JPH0781812B2 - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH0781812B2
JPH0781812B2 JP60116388A JP11638885A JPH0781812B2 JP H0781812 B2 JPH0781812 B2 JP H0781812B2 JP 60116388 A JP60116388 A JP 60116388A JP 11638885 A JP11638885 A JP 11638885A JP H0781812 B2 JPH0781812 B2 JP H0781812B2
Authority
JP
Japan
Prior art keywords
axis
pair
contact
rotating shaft
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60116388A
Other languages
Japanese (ja)
Other versions
JPS61275602A (en
Inventor
長 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60116388A priority Critical patent/JPH0781812B2/en
Publication of JPS61275602A publication Critical patent/JPS61275602A/en
Publication of JPH0781812B2 publication Critical patent/JPH0781812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、回転軸を非接触で支持可能な磁気軸受装置に
係り、特に回転軸の位置を高精度に制御可能な磁気軸受
装置に関する。
Description: TECHNICAL FIELD The present invention relates to a magnetic bearing device capable of supporting a rotating shaft in a non-contact manner, and more particularly to a magnetic bearing device capable of controlling the position of the rotating shaft with high accuracy.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に軸体を非接触で軸支する磁気軸受では、その軸体
の変位を常に監視して、この軸体が他の部分に接触しな
いように、軸体変位検出装置でその変化を検出しなが
ら、正常の位置になるように制御するように構成されて
いる。この従来の軸体変位検出装置は、第4図に示すよ
うに、軸体1の端面に非接触で軸体1の渦電流を検出す
るセンサーがXY軸方向に対でX軸センサー2,3(センサ
2は軸1の裏面側)およびY軸センサ4,5として設けら
れている。特にZ軸方向の変化に対しては、Z軸センサ
6,7がその端面8のエッヂ部分に半分突出して設けられ
ている。このような配置に設けられた各々のセンサーに
よって、図示しない各軸の制御用電磁石を駆動制御し
て、軸体の変位を調整する。
Generally, in a magnetic bearing that supports a shaft body in a non-contact manner, the displacement of the shaft body is constantly monitored, and the change is detected by a shaft body displacement detection device so that this shaft body does not come into contact with other parts. , Is configured to control the normal position. In this conventional shaft body displacement detection device, as shown in FIG. 4, a sensor for detecting the eddy current of the shaft body 1 in a non-contact manner with the end face of the shaft body 1 is a pair in the XY axis direction, and X axis sensors 2, 3 (Sensor 2 is provided on the back side of shaft 1) and Y-axis sensors 4 and 5. Especially for changes in the Z-axis direction, the Z-axis sensor
6 and 7 are provided on the edge portion of the end face 8 so as to half project. Each sensor provided in such an arrangement drives and controls a control electromagnet of each axis (not shown) to adjust the displacement of the shaft body.

しかし、上述のような従来装置であっては、Z軸の制御
に、X−Y軸方向の変位の影響が生じたり、軸長の膨張
等による検出誤差のキャンセルが困難であるなどの欠点
があった。
However, in the conventional device as described above, the Z-axis control is affected by displacement in the XY axis directions, and it is difficult to cancel the detection error due to expansion of the axial length. there were.

〔発明の目的〕[Object of the Invention]

本発明は、上述した従来装置を改良したものと、簡単な
構成で、高精度に回転軸の変位を検出することで回転軸
の位置を高精度に制御可能な磁気軸受装置を提供するこ
とを目的とする。
It is an object of the present invention to provide an improved magnetic bearing device which is an improved version of the above-mentioned conventional device and which has a simple structure and is capable of accurately controlling the position of a rotary shaft by detecting the displacement of the rotary shaft with high precision. To aim.

〔発明の概要〕[Outline of Invention]

本発明は、非接触で回転可能に支持される回転軸と、こ
の回転軸の一端部側周囲に対して非接触でかつ前記回転
軸を挟んで対向配置された一対のX1軸センサーと、この
X1軸センサーと前記回転軸の軸心に対して90度の角度で
異なる位置に非接触でかつ前記回転軸を挟んで対向配置
された一対のY1軸センサーと、前記回転軸の他端部側周
囲に非接触でかつ前記X1軸センサーと同一角度の位置に
非接触でかつ前記回転軸を挟んで対向配置された一対の
X2軸センサーと、このX2軸センサーと前記回転軸の軸心
に対して90度の角度で異なる位置に非接触でかつ前記回
転軸を挟んで対向配置された一対のY2軸センサーと、前
記回転軸の両端面エッヂ近傍に各々近接して非接触で配
置された一対のZ軸センサーと、前記X1乃至Z軸センサ
ーの各々の一対の出力の作動出力を得る変換装置と、前
記一対のX1軸センサーの作動出力に基づいて前記回転軸
のX1軸方向の位置を制御するために前記回転軸に対して
非接触でかつ前記X1軸センサーの近傍に配置された一対
のX1軸制御電磁石と、前記一対のY1軸センサーの作動出
力に基づいて前記回転軸のY1軸方向の位置を制御するた
めに前記回転軸に対して非接触でかつ前記Y1軸センサー
の近傍に配置された一対のY1軸制御電磁石と、前記一対
のX2軸センサーの作動出力に基づいて前記回転軸のX2軸
方向の位置を制御するために前記回転軸に対して非接触
でかつ前記X2軸センサーの近傍に配置された一対のX2軸
制御電磁石と、前記一対のY2軸センサーの作動出力に基
づいて前記回転軸のY2軸方向の位置を制御するために前
記回転軸に対して非接触でかつ前記Y2軸センサーの近傍
に配置された一対のY2軸制御電磁石と、前記一対のZ軸
センサーの作動出力に基づいて前記回転軸のZ軸方向の
位置を制御するために前記回転軸に対して非接触に配置
された一対のZ軸制御電磁石とから構成される磁気軸受
装置において、前記一対のZ軸センサーを、前記回転軸
の径より大径のリング状コイルで構成してなることを特
徴とする磁気軸受装置である。
The present invention, a rotating shaft rotatably supported in a non-contact manner, a pair of X1 axis sensors arranged in a non-contact manner with respect to the periphery of one end side of the rotating shaft and facing each other across the rotating shaft,
X1 axis sensor and a pair of Y1 axis sensors that are arranged in a non-contact manner at different positions at an angle of 90 degrees with respect to the axis of the rotating shaft and are opposed to each other with the rotating shaft interposed therebetween, and the other end side of the rotating shaft. A pair of non-contact surroundings and non-contact at a position of the same angle as the X1 axis sensor and opposed to each other with the rotating shaft sandwiched therebetween.
An X2 axis sensor, a pair of Y2 axis sensors that are arranged in a non-contact manner at different positions at an angle of 90 degrees with respect to the axis of the X2 axis sensor and the rotation axis, and that are opposed to each other with the rotation axis interposed therebetween, and the rotation. A pair of Z-axis sensors, which are arranged close to each other in the vicinity of the edges of both ends of the shaft and are in non-contact with each other, a conversion device for obtaining an operation output of each pair of outputs of the X1 to Z-axis sensors, and the pair of X1 axes. A pair of X1 axis control electromagnets arranged in the vicinity of the X1 axis sensor in a non-contact manner with respect to the rotation axis to control the position of the rotation axis in the X1 axis direction based on the operation output of the sensor, A pair of Y1 axis controls arranged in the vicinity of the Y1 axis sensor in non-contact with the rotation axis to control the position of the rotation axis in the Y1 axis direction based on the operation outputs of the pair of Y1 axis sensors. The operation output of the electromagnet and the pair of X2 axis sensors A pair of X2 axis control electromagnets arranged in the vicinity of the X2 axis sensor in non-contact with the rotation axis to control the position of the rotation axis in the X2 axis direction based on the pair of Y2 axis sensors. A pair of Y2 axis control electromagnets arranged in the vicinity of the Y2 axis sensor in non-contact with the rotation axis to control the position of the rotation axis in the Y2 axis direction based on the operation output of Magnetic bearing device comprising a pair of Z-axis control electromagnets arranged in non-contact with the rotary shaft for controlling the position of the rotary shaft in the Z-axis direction based on the operation output of the Z-axis sensor. In the magnetic bearing device, the pair of Z-axis sensors are configured by ring-shaped coils having a diameter larger than the diameter of the rotating shaft.

〔発明の効果〕〔The invention's effect〕

本発明によれば、Z軸方向のセンサをリング状のコイル
を回転軸の、特に両端部エッヂ近傍に設けたことによ
り、X−Y軸方向の変位の影響を受けることなく、かつ
軸長の膨張等による変位も高精度に検出することが可能
となる。
According to the present invention, since the Z-axis direction sensor is provided with the ring-shaped coil near the edge of the rotary shaft, especially at the edges of both ends, the axial length of the sensor is not affected by the displacement in the XY axis direction. Displacement due to expansion or the like can be detected with high accuracy.

〔発明の実施例〕Example of Invention

以下、本発明の実施例について詳細に説明する。第1図
は、本発明の磁気軸受装置の概略の構成を示す図であ
り、被変位検出軸体である磁気浮上回転軸10の周囲に、
この回転軸10のX,Y軸方向の変位を検出する8個のセン
サーコイル11〜18が設けられている。X軸のセンサーコ
イル11〜14はX1軸センサコイル11,12およびX2軸セン
サーコイル13,14として、各々一対で、回転軸10の端部
に近接して設けられている。このX軸のセンサーコイル
11〜14と回転軸10の軸心を中心に90°角度を有して配置
されたY軸のセンサーコイル15〜18は、Y1センサーコ
イル15,16,およびY2センサーコイル17,18として、回転
軸10の端部に近接して設けられている。回転軸10の特
に、両端部のエッヂ部の近くには、リング状のコイルか
らなるZ軸のセンサーコイル21,22が回転軸10の径より
大径にして、回転軸がその軸心方向に貫通できる程度に
近接して設けられている。
Hereinafter, examples of the present invention will be described in detail. FIG. 1 is a diagram showing a schematic configuration of a magnetic bearing device of the present invention, in which a magnetic levitation rotary shaft 10 which is a displacement detection shaft body is surrounded by
Eight sensor coils 11 to 18 for detecting displacements of the rotary shaft 10 in the X and Y axis directions are provided. The X-axis sensor coils 11 to 14 are provided as a pair of X 1- axis sensor coils 11 and 12 and an X 2- axis sensor coil 13 and 14, respectively, in a pair in proximity to the end of the rotary shaft 10. This X-axis sensor coil
11 to 14 and Y-axis sensor coils 15 to 18 arranged at an angle of 90 ° around the axis of the rotary shaft 10 are Y 1 sensor coils 15 and 16, and Y 2 sensor coils 17 and 18, respectively. It is provided close to the end of the rotary shaft 10. The Z-axis sensor coils 21 and 22 each having a ring-shaped coil are made to have a diameter larger than that of the rotary shaft 10, particularly in the vicinity of the edges of the rotary shaft 10, so that the rotary shaft extends in the axial direction. They are provided so close to each other that they can penetrate.

また、回転軸10の周囲には、上述した各々センサーコイ
ル11〜18によって検出された信号によって回転軸10の動
きを駆動制御する制御電磁石23〜28および31,32が設け
られている。この制御電磁石23〜30は、X1軸センサー
コイル11,12に対しては、X1軸制御電磁石23,24が各々
対応して設けられており、同様にX2軸センサーコイル1
3,14の対はX2軸制御電磁石25,26が、Y1軸センサーコ
イル15,16の対にはY1軸制御電磁石27,28が、そしてY2
軸センサーコイル17,18の対にY2軸制御電磁石29,30が
それぞれ対応して設けられている。尚、Z軸センサーコ
イル21,22に対応するZ軸制御電磁石31,32は、第1図で
は図示しないが、回転軸10の軸心方向の動きを制御する
ように設けられている。
Further, control electromagnets 23 to 28 and 31, 32 for driving and controlling the movement of the rotary shaft 10 are provided around the rotary shaft 10 by the signals detected by the sensor coils 11 to 18 described above. The control electromagnets 23-30 are, X 1 relative to the axis sensor coils 11 and 12 are provided corresponding each X 1 axis control electromagnets 23 and 24, as well X 2 axis sensor coils 1
The pair of 3,14 has X 2 axis control electromagnets 25,26, the pair of Y 1 axis sensor coils 15,16 has Y 1 axis control electromagnets 27,28, and Y 2
Y 2 axis control electromagnets 29, 30 are provided corresponding to the pair of axis sensor coils 17, 18, respectively. Although not shown in FIG. 1, the Z-axis control electromagnets 31, 32 corresponding to the Z-axis sensor coils 21, 22 are provided so as to control the movement of the rotary shaft 10 in the axial direction.

上述したセンサーコイルおよび制御電磁石の具体的な配
置は、第2図に一端面から見た場合を示すと、基台33に
固定されたセンサー類固定治具34の周囲に、X軸センサ
ーコイル(例えばX1軸センサーコイル11,12)が左右
に、Y軸センサーコイル(例えばY1軸センサーコイル2
7,28)が上下方向に、それらの検出面を内方にして、固
設されている。制御電磁石23,24,27,28はそれぞれセン
サーコイルに近接して設けられている。Z軸センサーコ
イル21,22は、第2図ではコイル21のみを示すが、固定
治具34の内側に沿って固定されている。
The specific arrangement of the above-mentioned sensor coil and control electromagnet is as shown in FIG. 2 when viewed from one end face, and the X-axis sensor coil (around the sensor fixing jig 34 fixed to the base 33). For example, the X 1- axis sensor coils 11 and 12 are arranged on the left and right, and the Y-axis sensor coil (for example, the Y 1- axis sensor coil 2).
7,28) are fixed vertically with their detection surfaces facing inward. The control electromagnets 23, 24, 27, 28 are provided near the sensor coils, respectively. The Z-axis sensor coils 21 and 22 are fixed along the inside of the fixing jig 34, although only the coil 21 is shown in FIG.

センサーコイルおよび制御電磁石は、第3図に示すよう
な回路の変換器Mおよび制御増幅器Aに接続して動作す
る。一組のセンサーコイルに接続されている回路M,A
は、各組共に同種の回路構成となっているので、X1
の回路のみ示し、他はその説明を省略する。X1軸セン
サーコイル11,12はブリッヂ基準電源35と一対のブリッ
ヂ固定素子36,37とによってブリッヂ回路を構成してい
る。ブリッヂの出力にはその信号を検波する検波器38,3
9が接続され検波された信号は、固定素子36,37の個体差
を補正する補正抵抗40で所定の値に補正して、差動増幅
器41に入力する。この差動増幅器41の出力信号は、制御
増幅器Aを介してX1軸制御電磁石23,24を付勢して、軸
体10の変化を修正するために得られる軸体変位検出され
たものとなる。なお、制御増幅器Aは特性及び制御コン
トロール部42と電流増幅器43とで主に構成されている。
また、制御電磁石23,24は、軸体10を同一方向に作用さ
せるように構成されている。
The sensor coil and control electromagnet operate by connecting to the converter M and control amplifier A of the circuit as shown in FIG. Circuit M, A connected to a pair of sensor coils
Since each group has the same type of circuit configuration, only the circuit of the X 1 axis is shown, and the description of the others is omitted. The X 1- axis sensor coils 11 and 12 form a bridge circuit by the bridge reference power source 35 and a pair of bridge fixing elements 36 and 37. The bridge output has a detector 38,3 that detects the signal.
The signal detected by connecting 9 is corrected to a predetermined value by the correction resistor 40 that corrects the individual difference between the fixed elements 36 and 37, and is input to the differential amplifier 41. The output signal of the differential amplifier 41 is detected as a shaft body displacement obtained for correcting the change of the shaft body 10 by energizing the X 1 -axis control electromagnets 23, 24 via the control amplifier A. Become. The control amplifier A is mainly composed of a characteristic / control control section 42 and a current amplifier 43.
Further, the control electromagnets 23, 24 are configured so that the shaft body 10 acts in the same direction.

2,Y1,Y2Z軸についてもX1軸と同様に構成され、それ
ぞれのセンサーで検出した信号を変換器Mを介ししてそ
れぞれの軸に対応した変位量を出力し、この出力した各
々の変位量によってそれぞれの軸の制御電磁石を制御増
幅器Aで制御して、無接触の回転軸受を構成するのであ
る。
The X 2 , Y 1 , Y 2 Z axes are also constructed in the same manner as the X 1 axis, and the signals detected by the respective sensors are output via the converter M to the displacement amounts corresponding to the respective axes, and this output is output. The control electromagnets of the respective axes are controlled by the control amplifier A according to the respective displacement amounts, and a non-contact rotary bearing is constructed.

以上のように本発明を例えば回転軸受の5軸制御に用い
たとすると、特にZ方向の制御がリング状センサーコイ
ルで構成しているので、極めて簡単な構造で、しかも確
実に軸体の変位を制御することができる。
As described above, if the present invention is used for, for example, 5-axis control of a rotary bearing, the Z-direction control is constituted by a ring-shaped sensor coil, so that the displacement of the shaft body can be surely made with a very simple structure. Can be controlled.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す原理説明図、第2図は本
発明の実施例を示す具体的構成の断面図、第3図は本発
明の実施例の回路図、第4図は従来技術を示す説明図で
ある。 11,12……X1軸センサーコイル、13,14……X2軸センサ
ーコイル、15,16……Y1軸センサーコイル、17,18……
2軸センサーコイル、Z軸センサーコイル、M……変
換器、35……ブリッヂ基準電源、36,37……ブリッヂ固
定素子、38,39……検波器、41……差動増幅器。
1 is an explanatory view of the principle of an embodiment of the present invention, FIG. 2 is a cross-sectional view of a concrete configuration showing the embodiment of the present invention, FIG. 3 is a circuit diagram of the embodiment of the present invention, and FIG. It is explanatory drawing which shows a prior art. 11,12 …… X 1- axis sensor coil, 13,14 …… X 2- axis sensor coil, 15,16 …… Y 1- axis sensor coil, 17,18 ……
Y 2- axis sensor coil, Z-axis sensor coil, M …… converter, 35 …… Bridge reference power supply, 36,37 …… Bridge fixed element, 38,39 …… Detector, 41 …… Differential amplifier.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非接触で回転可能に支持される回転軸と、
この回転軸の一端部側周囲に対して非接触でかつ前記回
転軸を挟んで対向配置された一対のX1軸センサーと、こ
のX1軸センサーと前記回転軸の軸心に対して90度の角度
で異なる位置に非接触でかつ前記回転軸を挟んで対向配
置された一対のY1軸センサーと、前記回転軸の他端部側
周囲に非接触でかつ前記X1軸センサーと同一角度の位置
に非接触でかつ前記回転軸を挟んで対向配置された一対
のX2軸センサーと、このX2軸センサーと前記回転軸の軸
心に対して90度の角度で異なる位置に非接触でかつ前記
回転軸を挟んで対向配置された一対のY2軸センサーと、
前記回転軸の両端面エッヂ近傍に各々近接して非接触で
配置された一対のZ軸センサーと、前記X1乃至Z軸セン
サーの各々の一対の出力の作動出力を得る変換装置と、
前記一対のX1軸センサーの作動出力に基づいて前記回転
軸のX1軸方向の位置を制御するために前記回転軸に対し
て非接触でかつ前記X1軸センサーの近傍に配置された一
対のX1軸制御電磁石と、前記一対のY1軸センサーの作動
出力に基づいて前記回転軸のY1軸方向の位置を制御する
ために前記回転軸に対して非接触でかつ前記Y1軸センサ
ーの近傍に配置された一対のY1軸制御電磁石と、前記一
対のX2軸センサーの作動出力に基づいて前記回転軸のX2
軸方向の位置を制御するために前記回転軸に対して非接
触でかつ前記X2軸センサーの近傍に配置された一対のX2
軸制御電磁石と、前記一対のY2軸センサーの作動出力に
基づいて前記回転軸のY2軸方向の位置を制御するために
前記回転軸に対して非接触でかつ前記Y2軸センサーの近
傍に配置された一対のY2軸制御電磁石と、前記一対のZ
軸センサーの作動出力に基づいて前記回転軸のZ軸方向
の位置を制御するために前記回転軸に対して非接触に配
置された一対のZ軸制御電磁石とから構成される磁気軸
受装置において、 前記一対のZ軸センサーを、前記回転軸の径より大径の
リング状コイルで構成してなることを特徴とする磁気軸
受装置。
1. A rotary shaft rotatably supported in a non-contact manner,
A pair of X1 axis sensors which are arranged in a non-contact manner with respect to the periphery of one end side of the rotating shaft and are opposed to each other with the rotating shaft interposed therebetween, and an angle of 90 degrees with respect to the X1 axis sensor and the axis of the rotating shaft. A pair of Y1 axis sensors which are non-contact at different positions and are opposed to each other with the rotary shaft interposed therebetween, and the non-contact around the other end side of the rotary shaft and the same angle position as the X1 axis sensor. A pair of X2 axis sensors that are in contact and are opposed to each other with the rotating shaft interposed therebetween, and the rotating shaft is non-contact at different positions at an angle of 90 degrees with respect to the X2 axis sensor and the axis of the rotating shaft. A pair of Y2 axis sensors placed opposite to each other,
A pair of Z-axis sensors arranged in proximity to each other in the vicinity of the edges of both ends of the rotating shaft in a non-contact manner; and a converter for obtaining a pair of outputs of the X1 to Z-axis sensors.
A pair of X1 axes arranged in the vicinity of the X1 axis sensor in non-contact with the rotation axis to control the position of the rotation axis in the X1 axis direction based on the operation output of the pair of X1 axis sensors. A control electromagnet and, in order to control the position of the rotary shaft in the Y1 axis direction based on the operation outputs of the pair of Y1 shaft sensors, are arranged in non-contact with the rotary shaft and in the vicinity of the Y1 shaft sensor. A pair of Y1 axis control electromagnets, and X2 of the rotary shaft based on the operation output of the pair of X2 axis sensors.
A pair of X2s arranged in non-contact with the rotating shaft and in the vicinity of the X2-axis sensor for controlling the axial position.
An axis control electromagnet and, in order to control the position of the rotating shaft in the Y2 axis direction based on the operation outputs of the pair of Y2 axis sensors, are arranged in non-contact with the rotating shaft and in the vicinity of the Y2 axis sensor. A pair of Y2-axis control electromagnets and a pair of Z
A magnetic bearing device comprising a pair of Z-axis control electromagnets arranged in non-contact with the rotary shaft for controlling the position of the rotary shaft in the Z-axis direction based on an operation output of a shaft sensor, A magnetic bearing device characterized in that the pair of Z-axis sensors are constituted by ring-shaped coils having a diameter larger than the diameter of the rotating shaft.
JP60116388A 1985-05-31 1985-05-31 Magnetic bearing device Expired - Lifetime JPH0781812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60116388A JPH0781812B2 (en) 1985-05-31 1985-05-31 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60116388A JPH0781812B2 (en) 1985-05-31 1985-05-31 Magnetic bearing device

Publications (2)

Publication Number Publication Date
JPS61275602A JPS61275602A (en) 1986-12-05
JPH0781812B2 true JPH0781812B2 (en) 1995-09-06

Family

ID=14685784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60116388A Expired - Lifetime JPH0781812B2 (en) 1985-05-31 1985-05-31 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH0781812B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159157A (en) * 1994-12-05 1996-06-18 Seiko Seiki Co Ltd Magnetic bearing device

Also Published As

Publication number Publication date
JPS61275602A (en) 1986-12-05

Similar Documents

Publication Publication Date Title
US7834618B2 (en) Position sensor system
US4942321A (en) Radial magnetic bearing system
JP3403730B2 (en) Magnetic bearing regulator
JPH0374927B2 (en)
JP4250418B2 (en) Instrumented bearings for steering wheels
JPH0263011A (en) Rotation detecting mechanism for laser scanner
JP2741388B2 (en) Relative displacement detector
JPH0781812B2 (en) Magnetic bearing device
US5043660A (en) Signal processing circuit for movement tracking encoder including positive and negative feedback means to reduce distortion
JP3689439B2 (en) Magnetic bearing device
JPH04212013A (en) Angular velocity detector
JPH11264779A (en) Torque and thrust detecting device
JPS63158433A (en) Torque sensor
JPH0231020A (en) Magnetic bearing device
JPH02201101A (en) Displacement sensor for magnetic bearing
JPS6220408B2 (en)
JP3174864B2 (en) Magnetic bearing control device
JP2008039673A (en) Magnetic encoder system
JPS63153439A (en) Torque sensor
JP2519537Y2 (en) Magnetic bearing control circuit
JP3183913B2 (en) Linear motion support device
US6992416B2 (en) Bearing device
JPH07139546A (en) Magnetic bearing device
JPH06102002A (en) Position detector
JPH05122891A (en) Linear dynamic magnetic bearing device