JPH0782553A - Infrared luminescent material - Google Patents

Infrared luminescent material

Info

Publication number
JPH0782553A
JPH0782553A JP5254897A JP25489793A JPH0782553A JP H0782553 A JPH0782553 A JP H0782553A JP 5254897 A JP5254897 A JP 5254897A JP 25489793 A JP25489793 A JP 25489793A JP H0782553 A JPH0782553 A JP H0782553A
Authority
JP
Japan
Prior art keywords
light emitting
emitting material
light
luminescent material
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5254897A
Other languages
Japanese (ja)
Inventor
Jo Uchida
丈 内田
Ryuzo Fukao
隆三 深尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP5254897A priority Critical patent/JPH0782553A/en
Publication of JPH0782553A publication Critical patent/JPH0782553A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To obtain a neodymium-activated luminescent material having a high luminous output. CONSTITUTION:The infrared luminescent material has a chemical composition represented by the general formula; ABxND1-xP4O12 (wherein A is at least one alkali metal element selected from the group consisting of Li, Na K; B is at least one trivalent-ion-forming metal element selected from the group consisting of Sb, Lu, Ga, Su, Y, La, Ce, Gd, In, Bi, Al and Ti; and 0.05<=x<=0.8).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発光材料に関する。更に
詳細には、本発明はネオジムイオン(Nd3+)で賦活さ
れた赤外発光材料に関する。
FIELD OF THE INVENTION This invention relates to luminescent materials. More specifically, the present invention relates to infrared emitting materials activated with neodymium ions (Nd 3+ ).

【0002】[0002]

【従来の技術】近年、蛍光体を用いて郵便物にマークを
付したり、例えば、バーコードなどにより必要な情報を
所定の用紙に記録したりして、蛍光体マークからの発光
のみを蛍光体の励起波長に合致した励起光源で照射し
て、マーク部分を選択的に検出し、この検出によって郵
便物を仕分けたり、用紙に記録された情報を光学的カー
ドリーダーなどで正確に読み取ることが行われている。
2. Description of the Related Art In recent years, a fluorescent substance is used to mark a postal matter, or necessary information is recorded on a predetermined sheet by, for example, a bar code so that only the light emitted from the fluorescent substance mark is fluorescent. By irradiating with an excitation light source that matches the excitation wavelength of your body, you can selectively detect the mark part, and by this detection you can sort mail items and accurately read the information recorded on paper with an optical card reader etc. Has been done.

【0003】この方式によれば、情報を記録する有色
(例えば、黒色)インクを用いたバーコードと異なり、
記録されたマークがある場合にのみ蛍光信号を検出する
ために、励起光源の反射光は無視でき、原理的にコント
ラスト比は高くなり、読取誤動作が少なくなると考えら
れている。
According to this method, unlike a bar code using a colored (for example, black) ink for recording information,
Since the fluorescence signal is detected only when there is a recorded mark, it is considered that the reflected light of the excitation light source can be ignored, the contrast ratio is increased in principle, and the reading malfunction is reduced.

【0004】従来、光学的マーキング用発光材料として
は、ネオジムイオン(Nd3+)で賦活された波長105
0nm付近に大きな発光ピークを示す赤外発光材料、例
えば、LiNdP412などが知られていた。光学的マ
ーキングにおいては、発光材料によりマーキングを施し
た媒体を、発光材料の励起波長に合致した発光スペクト
ルを有する励起光源で照射し、発光材料からの発光のみ
を選択的に検出することにより、媒体に記録された情報
を正確に読み取ることが可能である。特に、LiNdP
412発光材料を用いることの利点の一つは、吸収およ
び発光イオンであるネオジムイオンの赤外における吸収
断面積が大きいので、発光材料層を薄くしても情報の読
取が可能なことであった。
Conventionally, as a light emitting material for optical marking, a wavelength 105 activated by neodymium ion (Nd 3+ ) has been used.
An infrared light emitting material showing a large light emission peak near 0 nm, such as LiNdP 4 O 12 has been known. In optical marking, a medium marked with a luminescent material is irradiated with an excitation light source having an emission spectrum matching the excitation wavelength of the luminescent material, and only the luminescence from the luminescent material is selectively detected to obtain the medium. It is possible to accurately read the information recorded in. In particular, LiNdP
One of the advantages of using a 4 O 12 luminescent material is that since the absorption and emission absorption neodymium ions have a large absorption cross section in the infrared, it is possible to read information even if the luminescent material layer is thin. there were.

【0005】しかしながら、従来のネオジム賦活発光材
料の発光出力は比較的低く、光学的マーキング用、特に
カードリーダ用として必ずしも満足できるものではなか
った。
However, the conventional neodymium-activated light emitting material has a relatively low light emission output, which is not always satisfactory for optical marking, particularly for card readers.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、波長1050nm付近で高い発光出力を有するネオ
ジム賦活発光材料を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a neodymium-activated light emitting material having a high light emission output near a wavelength of 1050 nm.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、本発明では、下記の一般式、 ABx Nd1-x412 (式中、AはLi,NaおよびKからなる群から選択さ
れる少なくとも一種類以上のアルカリ金属元素であり、
BはSb,Lu,Ga,Sc,Y,La,Ce,Gd,
In,Bi,AlおよびTlからなる群から選択される
少なくとも一種類以上の三価のイオンとなりうる金属元
素であり、0.05≦x≦0.8である)で示される組
成を有することを特徴とする赤外発光材料を提供する。
In order to achieve the above object, the present invention provides the following general formula: AB x Nd 1-x P 4 O 12 (wherein A is a group consisting of Li, Na and K). Is at least one or more alkali metal elements selected from,
B is Sb, Lu, Ga, Sc, Y, La, Ce, Gd,
A metal element capable of forming at least one kind of trivalent ion selected from the group consisting of In, Bi, Al and Tl, and having a composition represented by 0.05 ≦ x ≦ 0.8). A featured infrared light emitting material is provided.

【0008】[0008]

【作用】前記のように、ネオジム賦活発光材料、ANd
412(但し、AはLi,NaおよびKからなる群か
ら選択される少なくとも一種類以上のアルカリ金属元素
である)において、発光中心であるネオジムイオン(N
3+)の一部をSb,Lu,Ga,Sc,Y,La,C
e,Gd,In,Bi,AlおよびTlからなる群から
選択される少なくとも一種類以上の三価のイオン、例え
ば、ガドリニウムイオン(Gd3+)および/またはイッ
トリウムイオン(Y3+)によって置換することにより、
波長1050nm付近において従来の発光材料よりも大
きな発光出力を有する発光材料を提供することができ
る。
As described above, the neodymium-activated luminescent material, ANd
In P 4 O 12 (where A is at least one or more alkali metal elements selected from the group consisting of Li, Na and K), the neodymium ion (N
d 3+ ) part of Sb, Lu, Ga, Sc, Y, La, C
Substituted by at least one or more trivalent ions selected from the group consisting of e, Gd, In, Bi, Al and Tl, for example, gadolinium ion (Gd 3+ ) and / or yttrium ion (Y 3+ ). By
It is possible to provide a light emitting material having a larger light emission output than a conventional light emitting material in the vicinity of a wavelength of 1050 nm.

【0009】本発明の発光材料は、基本的にNdの4f
電子の4f−4f遷移により発光するものであるが、従
来の発光材料に比べて発光強度が高い理由は、ネオジム
イオンの吸光、発光の波長域にわたって、大きな吸光お
よび発光のない三価を取りうる金属イオンを有するテト
ラ燐酸塩を母体として、これに発光中心となるネオジム
イオンを賦活したことによるものと思われる。また、L
i,NaまたはKなどのアルカリ金属の添加により発光
材料の結晶性が改善され、この結晶性の改善により発光
強度が更に向上されるものと思われる。
The light emitting material of the present invention is basically composed of 4f of Nd.
Although it emits light by the 4f-4f transition of electrons, the reason why the emission intensity is higher than that of the conventional light emitting material is that absorption of neodymium ions, large absorption and trivalence without emission can be taken over the wavelength range of emission. It is considered that this is due to the fact that the tetraphosphate having metal ions was used as the base material and neodymium ions, which became the emission center, were activated. Also, L
It is considered that the addition of an alkali metal such as i, Na or K improves the crystallinity of the light emitting material, and this improvement in crystallinity further improves the emission intensity.

【0010】本発明の赤外発光材料は、大きな発光出力
が得られるので、光学的マーキング用発光材料として好
ましい特性を備えている。前記母体を形成する三価のイ
オンとなる元素の種類によって異なるが、特に0.1≦
x≦0.7の範囲の発光材料は大きな発光強度が得られ
る。
Since the infrared light emitting material of the present invention can obtain a large light emission output, it has preferable characteristics as a light emitting material for optical marking. Depending on the kind of the element that becomes the trivalent ion forming the matrix, 0.1 ≦
A large light emission intensity can be obtained with a light emitting material in the range of x ≦ 0.7.

【0011】前記のように、本発明では、三価を取りう
るイオンの濃度xを規定したが、この範囲外では十分満
足しうる発光強度は得られない。この理由は明らかでな
いが、例えば、xが0.05未満では濃度消光により量
子効率が低下し、また、xが0.8超では発光中心であ
るネオジムイオンの濃度が希薄となるため十分な発光が
得られなくなるためであろうと想像される。
As described above, in the present invention, the concentration x of ions capable of assuming trivalence is defined, but if the concentration is out of this range, sufficient emission intensity cannot be obtained. Although the reason for this is not clear, for example, when x is less than 0.05, the quantum efficiency is reduced due to concentration quenching, and when x is more than 0.8, the concentration of neodymium ions, which is the emission center, becomes dilute, so that sufficient emission is achieved. It is imagined that this is because it will not be obtained.

【0012】本発明の発光材料は様々な方法で製造でき
るが、例えば、Nd23 ,Gd23 ,Y23 また
は焼成により容易に酸化物に変化する炭酸化物、硝酸化
物、シュウ酸化物など、およびLi2 CO3 ,NH4
2 PO4 を、Pが化学量論的組成よりも1.5倍以上、
Liが化学量論的組成よりも1.2倍以上過剰となるよ
うに秤量し、十分混合した後、アルミナ製の蓋付坩堝に
充填し、大気中で500〜1000℃、好ましくは60
0℃〜900℃で約0.5時間〜20時間程度にわたっ
て焼成すればよい。その他、水熱合成法などによっても
得られるであろう。また、副次的ではあるが、本発明に
よる発光材料は坩堝から取り出す際、水に浸すだけで粉
体として得ることが出来るので、従来の発光材料(例え
ば、LiNdP412)とは異なり熱水による煮沸が不
要である。
The luminescent material of the present invention can be produced by various methods. For example, Nd 2 O 3 , Gd 2 O 3 , Y 2 O 3 or carbonates, nitric oxides, and sulphurs which easily change into oxides by firing. Oxides, etc., and Li 2 CO 3 , NH 4 H
2 PO 4 , P is 1.5 times more than stoichiometric composition,
Li was weighed so as to be 1.2 times or more in excess of the stoichiometric composition, sufficiently mixed, and then filled in a crucible with a lid made of alumina, and 500 to 1000 ° C., preferably 60 in the atmosphere.
The firing may be performed at 0 ° C. to 900 ° C. for about 0.5 hours to 20 hours. In addition, it may be obtained by a hydrothermal synthesis method. Further, there is a secondary, but when the light emitting material according to the invention is taken out from the crucible, since only immersion in water can be obtained as a powder, conventional light emitting materials (e.g., LiNdP 4 O 12) different from the heat No boiling with water is required.

【0013】図1は、下記の一般式、 LiGdx Nd1-x412 (1) LiYx Nd1-x412 (2) LiGdxx Nd1-2x412 (3) で示される発光材料中の三価をとる全てのイオン中のネ
オジムイオンの濃度と1050nmにおける発光強度の
相対値との関係を示す特性図である。図示されているよ
うに、母体を形成する三価のイオンとしてGd3+,Y3+
を用いると、Nd3+イオンが高濃度のとき、Nd3+イオ
ンが発光材料中にある三価のイオンの全量であるときよ
りも発光は低下している。恐らくは、このとき同時に発
光材料の結晶性が変化しているために、濃度消光による
量子効率の低下が増大して発光が低下したものと考えら
れる。しかし、Nd3+イオンの濃度の減少に伴い、発光
強度は増加する。その理由として、例えば、濃度消光に
よる量子効率の低下が減少した結果、大きな発光が得ら
れたものと考えられる。更に、Nd3+イオン濃度が減少
すると、再び発光強度は低下する。この理由は、恐ら
く、発光中心であるNd 3+イオンの濃度が減少した結果
であろう。そして、Gd3+またはY3+イオンの何れか一
方のみを、発光材料の母体として三価をとりうるイオン
として用いた場合、Nd3+イオンの濃度が0.7近辺の
とき最も強い発光が得られ、また、Gd3+およびY3+
オンを等量混合した場合は、Gd3+およびY3+イオンが
共に0.2である、つまり、Nd3+イオンが0.6近辺
のとき最も強い発光強度が得られることが判明した。従
って、前記(1) の一般式、LiGdx Nd1-x412
で示される組成の発光材料の場合、好ましいxの範囲
は、0.1≦x≦0.6、最も好ましくは、0.2≦x
≦0.5であり、前記(2) の一般式、LiYx Nd1-x
412で示される組成の発光材料の場合、好ましいx
の範囲は、0.2≦x≦0.6、最も好ましくは、0.
25≦x≦0.5であり、前記(3) の一般式、LiGd
xx Nd1-2x412で示される組成の発光材料の場
合、好ましいxの範囲は、0.2≦x≦0.6、最も好
ましくは、0.3≦x≦0.5である。
FIG. 1 shows the following general formula: LiGdx Nd1-x PFour O12 (1) LiYx Nd1-x PFour O12 (2) LiGdx Yx Nd1-2xPFour O12 The ions in all trivalent ions in the luminescent material shown in (3)
Of the concentration of odymium ions and the emission intensity at 1050 nm
It is a characteristic view which shows the relationship with a relative value. Is shown
Gd as a trivalent ion forming the mother3+, Y3+
Is used, Nd3+When the concentration of ions is high, Nd3+Io
Is the total amount of trivalent ions in the luminescent material.
The light emission is decreasing. Probably at this time
Due to the change in crystallinity of the optical material,
It is thought that the decrease in quantum efficiency increased and the emission decreased.
Be done. But Nd3+Light emission with decreasing ion concentration
Strength increases. The reason is that, for example,
As a result of the decrease in quantum efficiency due to
It is thought to have been Furthermore, Nd3+Ion concentration decreases
Then, the emission intensity again decreases. The reason for this is probably
Nd, which is the emission center 3+Result of reduced ion concentration
Will. And Gd3+Or Y3+One of the ionic
Only one of them is an ion that can take trivalent as the matrix of the light emitting material.
When used as Nd3+Ion concentration around 0.7
When the strongest light emission is obtained and Gd3+And Y3+I
When mixing equal amounts of ON, Gd3+And Y3+Ion
Both are 0.2, that is, Nd3+Ions around 0.6
It was found that the strongest luminescence intensity was obtained at. Servant
Thus, the general formula of (1) above, LiGdx Nd1-x PFour O12
In the case of a light emitting material having a composition shown by
Is 0.1 ≦ x ≦ 0.6, most preferably 0.2 ≦ x
≦ 0.5, the general formula of (2) above, LiYx Nd1-x
PFour O12In the case of a light emitting material having a composition shown by
The range is 0.2 ≦ x ≦ 0.6, most preferably 0.
25 ≦ x ≦ 0.5, the general formula (3) above, LiGd
x Yx Nd1-2xPFour O12In the case of a luminescent material having the composition shown by
In this case, the preferable range of x is 0.2 ≦ x ≦ 0.6, and the most preferable range is
It is preferable that 0.3 ≦ x ≦ 0.5.

【0014】図2は、一般式、LiGdxy Nd
1-x-y412(但し、x+y=0.3である)で示さ
れる発光材料中のGd3+イオンおよびY3+イオンの濃度
と1050nmにおける発光強度の相対値の関係を示す
特性図である。この特性図から明らかなように、複数の
三価をとるイオンで母体を形成したときも、従来の発光
材料(例えば、LiNdP412)に比べて強い発光が
得られる。一般的に、式、LiGdxy Nd1-x-y
412で示される組成の発光材料の場合、0.1≦x+
y≦0.8、好ましくは、0.2≦x+y≦0.6、最
も好ましくは、0.3≦x+y≦0.5であり、かつ、
0.001≦y/(x+y)≦0.999、好ましく
は、0.1≦y/(x+y)≦0.9、最も好ましく
は、0.3≦y/(x+y)≦0.7である。
FIG. 2 shows the general formula LiGd x Y y Nd.
A characteristic diagram showing the relationship between the concentration of Gd 3+ ions and Y 3+ ions in the light-emitting material represented by 1-xy P 4 O 12 (where x + y = 0.3) and the relative value of the emission intensity at 1050 nm. Is. As is clear from this characteristic diagram, even when the matrix is formed with a plurality of trivalent ions, stronger light emission is obtained as compared with the conventional light emitting material (for example, LiNdP 4 O 12 ). In general, the formula LiGd x Y y Nd 1-xy P
In the case of a light emitting material having a composition represented by 4 O 12 , 0.1 ≦ x +
y ≦ 0.8, preferably 0.2 ≦ x + y ≦ 0.6, most preferably 0.3 ≦ x + y ≦ 0.5, and
0.001 ≦ y / (x + y) ≦ 0.999, preferably 0.1 ≦ y / (x + y) ≦ 0.9, and most preferably 0.3 ≦ y / (x + y) ≦ 0.7. .

【0015】[0015]

【実施例】以下、実施例により本発明の発光材料の製造
および特性を例証する。
EXAMPLES Hereinafter, the production and characteristics of the light emitting material of the present invention will be illustrated by examples.

【0016】実施例1 Nd23 4.63g,Gd23 1.53g,Li2
CO3 2.33gおよびNH42 PO4 28.99g
からなる粉末原料を十分に混合し、アルミナ製の蓋付坩
堝に充填した後、電気炉に入れ、室温から400℃まで
一定昇温速度で2時間、400℃から700℃まで一定
昇温速度で1時間昇温し、しかる後、700℃で2時間
焼成した。焼成終了後、直ちに電気炉から取り出して空
気中で放冷させた。その後、坩堝中に注水し、1N硝酸
で洗浄し、次いで水洗し、最後に乾燥させて目的の発光
材料を得た。得られた発光材料の組成はLiGd0.3
0.7412であり、その平均粒径は6μmであっ
た。
Example 1 Nd 2 O 3 4.63 g, Gd 2 O 3 1.53 g, Li 2
2.33 g CO 3 and 28.99 g NH 4 H 2 PO 4
After thoroughly mixing the powdered raw material consisting of, and filling the crucible with a lid made of alumina into an electric furnace, the temperature is raised from room temperature to 400 ° C at a constant heating rate for 2 hours, and from 400 ° C to 700 ° C at a constant heating rate. The temperature was raised for 1 hour, and then, firing was performed at 700 ° C. for 2 hours. Immediately after the firing was completed, it was taken out of the electric furnace and allowed to cool in the air. Then, water was poured into the crucible, washed with 1N nitric acid, then washed with water, and finally dried to obtain a desired light emitting material. The composition of the obtained light emitting material is LiGd 0.3 N
d 0.7 P 4 O 12 , and the average particle size was 6 μm.

【0017】実施例2 Nd23 4.63g,Y23 1.42g,Li2
3 2.33gおよびNH42 PO4 28.99gか
らなる粉末原料を十分に混合し、アルミナ製の蓋付坩堝
に充填した後、電気炉に入れ、室温から400℃まで一
定昇温速度で2時間、400℃から700℃まで一定昇
温速度で1時間昇温し、しかる後、700℃で2時間焼
成した。焼成終了後、直ちに電気炉から取り出して空気
中で放冷させた。その後、坩堝中に注水し、1N硝酸で
洗浄し、次いで水洗し、最後に乾燥させて目的の発光材
料を得た。得られた発光材料の組成はLiY0.3 Nd
0.7412であり、その平均粒径は6μmであった。
Example 2 4.63 g of Nd 2 O 3 , 1.42 g of Y 2 O 3 and Li 2 C
A powder raw material consisting of 2.33 g of O 3 and 28.99 g of NH 4 H 2 PO 4 was thoroughly mixed and charged into an alumina crucible with a lid, which was then placed in an electric furnace and heated at a constant rate from room temperature to 400 ° C. The temperature was raised from 400 ° C. to 700 ° C. for 1 hour at a constant heating rate for 2 hours, and thereafter, firing was performed at 700 ° C. for 2 hours. Immediately after the firing was completed, it was taken out of the electric furnace and allowed to cool in the air. Then, water was poured into the crucible, washed with 1N nitric acid, then washed with water, and finally dried to obtain a desired light emitting material. The composition of the obtained light emitting material is LiY 0.3 Nd.
It was 0.7 P 4 O 12 , and its average particle size was 6 μm.

【0018】実施例3 Nd23 4.24g,Gd23 1.52g,Y2
3 0.95g,Li2CO3 2.33gおよびNH42
PO4 28.99gからなる粉末原料を十分に混合
し、アルミナ製の蓋付坩堝に充填した後、電気炉に入
れ、室温から400℃まで一定昇温速度で2時間、40
0℃から700℃まで一定昇温速度で1時間昇温し、し
かる後、700℃で2時間焼成した。焼成終了後、直ち
に電気炉から取り出して空気中で放冷させた。その後、
坩堝中に注水し、1N硝酸で洗浄し、次いで水洗し、最
後に乾燥させて目的の発光材料を得た。得られた発光材
料の組成はLiGd0.20.2 Nd0.6412であ
り、その平均粒径は6μmであった。
Example 3 Nd 2 O 3 4.24 g, Gd 2 O 3 1.52 g, Y 2 O
3 0.95 g, Li 2 CO 3 2.33 g and NH 4 H 2
A powder raw material consisting of 28.99 g of PO 4 was thoroughly mixed and charged into an alumina crucible with a lid, which was then placed in an electric furnace and heated from room temperature to 400 ° C. at a constant temperature rising rate for 2 hours, 40
The temperature was raised from 0 ° C. to 700 ° C. at a constant heating rate for 1 hour, and then calcined at 700 ° C. for 2 hours. Immediately after the firing was completed, it was taken out of the electric furnace and allowed to cool in the air. afterwards,
Water was poured into the crucible, washed with 1N nitric acid, washed with water, and finally dried to obtain a desired light emitting material. The composition of the obtained light emitting material was LiGd 0.2 Y 0.2 Nd 0.6 P 4 O 12 , and the average particle size was 6 μm.

【0019】比較例 Nd23 7.06g,Li2 CO3 2.33gおよび
NH42 PO4 28.99gからなる粉末原料を十分
に混合し、アルミナ製の蓋付坩堝に充填した後、電気炉
に入れ、室温から400℃まで一定昇温速度で2時間、
400℃から700℃まで一定昇温速度で1時間昇温
し、しかる後、700℃で2時間焼成した。焼成終了
後、直ちに電気炉から取り出して空気中で放冷させた。
その後、坩堝中に注水し、1N硝酸で洗浄し、次いで水
洗し、最後に乾燥させて目的の発光材料を得た。得られ
た発光材料の組成はLiNdP412であり、その平均
粒径は6μmであった。
Comparative Example A powder raw material consisting of 7.06 g of Nd 2 O 3 , 2.33 g of Li 2 CO 3 and 28.99 g of NH 4 H 2 PO 4 was thoroughly mixed and charged into an alumina crucible with a lid. , Put in an electric furnace, and from room temperature to 400 ℃ at a constant temperature rising rate for 2 hours
The temperature was raised from 400 ° C. to 700 ° C. at a constant heating rate for 1 hour, and thereafter, firing was performed at 700 ° C. for 2 hours. Immediately after the firing was completed, it was taken out of the electric furnace and allowed to cool in the air.
Then, water was poured into the crucible, washed with 1N nitric acid, then washed with water, and finally dried to obtain a desired light emitting material. The composition of the obtained light emitting material was LiNdP 4 O 12 , and the average particle size was 6 μm.

【0020】前記の実施例1〜3および比較例で作製さ
れた発光材料を水溶性バインダ樹脂であるポリビニルピ
ロリドンに等重量混合分散し、これを白色樹脂板上に均
一に塗布してテストサンプルを作成した。このサンプル
に発光ダイオード光源から810nmの光線を照射して
発光させ、その光をシリコン光受光素子で受光させ、受
光素子の出力を測定した。結果を図3に示す。図3で
は、比較例で得られた発光材料からなるサンプルのシリ
コン光受光素子の出力を100とした。図3から明らか
なように、実施例で得られた各発光材料は何れも比較例
の発光材料よりも高い発光出力を示す。特に、実施例1
の発光材料の出力は140に達し、最も高かった。
The light emitting materials prepared in Examples 1 to 3 and Comparative Example were mixed and dispersed in an equal weight with polyvinylpyrrolidone which is a water-soluble binder resin, and this was uniformly coated on a white resin plate to give a test sample. Created. This sample was irradiated with a light beam of 810 nm from a light emitting diode light source to emit light, and the light was received by a silicon light receiving element, and the output of the light receiving element was measured. The results are shown in Fig. 3. In FIG. 3, the output of the silicon light receiving element of the sample made of the light emitting material obtained in the comparative example is set to 100. As is clear from FIG. 3, each of the light emitting materials obtained in the examples shows higher light emission output than the light emitting materials of the comparative examples. In particular, Example 1
The output of the luminescent material reached 140, which was the highest.

【0021】[0021]

【発明の効果】以上説明したように、本発明の発光材料
は、従来から光学的マーキング用発光材料として用いら
れてきたLiNdP412よりも遥かに高い発光出力を
示すので、カードリーダなどで用いる光学的マーキング
用発光材料として特に優れている。
As described above, the light emitting material of the present invention exhibits a much higher light emission output than LiNdP 4 O 12, which has been conventionally used as a light emitting material for optical marking. It is particularly excellent as a light emitting material for optical marking used.

【図面の簡単な説明】[Brief description of drawings]

【図1】LiGdx Nd1-x412,LiYx Nd
1-x412およびLiGdxx Nd1-2x412
示される発光材料の1050nmにおける発光強度の相
対値を示す特性図である。
FIG. 1 LiGd x Nd 1-x P 4 O 12 , LiY x Nd
Is a characteristic diagram showing relative values of emission intensity at 1050nm of the luminescent material represented by 1-x P 4 O 12 and LiGd x Y x Nd 1-2x P 4 O 12.

【図2】LiGdxy Nd1-x-y412(但し、x
+y=0.3である)で示される発光材料の1050n
mにおける発光強度の相対値を示す特性図である。
FIG. 2: LiGd x Y y Nd 1-xy P 4 O 12 (where x
+ Y = 0.3) of the light-emitting material represented by 1050n
It is a characteristic view which shows the relative value of the light emission intensity in m.

【図3】実施例1〜3および比較例で得られた各発光材
料の発光出力を示す特性図である。
FIG. 3 is a characteristic diagram showing the light emission output of each light emitting material obtained in Examples 1 to 3 and Comparative Example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記の一般式、 ABx Nd1-x412 (式中、AはLi,NaおよびKからなる群から選択さ
れる少なくとも一種類以上のアルカリ金属元素であり、
BはSb,Lu,Ga,Sc,Y,La,Ce,Gd,
In,Bi,AlおよびTlからなる群から選択される
少なくとも一種類以上の三価のイオンとなりうる金属元
素であり、0.05≦x≦0.8である)で示される組
成を有することを特徴とする赤外発光材料。
1. The following general formula: AB x Nd 1-x P 4 O 12 (wherein A is at least one or more alkali metal elements selected from the group consisting of Li, Na and K,
B is Sb, Lu, Ga, Sc, Y, La, Ce, Gd,
A metal element capable of forming at least one kind of trivalent ion selected from the group consisting of In, Bi, Al and Tl, and having a composition represented by 0.05 ≦ x ≦ 0.8). Infrared light emitting material.
【請求項2】 一般式、LiGdx Nd1-x4
12(但し、0.1≦x≦0.6である)で示される組成
を有する請求項1の赤外発光材料。
2. The general formula LiGd x Nd 1-x P 4 O.
The infrared light emitting material according to claim 1, having a composition represented by 12 (provided that 0.1 ≦ x ≦ 0.6).
【請求項3】 一般式、LiYx Nd1-x412(但
し、0.2≦x≦0.6である)で示される組成を有す
る請求項1の赤外発光材料。
3. The infrared light emitting material according to claim 1, having a composition represented by the general formula: LiY x Nd 1-x P 4 O 12 (where 0.2 ≦ x ≦ 0.6).
【請求項4】 一般式、LiGdxy Nd1-x-y4
12(但し、0.1≦x+y≦0.8であり、かつ、
0.001≦y/(x+y)≦0.999である)で示
される組成を有する請求項1の赤外発光材料。
4. The general formula LiGd x Y y Nd 1-xy P 4
O 12 (however, 0.1 ≦ x + y ≦ 0.8, and
The infrared light emitting material according to claim 1, having a composition represented by 0.001 ≦ y / (x + y) ≦ 0.999.
JP5254897A 1993-09-17 1993-09-17 Infrared luminescent material Withdrawn JPH0782553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5254897A JPH0782553A (en) 1993-09-17 1993-09-17 Infrared luminescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5254897A JPH0782553A (en) 1993-09-17 1993-09-17 Infrared luminescent material

Publications (1)

Publication Number Publication Date
JPH0782553A true JPH0782553A (en) 1995-03-28

Family

ID=17271368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5254897A Withdrawn JPH0782553A (en) 1993-09-17 1993-09-17 Infrared luminescent material

Country Status (1)

Country Link
JP (1) JPH0782553A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248052A (en) * 2007-03-30 2008-10-16 National Institute Of Advanced Industrial & Technology Stress-induced light-emitting material for emitting ultraviolet ray, its manufacturing method, and its utilization
CN104403669A (en) * 2014-11-08 2015-03-11 广东省工业技术研究院(广州有色金属研究院) Phosphate fluorescent material suitable for electron beam excitation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248052A (en) * 2007-03-30 2008-10-16 National Institute Of Advanced Industrial & Technology Stress-induced light-emitting material for emitting ultraviolet ray, its manufacturing method, and its utilization
WO2008126466A1 (en) * 2007-03-30 2008-10-23 National Institute Of Advanced Industrial Science And Technology Stress-luminescent material emitting ultraviolet, process for producing the same, and use thereof
CN104403669A (en) * 2014-11-08 2015-03-11 广东省工业技术研究院(广州有色金属研究院) Phosphate fluorescent material suitable for electron beam excitation

Similar Documents

Publication Publication Date Title
US20020194494A1 (en) Article authentication
Song et al. RGB tricolor and multimodal dynamic optical information encryption and decoding for anti-counterfeiting applications
CN104981532A (en) NItride Phosphor And Method For Manufacturing Same
JP2005518475A (en) Anti-Stokes fluorescent material composition
WO2006104081A1 (en) Infra-red light emitting fluorescent substance
US5220166A (en) Information reading method
Xie et al. Synthesis and photoluminescence properties of novel orange-emitting Sm3+-activated LaTiSbO6 phosphors for WLEDs
CN112342021A (en) Near-infrared broadband emission luminescent material, preparation method thereof and luminescent device comprising material
Dogan et al. Comparative studies on thermoluminescence characteristics of non-doped Mg2SiO4 prepared via a solid-state reaction technique and wet-chemical method: An unusual heating rate dependence
CN110511754A (en) A kind of tantalic acid alkali photostimulated phosphor and preparation method thereof
JPH0782553A (en) Infrared luminescent material
CN110590162B (en) Nanocrystalline transparent glass ceramic for multidimensional optical storage and preparation method thereof
CN109111912A (en) A kind of preparation of high power white LED nano-cluster core-shell fluorescent powder
JP3336572B2 (en) Infrared fluorescent substance and method for producing the same
Ozawa et al. Luminescence of Pr+ 3 Activated Y 2 O 2 S
US6139774A (en) Fluorescent substance
RU2610767C2 (en) INFRARED LUMINOPHOR OF COMPLEX ACTION BASED ON YTTRIUM ORTHOPHOSPHATE, ACTIVATED WITH IONS OF Yb3+ AND Er3+
JP3702354B2 (en) Infrared phosphor
JP3418746B2 (en) ink ribbon
JP3438188B2 (en) Infrared light emitting phosphor
JPH10298550A (en) Infrared light-emitting fluorescent material
US3487025A (en) Rare earth tellurate phosphors
CN114479856B (en) Luminescent material, preparation method and application thereof
CN113528131B (en) Rare earth element doped zinc aluminosilicate complex phase light excitation luminescent material and preparation method thereof
WO2024225460A1 (en) Infrared persistently luminescent oxysulfide phosphor and luminescent composition for determining authenticity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128