故発生情報受信後の自動収
集。
Automatic collection after receiving ground fault accident occurrence information from substation 2.

変電所2では、各フィーダに設置されているDGが動作
し、FCB206が自動遮断されると直ちに、管轄の親局6に
フィーダ毎の地絡事故情報を送信する。
In the substation 2, as soon as the DG installed in each feeder operates and the FCB 206 is automatically shut off, ground fault information for each feeder is transmitted to the master station 6 under its jurisdiction.

地絡事故が非継続的なものであった場合、変電所2で行
う再閉路が成功する。親局6では、再閉路の成功を確認
すると、今回の事故が非継続的地絡事故であることを認
識する。再閉路成功の確認は、その旨を示す情報を変電
所2から受信することにより行うことができるが、また
地絡点認識装置内にて一定時限以内にFCB206の再遮断が
発生するかどうかを監視し、発生しない場合に再閉路成
功と判断することもできる。
If the ground fault is discontinuous, the reclosing at substation 2 will be successful. Upon confirming the success of the reclosing, the master station 6 recognizes that this accident is a discontinuous ground fault. The success of reclosing can be confirmed by receiving the information indicating that from the substation 2, but whether the FCB206 re-shutoff occurs within a certain time period in the ground fault recognition device. It is also possible to monitor and judge that the reclosing is successful if it does not occur.

親局6は、再閉路成功を確認した後、地絡発生フィーダ
に所属する全開閉器点に電源が送電されたと判断して、
それらの開閉器点を対象として地絡電流検出値I0の自動
収集を行い、地絡点を認識する。
After confirming the success of reclosing, the master station 6 determines that power has been transmitted to all the switch points belonging to the ground fault occurrence feeder,
The ground fault current detection value I 0 is automatically collected for those switch points to recognize the ground fault point.

また、変電所バンクのOVG203のみが動作し、FCB206が自
動遮断されない場合には、変電所2よりOVG203の動作信
号のみを親局6に送信する。この場合、親局6では、微
地絡事故有りと判断して、当該バンクに所属する開閉器
点を対象として地絡電流検出値I0の自動収集を行い、地
絡点を認識する。
Further, when only the OVG 203 of the substation bank operates and the FCB 206 is not automatically shut off, the substation 2 transmits only the operation signal of the OVG 203 to the master station 6. In this case, the master station 6 determines that there is a slight ground fault, automatically collects the ground fault current detection value I 0 for the switch points belonging to the bank, and recognizes the ground fault point.

運転員の手動指令入力後の自動収集。 Automatic collection after operator's manual input.

この場合、運転員の指示した全開閉器点か、指定のバン
クまたはフィーダ所属の全開閉器点を対象とする。
In this case, all switch points designated by the operator or all switch points belonging to a designated bank or feeder are targeted.

親局6において、配電線1における地絡電流の分布に基
づいて、収集した地絡電流検出値I0から地絡発生を認識
する。
The master station 6 recognizes the occurrence of the ground fault from the collected ground fault current detection value I 0 based on the distribution of the ground fault current in the distribution line 1.

ここで地絡が発生した場合に、配電線に流れる地絡電流
の分布を説明する。
Here, the distribution of the ground fault current flowing through the distribution line when the ground fault occurs will be described.

第2図は、配電線の地絡事故時における地絡電流の分布
を示す。
FIG. 2 shows the distribution of the ground fault current at the time of the ground fault of the distribution line.

また、配電線1に地絡事故に至る前の軽微な地絡状態が
発生している場合においても、各フィーダの各開閉器点
における軽微な地絡電流は、地絡事故時よりは小さい
が、事故時と共通した分布となる。
Further, even when a slight ground fault condition before the ground fault occurs on the distribution line 1, the slight ground fault current at each switch point of each feeder is smaller than that at the time of the ground fault. , It has the same distribution as at the time of the accident.

ここで配電線1Aは、変電所2から融通開閉器までの区間
において、区間開閉器DM1〜DM3により区間1〜4に区分
されているものとし、区間2において地絡が発生したと
する。このとき、式(1)に示すように、FCB206Aに流
れる地絡電流I0Aは、他のFCB206B…206nの電流の合成電
流となる。ただし、I0B,I0nは配電線1B,1nの大地静電容
量CB,Cnを介して流れる電流である。
Here, it is assumed that the distribution line 1A is divided into sections 1 to 4 by the section switches DM 1 to DM 3 in the section from the substation 2 to the interchange switch, and that a ground fault occurs in the section 2. . At this time, as shown in the equation (1), the ground fault current I 0A flowing through the FCB 206A becomes a combined current of the other FCB 206B ... 206n. However, I 0B and I 0n are currents that flow via the ground capacitances C B and C n of the distribution lines 1B and 1n.

I0A=I0B+…+I0n …(1) また配電線1Aの各部における電流も同様に、式(2)〜
(6)に示すように、各部における対地静電容量による
電流の合成電流となる。ただし、IM1〜IM3は各開閉器DM
1〜DM3における地絡電流、IX1,IX2は地絡点Xにおける
電源側および負荷側の地絡電流、C1,C2,C4は配電線1Aの
各区間1,2,3における対地静電容量、IC1,IC2,IC4は対地
静電容量C1,C2,C4による地絡電流、C3-1,C3-2は区間2
における地絡点Xの電源側および負荷側の対地静電容
量、IC3-1,IC3-2は対地静電容量C3-1,C3-2による地絡電
流である。
I 0A = I 0B + ... + I 0n (1) Further, the currents in the respective portions of the distribution line 1A are similarly expressed by the equations (2) to
As shown in (6), it is a combined current of the currents due to the capacitance to ground in each part. However, I M1 to I M3 are each switch DM
1 to DM 3 ground fault current, I X1 and I X2 are power source side and load side ground fault currents at ground fault point X, C 1 , C 2 and C 4 are sections 1, 2 and 3 of distribution line 1A. Capacitance to ground at I C1 , I C2 and I C4 are ground fault currents due to ground capacitance C 1 , C 2 and C 4 , and C 3-1 and C 3-2 are sections 2
Earth capacitance of the power supply side and load side of the earth絡点X in, I C3-1, I C3-2 is the capacitance to ground C 3-1, a ground fault current by C 3-2.

IM1=I0A+IC1 …(2) IM2=I0A+IC1+IC2 …(3) IX1=I0A+IC1+IC2+IC3-1 …(4) IX2=IC3-2+IC4 …(5) IM3=IC4 …(6) すなわち地絡点Xの前段の区間開閉器DM2では、FCB206A
の電流と区間1,2の対地静電容量による電流との合成電
流が流れる。また地絡点Xの後段の区間開閉器DM3
は、後続の区間4の対地静電容量による電流が逆方向に
流れ込む。
I M1 = I 0A + I C1 ... (2) I M2 = I 0A + I C1 + I C2 ... (3) I X1 = I 0A + I C1 + I C2 + I C3-1 ... (4) I X2 = I C3-2 + I C4 (5) I M3 = I C4 (6) That is, in the section switch DM 2 in the preceding stage of the ground fault point X, FCB206A
The combined current of the current of (1) and the current due to the electrostatic capacitance in the sections 1 and 2 flows. In the section switch DM 3 in the latter stage of the ground fault point X, the current due to the electrostatic capacitance to ground in the subsequent section 4 flows in the opposite direction.

また第3図は、区間開閉器DM1〜DM3だけでなく、各区間
内に設置された部分開閉器D1〜D4も対象として、地絡電
流の分布を示す。この場合も、地絡電流の分布は前記と
同様である。部分開閉器にも子局5,5…を設置し、地絡
電流検出値I0を監視する態様をとれば、地絡点をより狭
い範囲に限定できる利点がある。第3図に示す例では、
地絡点は区間2内の部分2にあることが認識できる。
Further, FIG. 3 shows the distribution of the ground fault current not only for the section switches DM 1 to DM 3 but also for the partial switches D 1 to D 4 installed in each section. Also in this case, the distribution of the ground fault current is the same as that described above. If the slave stations 5, 5 ... Are installed in the partial switch and the ground fault current detection value I 0 is monitored, the ground fault point can be limited to a narrower range. In the example shown in FIG.
It can be recognized that the ground fault point is in the portion 2 within the section 2.

このように地絡点Xを境として電源側の開閉器点におけ
る地絡電流と、負荷側の開閉器点における地絡電流には
大きな差が生ずる。本実施例では、この現像に着目し、
基本的には、前後する開閉器点間で地絡電流検出値I0
差が大きな区間があるかどうか(以下この条件を「判定
条件」という)を判定し、その判定結果により地絡点認
識を行う。
Thus, a large difference occurs between the ground fault current at the switch point on the power supply side and the ground fault current at the switch point on the load side with the ground fault point X as the boundary. In this embodiment, focusing on this development,
Basically, it is determined whether there is a large difference in the ground fault current detection value I 0 between the front and rear switch points (hereinafter, this condition is referred to as “judgment condition”), and the judgment result determines the ground fault point. To recognize.

判定条件の具体例としては、例えば次の4つが考えられ
る。
The following four are conceivable as specific examples of the determination condition.

比較した地絡電流検出値I0の差が最も大きく、かつ
一定値以上であることを条件とする。
The condition is that the difference between the compared ground fault current detection values I 0 is the largest and is a certain value or more.

比較した地絡電流検出値I0の差が最も大きく、かつ
電源側開閉器点の地絡電流検出値I0と負荷側開閉器点の
地絡電流検出値I0の比率Kが一定値以上であることを条
件とする。
The difference between the detected ground fault current detection values I 0 is the largest, and the ratio K between the ground fault current detection value I 0 at the power supply side switch point and the ground fault current detection value I 0 at the load side switch point is at least a certain value. Is a condition.

比較した地絡電流検出値I0の差が最も大きく、しか
もその差が一定値以上であり、上記の比率Kが一定値以
上であることを条件とする。
The condition is that the difference between the compared ground fault current detection values I 0 is the largest, the difference is a certain value or more, and the ratio K is a certain value or more.

条件との両方に該当することを条件とする。 The condition is that both of the conditions are met.

判定のためのしきい値を可変とすることによって、変電
所の地絡継電器が動作するレベルとの協調をとることが
でき、また軽微な地絡の検出には微地絡検出用のしきい
値を使用し、通常の地絡の検出には通常地絡検出用のし
きい値を使用する態様をとることもできる。
By making the threshold for judgment variable, it is possible to coordinate with the level at which the ground fault relay of the substation operates, and for detecting a slight ground fault, a threshold for detecting a fine ground fault. It is also possible to use a value and use a threshold value for detecting a normal ground fault to detect a normal ground fault.

ところで、上記の判定条件は、区間の前後で地絡電流を
検出できない電源区間や末端区間ではそのまま適用する
ことができない。また、負荷側が複数に分岐している区
間(分岐区間)がフィーダに含まれている場合、この分
岐区間でも適用することができない。
By the way, the above determination conditions cannot be directly applied to the power supply section or the terminal section where the ground fault current cannot be detected before and after the section. Further, when the feeder includes a section where the load side is branched into a plurality of sections (branch section), this branch section cannot be applied.

したがって、判別対象が電源区間および末端区間以外の
非分岐区間のときは、その区間の前後の開閉器の地絡電
流を比較し、判定条件が成立する場合はその区間に地絡
点があり、判定条件が成立しない場合はその区間に地絡
点がないと判別することにする(第1の判別基準)。
Therefore, when the determination target is a non-branch section other than the power supply section and the terminal section, the ground fault currents of the switches before and after the section are compared, and if the determination condition is satisfied, there is a ground fault point in that section, When the determination condition is not satisfied, it is determined that there is no ground fault point in the section (first determination criterion).

次に、電源区間、末端区間や分岐区間の地絡検出の基準
を説明する。
Next, the criteria for detecting the ground fault in the power source section, the terminal section and the branch section will be described.

第4図ないし第12図は各種の地絡事故例を示す。これら
の図において、順方向の大きな地絡電流は実線で示し、
逆方向の小さな地絡電流は破線でしめす。
4 to 12 show various examples of ground fault accidents. In these figures, the large forward ground fault current is shown by the solid line,
The small ground fault current in the opposite direction is indicated by the broken line.

第4図に示すように、区間1で地絡事故が発生した場
合、地絡点より電源側の開閉器DM1の地絡電流IM1は大き
な値となり、負荷側の開閉器DM2〜DM8の地絡電流IM2〜I
M8は小さな値となる。
As shown in FIG. 4, when a ground fault occurs in the section 1, the ground fault current I M1 of the switch DM 1 on the power source side becomes larger than the ground fault point, and the switches DM 2 to DM on the load side. 8 Ground fault current I M2 ~ I
M8 has a small value.

また第5図に示すように、区間2(分岐区間)で地絡事
故が発生した場合、電源側の開閉器DM1,DM2の地絡電流I
M1,IM2は大きな値となり、負荷側の開閉器DM3〜DM8の地
絡電流IM3〜IM8は小さな値となる。
Further, as shown in FIG. 5, when a ground fault occurs in section 2 (branch section), the ground fault current I of the switches DM 1 and DM 2 on the power supply side is
M1 and I M2 have large values, and the ground fault currents I M3 to I M8 of the switches DM 3 to DM 8 on the load side have small values.

また第6図に示すように、分岐区間2より負荷側の区
間、たとえば区間3で地絡事故が発生した場合、開閉器
DM1〜DM3の地絡電流は大きな値となり、他の開閉器DM4
〜DM8の地絡電流IM4〜IM8は小さな値となる。
Further, as shown in FIG. 6, when a ground fault occurs in a section on the load side of the branch section 2, for example, section 3, the switchgear
The ground fault currents of DM 1 to DM 3 become large, and other switch DM 4
The ground fault currents I M4 to I M8 of ~ DM 8 are small values.

隣接する開閉器DM1,DMjの地絡電流IMi,IMjの差をΔIij
とすると、分岐区間2または分岐区間2より電源側の区
間1で地絡事故が発生した場合、ΔI35,ΔI37,ΔI57
判定条件が成立しない。
The difference between the ground fault currents I Mi and I Mj of adjacent switches DM 1 and DM j is ΔI ij
Then, when a ground fault occurs in the branch section 2 or the section 1 on the power source side of the branch section 2, the determination conditions are not satisfied for ΔI 35 , ΔI 37 , and ΔI 57 .

一方、分岐区間2よりも負荷側の区間3で地絡事故が発
生した場合、ΔI35およびΔI37は判定条件が成立する
が、ΔI57は判定条件が成立しない。
On the other hand, when a ground fault occurs in the section 3 on the load side of the branch section 2, the determination conditions are satisfied for ΔI 35 and ΔI 37, but not for ΔI 57 .

したがって、判別対象が分岐区間であるときは、分岐区
間の負荷側開閉器の地絡電流値を相互に比較し、すべて
について判定条件が不成立である場合、地絡点は分岐区
間または分岐区間より電源側の区間にあり、いずれかに
ついて判定条件が成立する場合、地絡点は分岐区間より
負荷側の区間にあると判別できる(第2の判別基準)。
Therefore, when the judgment target is the branch section, the ground fault current values of the load side switches in the branch section are compared with each other, and if the judgment conditions are not satisfied for all, the ground fault point is not the branch section or the branch section. If it is in the section on the power supply side and the determination condition is satisfied for any of them, it can be determined that the ground fault is in the section on the load side of the branch section (second determination criterion).

さらに、地絡点が分岐区間より負荷側の区間にある場
合、負荷側開閉器の地絡電流を相互に比較し、地絡電流
が最大である分岐側に地絡点があると判別できる(第3
の判別基準)。
Further, when the ground fault point is located on the load side of the branch section, the ground fault currents of the load side switches are compared with each other, and it can be determined that the ground fault point is on the branch side where the ground fault current is maximum ( Third
Discrimination criteria).

また、分岐区間2で地絡事故が発生した場合、ΔI23
I25,ΔI27が前記の判定条件を満たし、後者の場合はΔI
25,ΔI27が判定条件を満たすがΔI23は判定条件を満た
さない。
In addition, when a ground fault occurs in branch section 2, ΔI 23 , Δ
I 25 and ΔI 27 satisfy the above judgment conditions, and in the latter case ΔI
25 and ΔI 27 satisfy the judgment condition, but ΔI 23 does not satisfy the judgment condition.

したがって、分岐区間の電源側の開閉器における地絡電
流を基準として、各分岐負荷側の開閉器における地絡電
流が判定条件を満たすどうかを判別し、すべての判定条
件を満たす場合は、その分岐区間に地絡点があると判別
できる(第4の判別基準)。
Therefore, with reference to the ground fault current in the switch on the power supply side in the branch section, it is determined whether the ground fault current in the switch on the branch load side satisfies the judgment conditions. It can be determined that the section has a ground fault (fourth determination criterion).

そして、第1ないし第4の判別基準に従って判別を行っ
た結果、地絡点が検出できなかった場合は、電源区間ま
たは末端区間に地絡点があると判別する。
As a result of performing the determination according to the first to fourth determination criteria, when the ground fault is not detected, it is determined that the power supply section or the terminal section has the ground fault.

第7図および第8図は電源区間に地絡点がある例を示
し、第9図および第10図は末端区間(区間4)に地絡点
がある例を示す。
7 and 8 show an example in which a ground fault exists in the power source section, and FIGS. 9 and 10 show an example in which a ground fault point exists in the terminal section (section 4).

地絡発生フィーダが開閉器を有しない系統である場合、
フィーダ地絡情報があった時点で、電源区間に地絡点が
あることが判別できる。
If the ground fault feeder is a system that does not have a switch,
When there is feeder ground fault information, it can be determined that there is a ground fault point in the power supply section.

地絡発生フィーダが開閉器を有する系統である場合、第
7図および第8図に示すように、電源区間に地絡点があ
れば、すべての開閉器DM1〜DM8の地絡電流は小さくな
る。
When the ground fault generating feeder is a system having switches, as shown in FIGS. 7 and 8, if there is a ground fault point in the power source section, the ground fault currents of all the switches DM 1 to DM 8 will be Get smaller.

これに対し、第9図および第10図に示すように、末端区
間が地絡区間であれば、開閉器DM1〜DM4の地絡電流は大
きくなり、開閉器DM5〜DM8の地絡電流は小さくなる。
On the other hand, as shown in FIG. 9 and FIG. 10, when the terminal section is the ground fault section, the ground fault currents of the switches DM 1 to DM 4 are large, and the ground faults of the switches DM 5 to DM 8 are large. The junction current becomes smaller.

したがって、第7図および第9図に示すように、地絡発
生フィーダが非分岐系統である場合、例えば末端区間の
直前の開閉器DM4の地絡電流検出値をしきい値と比較
し、その大小をみることによって、電源区間または末端
区間のいずれに地絡点があるかを判別することができ
る。
Therefore, as shown in FIG. 7 and FIG. 9, when the ground fault generating feeder is a non-branching system, for example, the ground fault current detection value of the switch DM 4 immediately before the terminal section is compared with a threshold value, It is possible to determine whether the ground fault exists in the power source section or the terminal section by checking the magnitude.

また、第10図に示すように、地絡発生フィーダが分岐区
間(区間2)を含む場合、分岐区間の判別において、地
絡発生系統が区間3および区間4側の配電線に特定され
るので、区間3に地絡点がないことが判別された時点
で、区間4に地絡点があると判別することができる。こ
の際、上記と同様に、地絡電流検出値が一定値以上であ
る条件を加味して判断してもよい。
Further, as shown in FIG. 10, when the ground fault occurrence feeder includes a branch section (section 2), in the determination of the branch section, the ground fault occurrence system is specified as the distribution lines on the section 3 and section 4 sides. When it is determined that the section 3 has no ground fault, it can be determined that the section 4 has a ground fault. At this time, similarly to the above, the determination may be made in consideration of the condition that the detected value of the ground fault current is a certain value or more.

また、第11図に示すように電源区間が分岐区間である場
合、第2の判別基準により、電源側の領域に地絡区間が
あると判別された時点で、電源区間が地絡区間であると
判別できる。
When the power supply section is a branch section as shown in FIG. 11, the power supply section is a ground fault section when it is determined by the second determination criterion that the power supply side area has a ground fault section. Can be determined.

以上の判別基準をまとめれば、分岐区間や電源区間、末
端区間を判別対象に含めた地絡区間認識フローを構成す
ることができる。第12図ないし第14図は、その1例を示
す。
By summarizing the above determination criteria, it is possible to configure a ground fault section recognition flow that includes a branch section, a power supply section, and a terminal section as the determination targets. 12 to 14 show one example thereof.

ここで、第1図に戻って説明すると、開閉器3,3…また
は開閉器制御器4,4…の点検時など、子局5,5…で地絡電
流検出値I0を検出することができない場合がある。この
ような場合を考慮し、子局5,5…にて地絡検出使用/不
使用のモードを設定する態様もある。地絡電流検出値I0
を検出できない場合、子局5,5…は不使用モードをと
り、親局6から地絡電流要求信号を受けると、地絡電流
検出値I0の送信が不可能である旨を通知する。
Here, returning to FIG. 1, when detecting the switches 3,3 ... or the switch controllers 4,4 ..., the slave stations 5, 5 ... Detect the ground fault current detection value I 0. May not be possible. In consideration of such a case, there is also a mode in which the mode of use / non-use of ground fault detection is set in the slave stations 5, 5. Ground fault current detection value I 0
... cannot be detected, the slave stations 5, 5 ... Enter the non-use mode, and when receiving the ground fault current request signal from the master station 6, notify that the ground fault current detection value I 0 cannot be transmitted.

この通知の方式として「地絡検出不使用モードのビット
情報」「地絡電流検出値使用不可能フラッグ」「所定数
値以外のデータ形式」のいずれかを、地絡電流検出値I0
の代わりに、または地絡電流検出値I0と共に親局6に送
信する態様が考えられる。
As a method of this notification, any one of "bit information of ground fault detection non-use mode", "ground fault current detection value unusable flag", and "data format other than predetermined value" is used as the ground fault current detection value I 0.
Instead of or in addition to the ground fault current detection value I 0 , a mode of transmitting to the master station 6 is conceivable.

親局6は、上記の通知を受けた場合、その子局5の前後
の開閉器間を1つの単位として取り扱い、その子局5の
開閉器点の前後の開閉器点における地絡電流検出値I0
基づいて地絡点認識を行う。
Upon receiving the above notification, the master station 6 treats the switches before and after the slave station 5 as one unit, and detects the ground fault current value I 0 at the switch points before and after the switch point of the slave station 5. The ground fault point recognition is performed based on.

第15図は、他の実施例の装置の構成を示す。FIG. 15 shows the structure of the apparatus of another embodiment.

この実施例では、開閉器制御器4,4…に対応して子局5,5
…(第1図参照)を設置する代わりに、開閉器制御器8,
8…に地絡電流検出機能および情報通信機能などの子局
5,5…と同様の機能を付加する態様をとっている。801は
既知の開閉器制御機能を司る開閉器制御回路である。他
の構成は、第1図の実施例と同様である。
In this embodiment, the slave stations 5, 5 are associated with the switch controllers 4, 4, ...
... Instead of installing (see Fig. 1) switch controller 8,
8 ... Slave station with ground fault current detection function and information communication function
It takes the form of adding the same function as 5,5 .... A switch control circuit 801 controls a known switch control function. The other structure is similar to that of the embodiment shown in FIG.

H.発明の効果 以上説明したように、本発明によれば、配電線の各開閉
器点に設置された子局と、各子局を制御する親局とから
地絡点認識装置を構成し、子局において、配電線の零相
電流を計測して地絡電流検出値を親局に対し送信すると
共に、親局においては、各子局からの地絡電流検出値を
受信し、これに基づいて、地絡区間を判別する。
H. Effects of the Invention As described above, according to the present invention, a ground fault point recognition device is configured from a slave station installed at each switch point of a distribution line and a master station that controls each slave station. , The slave station measures the zero-phase current of the distribution line and transmits the ground fault current detection value to the master station, and the master station receives the ground fault current detection value from each slave station and Based on this, the ground fault section is determined.

この地絡区間の判別では、地絡電流検出値の分布状況を
確認することにより、電源区間や末端区間も含めた全区
間を対象とすることができ、また複数の負荷側に分岐す
る区間が地絡発生フィーダに含まれる場合であっても、
地絡認識を行うことができる。
In this determination of the ground fault section, by checking the distribution status of the ground fault current detection value, it is possible to target all sections including the power supply section and the terminal section. Even when included in the ground fault feeder,
A ground fault can be recognized.

したがって、従来は不可能であったFCBの自動遮断に至
らない微地絡事故であっても、無停電による微地絡点の
認識が可能となる。
Therefore, even in the case of a slight ground fault that does not result in the automatic shutoff of the FCB, which was impossible in the past, it is possible to recognize the fine ground fault point due to uninterruption.

また子局では、配電線の零相電流の最大値を保持し、そ
の値を地絡電流検出値として親局に送信するので、従来
は検出が困難であった断続的または非継続的な地絡事故
も認識が可能となり、地絡点に対して再発防止のための
根本的な事故要因除去対策を施すことができ、配電線の
維持管理に多大の効果がある。
In addition, the slave station holds the maximum value of the zero-phase current of the distribution line and sends it to the master station as the ground fault current detection value, so it was difficult to detect it intermittently or discontinuously. It is also possible to recognize a ground fault, and it is possible to take fundamental measures to eliminate the cause of the accident at the ground fault to prevent recurrence, which has a great effect on the maintenance of distribution lines.

しかも、区間開閉器単位または部分開閉器間単位で地絡
点を認識することができるので、地絡点の捜索が容易と
なる利点がある。
Moreover, since the ground fault point can be recognized for each section switch unit or each partial switch unit, there is an advantage that the search for the ground fault point becomes easy.

また、地絡事故が発生する前に、すなわち事故に至らな
い軽微な地絡の発生であっても、これを認識することが
できる。それゆえ、地絡状態が地絡事故に発展する前に
予防保全対策を講ずることが可能となる利点がある。
Further, it is possible to recognize this before the occurrence of the ground fault, that is, even if a slight ground fault that does not lead to the accident occurs. Therefore, there is an advantage that preventive maintenance measures can be taken before the ground fault condition develops into a ground fault accident.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る地絡点認識装置を示す
ブロック図、第2図および第3図は地絡発生時における
地絡電流の分布を示す説明図、第4図ないし第11図は各
種の地絡事故例を示す説明図、第12図ないし第14図は地
絡区間認識の手順を示すフローチャート、第15図は本発
明の他の実施例に係る地絡点認識装置を示すブロック
図、第16図は配電線の地絡事故の1例を示すブロック図
である。 1……配電線、2……変電所、3……開閉器、303……Z
CT、4……開閉器制御器、5……子局、501……補助C
T、502……増幅器、503……A/D変換器、504……平滑化
演算部、505……最大値記憶部、506……子局の情報伝送
部、6……親局、602……親局の情報伝送部、603……情
報処理部、7……情報伝送路、8……子局の機能を内蔵
した開閉器制御器。
FIG. 1 is a block diagram showing a ground fault point recognizing device according to an embodiment of the present invention, FIGS. 2 and 3 are explanatory diagrams showing a distribution of a ground fault current when a ground fault occurs, and FIGS. FIG. 11 is an explanatory view showing various examples of ground fault accidents, FIGS. 12 to 14 are flowcharts showing procedures of ground fault section recognition, and FIG. 15 is a ground fault point recognition device according to another embodiment of the present invention. FIG. 16 is a block diagram showing an example of a ground fault accident of a distribution line. 1 ... Distribution line, 2 ... Substation, 3 ... Switch, 303 ... Z
CT, 4 ... Switch controller, 5 ... Slave station, 501 ... Auxiliary C
T, 502 ... Amplifier, 503 ... A / D converter, 504 ... Smoothing operation section, 505 ... Maximum value storage section, 506 ... Slave station information transmission section, 6 ... Master station, 602 ... … Master station information transmission unit, 603 …… Information processing unit, 7 …… Information transmission path, 8 …… Switch controller with built-in slave station functions.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】配電線の各開閉器点に設置された複数の子
局と、各子局を制御する親局とからなり、配電線の地絡
発生および地絡発生区間を認識する装置において、 子局には、 配電線の零相電流を計測する零相電流検出部と、 この零相電流検出部の検出信号の最大値を地絡電流検出
値として記憶する地絡電流記憶部と、 地絡電流検出値を親局に対し送信する地絡電流検出値送
信部とを設け、 親局には、 各子局からの地絡電流検出値を受信する地絡電流検出値
受信部と、 各子局からの地絡電流検出値に基づいて、開閉器間を単
位とし、地絡電流検出値の大きさを比較判定して電源側
から地絡発生の有無を順次判別する地絡認識部を設け、 この地絡認識部は、 電源区間および末端区間以外の非分岐区間を判別対象と
し、前後の地絡電流検出値の差が大きいときに、その非
分岐区間に地絡点があると判断する非分岐区間判別部
と、 分岐区間を判別対象とし、分岐負荷側の地絡電流検出値
を互いに比較し、それらの差がすべて小さいときは、電
源側の領域、すなわちその分岐区間またはその分岐区間
より電源側の区間に地絡点があると判断すると共に、そ
れらの差のいずれかが大きいときは、負荷側の領域、す
なわち分岐した負荷側のいずれかに地絡点があると判断
する地絡領域判別部と、 前記電源側の領域に地絡点がある場合、その分岐区間の
電源側の地絡電流検出値に対する各分岐負荷側の地絡電
流検出値の差をとり、いずれもその差が大きいときは、
その分岐区間に地絡点があると判断し、その差がいずれ
も小さいときは、その分岐区間よりも電源側の区間に地
絡点があると判断する分岐区間判別部と、 前記負荷側の領域に地絡点がある場合、各分岐負荷側の
地絡電流検出値を比較し、地絡電流検出値が最大の負荷
側に地絡点があると判断する負荷側特定部と、 末端区間を判別対象とし、その末端区間の電源側の地絡
電流検出値の大きさを判定し、地絡電流検出値が或る値
よりも大きいときは、その末端区間に地絡点があると判
断し、小さいときは、電源側に地絡点があると判断する
末端区間判別部とを備えていること を特徴とする配電線の地絡点認識装置。
1. A device comprising a plurality of slave stations installed at respective switch points of a distribution line and a master station for controlling each slave station, and recognizing a ground fault occurrence and a ground fault occurrence section of the distribution line. In the slave station, a zero-phase current detection unit that measures the zero-phase current of the distribution line, and a ground fault current storage unit that stores the maximum value of the detection signal of this zero-phase current detection unit as the ground fault current detection value, A ground fault current detection value transmission unit that transmits the ground fault current detection value to the master station is provided, and the master station has a ground fault current detection value reception unit that receives the ground fault current detection value from each slave station, Based on the ground fault current detection value from each slave station, the ground fault recognition unit that sequentially determines the presence or absence of the ground fault from the power supply side by comparing and determining the magnitude of the ground fault current detection value in units of switches. This ground fault recognition unit determines the non-branch section other than the power source section and the terminal section, and the ground fault current detection value before and after When the difference is large, the non-branch section determination unit that determines that there is a ground fault point in the non-branch section, and the branch section as the determination target, the ground load current detection values on the branch load side are compared with each other, and the difference If all are small, it is judged that there is a ground fault point in the power supply side area, that is, in the branch section or in the section on the power supply side from the branch section, and if any of these differences is large, the load side area In other words, if there is a ground fault area determination unit that determines that there is a ground fault point on any of the branched load sides, and if there is a ground fault point on the power source side area, the ground fault current detection value on the power source side of the branch section. The difference between the ground-fault current detection values on the side of each branch load with respect to is taken.
It is determined that there is a ground fault point in the branch section, and when the difference is small, a branch section determination unit that determines that there is a ground fault point in the section on the power supply side of the branch section; If there is a ground fault point in the area, compare the ground fault current detection values on each branch load side, and determine that the ground fault point is on the load side with the maximum ground fault current detection value. Is determined, and the magnitude of the ground-fault current detection value on the power supply side of the terminal section is determined.If the ground-fault current detection value is larger than a certain value, it is determined that the terminal section has a ground fault point. However, the ground fault point recognizing device for a distribution line is characterized by comprising an end section discriminating unit that judges that there is a ground fault point on the power supply side when the power source side is small.
JP2025342A 1990-02-05 1990-02-05 Ground fault point recognition device for distribution lines Expired - Lifetime JPH0783565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2025342A JPH0783565B2 (en) 1990-02-05 1990-02-05 Ground fault point recognition device for distribution lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2025342A JPH0783565B2 (en) 1990-02-05 1990-02-05 Ground fault point recognition device for distribution lines

Publications (2)

Publication Number Publication Date
JPH03230731A JPH03230731A (en) 1991-10-14
JPH0783565B2 true JPH0783565B2 (en) 1995-09-06

Family

ID=12163227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2025342A Expired - Lifetime JPH0783565B2 (en) 1990-02-05 1990-02-05 Ground fault point recognition device for distribution lines

Country Status (1)

Country Link
JP (1) JPH0783565B2 (en)

Also Published As

Publication number Publication date
JPH03230731A (en) 1991-10-14

Similar Documents

Publication Publication Date Title
AU2021203476B2 (en) Nested microgrid control system
US6718271B1 (en) Fault detection apparatus and method of detecting faults in an electrical distribution network
US8861155B2 (en) High-impedance fault detection and isolation system
US20080211511A1 (en) Method of Generating Fault Indication in Feeder Remote Terminal Unit for Power Distribution Automation System
KR101090425B1 (en) Protection Coordination system in ungrounded distribution system and its operating method
JP2007116893A (en) Device and method for detecting fault section by comparison of phase difference, and magnitude of zero-phase current in non-grounded distribution system
EP3605436A1 (en) Method for locating phase faults in a microgrid
US6867958B2 (en) Loop restoration scheme for distribution feeders
JP2019527025A (en) Line short-circuit fault section switching system and switching method in inverter-based independent microgrid
JP5147739B2 (en) Distribution system ground fault protection system, distribution system ground fault protection method, program
KR100920946B1 (en) Apparatus and method for fault detection and fault location decision on a distribution line using load current
US11309699B2 (en) Control system for and method of fault location, isolation and supply restoration
CN111781465A (en) Fault positioning system and method for ungrounded power grid
Zhang Improving real-time fault analysis and validating relay operations to prevent or mitigate cascading blackouts
JPH0783564B2 (en) Ground fault point recognition device for distribution lines
Hasan et al. A simulation testbed for cascade analysis
JPH0783565B2 (en) Ground fault point recognition device for distribution lines
JPH0771374B2 (en) Ground fault point recognition device for distribution lines
CN111781464A (en) Fault positioning system and method for arc suppression coil and small-resistance grounding power grid
KR102556433B1 (en) Distribution protection coordination system and method using edge computer and micro PMU
CN111766472A (en) Fault positioning system and method for low-resistance grounding power grid
CN111781466A (en) Fault positioning system and method for arc suppression coil grounding power grid
JP5381415B2 (en) Distribution line protection system and protection relay
Morris et al. Delivering the benefits from a common disturbance information platform to prevent unplanned outages
KR101997639B1 (en) Apparatus and method for managing the fault indications of distribution line with distributed generation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 15