JPH0780811A - Production of concrete or mortar for immediate removal after pressurization vibration molding - Google Patents

Production of concrete or mortar for immediate removal after pressurization vibration molding

Info

Publication number
JPH0780811A
JPH0780811A JP23012393A JP23012393A JPH0780811A JP H0780811 A JPH0780811 A JP H0780811A JP 23012393 A JP23012393 A JP 23012393A JP 23012393 A JP23012393 A JP 23012393A JP H0780811 A JPH0780811 A JP H0780811A
Authority
JP
Japan
Prior art keywords
water
mortar
concrete
kneading
vibration molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23012393A
Other languages
Japanese (ja)
Inventor
Mitsuaki Sukekiyo
満昭 助清
Kazuhiro Minamidate
和宏 南舘
Minoru Nishimura
稔 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP23012393A priority Critical patent/JPH0780811A/en
Publication of JPH0780811A publication Critical patent/JPH0780811A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To prevent deformation of a molded piece at the time of removal by a method wherein a water absorptive resin kept in a granular form even after it absorbs water and swells is in a fluid state in a water-absorbing state, and handleable resin-mixed water is used as kneading water in producing a concrete for immediate removal after pressurization CONSTITUTION:A water absorptive resin that is not gelled but kept in a granular form even after it absorbs water and swells is dispersed in kneading water, whereby a part of the kneading water is previously absorbed in the water absorptive resin. Therefore, in kneading materials, such as a cement and a fine aggregate, by a mixer, granulation is prevented. Namely, in the resin in a water-absorbing state in the kneading water, water absorbed at the time of kneading under an alkali atmosphere is temporarily retained, and the same effect as that of reducing an apparent unit water amount is obtained. Thus, granulation can be remarkably reduced. At the time of pressurization vibration molding, the retained water is released, and kneaded material can be ideally loaded. At the time of frame removal, a molded piece is hardly deformed and burred.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加圧振動成形即時脱型用
コンクリート又はモルタル、即ち、セメント系調合物の
製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing a concrete or mortar, that is, a cement-based compound for pressure vibration molding immediate demolding.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】超硬練
りである即時脱型用コンクリート又はモルタルにおけ
る、高強度化を行う従来技術及び課題は、次のとおりで
ある。
2. Description of the Related Art The prior art and problems for increasing the strength of concrete or mortar for immediate demolding, which is a superhard kneading, are as follows.

【0003】(1)配合及び混和材による方法 水・結合材比の低減 加圧振動成形即時脱型コンクリート及びモルタルは、加
圧振動形成後の脱型の際の自重による変形、ダレやバリ
を抑制するため、バサバサの湿った砂状のものを用いる
必要がある。その配合において単位水量を多くすると、
成形体の空隙率は減少するが、加圧振動形成後の脱型の
際、自重による変形、ダレやバリを生じるという不具合
を生じる。逆に単位水量を少なくすると、混練物は乾燥
気味となり、加圧振動成形を行なっても締固まらず空隙
率が大きくなる。締固め性がよく成形体の空隙率を小さ
くでき、かつ脱型時の成形体の変形、ダレ、バリの発生
を抑制できる単位水量は狭い範囲に限られる。
(1) Method by blending and admixture Reduction of water / binder ratio Immediate demolding of pressure vibration molded concrete and mortar suffer from deformation, sag and burrs due to their own weight during demolding after pressure vibration formation. To control, it is necessary to use damp, sandy material. Increasing the unit water content in the formulation,
Although the porosity of the molded body is reduced, when the mold is released after the pressure vibration is formed, there is a problem that deformation due to its own weight, sagging, and burrs occur. On the contrary, when the unit water amount is reduced, the kneaded product becomes dry and the porosity increases without being compacted even when the pressure vibration molding is performed. The unit amount of water, which has good compaction property, can reduce the porosity of the molded body, and can suppress the deformation, sag, and burr of the molded body at the time of demolding, is limited to a narrow range.

【0004】コンクリート又はモルタルを高強度化する
ための最も効果的で一般的な方法は、成形体の空隙率を
小さくできる充填性に優れた状態で、できるだけ水結合
材比を減少させることである。しかし、単純に、単位水
量を減少させたり、単位セメント量の増加を行うだけで
は、水結合材比は低減できても混練物は乾燥気味とな
り、成形後の空隙率が大きいため、成形体を効果的に高
強度化することはできない。
The most effective and general method for strengthening concrete or mortar is to reduce the water-binder ratio as much as possible with excellent filling properties so that the porosity of the molded body can be reduced. . However, simply by decreasing the unit water amount or increasing the unit cement amount, the kneaded product becomes dry even if the water binder ratio can be reduced, and the porosity after molding is large, so the molded body is It cannot be effectively strengthened.

【0005】加圧振動成形により、成形体の空隙率を小
さくし、かつ水結合材比を低減させるには、減水剤を用
いることが不可欠となる。しかし、減水剤を用い、水結
合材比を低減した場合、自重による脱型時の変形を抑制
するためにできるだけ少ない単位水量とし、かつ混練物
が乾燥気味にならず、締固め可能で成形体の空隙率を小
さくするに十分な単位水量とすると、ミキサでの材料混
練中に、セメントや細骨材などの微細材料が著しく造粒
するため均質な混練ができないという問題を生じる。特
に、減水剤の添加量を増加させたり、減水性の大きい高
性能減水剤を用いて高強度化を図るほど、混練物中の造
粒塊の発生は顕著になるという問題を生じる。
It is essential to use a water reducing agent in order to reduce the porosity of the molded body and the water binder ratio by the pressure vibration molding. However, when a water-reducing agent is used and the water-binder ratio is reduced, the amount of unit water should be as small as possible in order to suppress deformation at the time of demolding due to its own weight, and the kneaded product does not become dry and compactable and compacted If the unit water amount is sufficient to reduce the porosity of No. 3, the fine material such as cement or fine aggregate is remarkably granulated during the material kneading in the mixer, which causes a problem that homogeneous kneading cannot be performed. In particular, as the addition amount of the water reducing agent is increased or the strength is increased by using the high-performance water reducing agent having a large water reducing property, the problem that the granulated lumps in the kneaded product become remarkable occurs.

【0006】高強度用混和材の使用 加圧振動成形即時脱型用コンクリート又はモルタルの高
強度化に使用される混和材としては、無水せっこう、シ
リカフュームなどの無機質微粉末がある。しかし、それ
らの混和材を用いる場合でも、減水剤を併用し、水結合
材比を小さくしなければ、効果的に高強度化することが
できない。しかも混和材が微粉末であることから、自重
による脱型時の変形を抑制するためにできるだけ少ない
単位水量とし、かつ混練物が乾燥気味にならず、締固め
可能で成形体の空隙率を小さくするに十分な単位水量と
した時の混練物の造粒塊発生は、混和材無使用に比べ
て、より顕著になるという問題を生じる。
Use of high-strength admixture As an admixture used to increase the strength of pressure vibration molding immediate demolding concrete or mortar, there are inorganic fine powders such as anhydrous gypsum and silica fume. However, even when these admixtures are used, the strength cannot be effectively increased unless a water reducing agent is used in combination and the water binder ratio is reduced. Moreover, since the admixture is a fine powder, the unit water content is as small as possible in order to suppress the deformation at the time of demolding due to its own weight, and the kneaded product does not become dry, compaction is possible and the porosity of the compact is small. The generation of agglomerated lumps of the kneaded product when the unit water amount is sufficient to achieve the problem becomes more remarkable than when no admixture is used.

【0007】上記,に示したように、減水剤を用い
水結合材比を低減して高強度化を図った場合、自重によ
る脱型時の変形を抑制するためにできるだけ少ない単位
水量とし、かつ混練物が乾燥気味にならず、締固め可能
で成形体の空隙率を小さくするに十分な単位水量とする
と、ミキサでの材料混練中に、セメントや細骨材などの
微細材料が著しく造粒するという問題が生じる。材料の
造粒の発生に伴い次のような不具合が生じる。
[0007] As shown in the above, when a water-reducing agent is used to reduce the water-binder ratio to achieve high strength, the unit water amount is made as small as possible in order to suppress deformation at the time of demolding due to its own weight, and When the kneaded material does not become dry and can be compacted and the unit water amount is sufficient to reduce the porosity of the molded body, during the material kneading in the mixer, fine materials such as cement and fine aggregate are significantly granulated. The problem arises. The following problems occur with the occurrence of granulation of the material.

【0008】(i) 造粒の発生により、材料を十分に混練
して均質なコンクリート及びモルタルとすることができ
ない。また、造粒塊は、主にセメント等の微粉末材料及
び細骨材からなり、単位セメント量の増加や、シリカフ
ュームなどの微粉末混和材の添加を行っても、造粒塊と
なる量が多く、単位セメント量の増加や微粉末混和材料
の添加が高強度化に効果的に働かない。
(I) Due to the occurrence of granulation, it is not possible to sufficiently knead the materials into homogeneous concrete and mortar. Further, the granulated mass is mainly composed of a fine powder material such as cement and fine aggregate, and even if the unit cement amount is increased or a fine powder admixture such as silica fume is added, the amount of the granulated mass becomes In many cases, the increase in the unit cement amount and the addition of the finely powdered admixture do not work effectively for increasing the strength.

【0009】(ii)造粒塊が発生したコンクリート及びモ
ルタルは加圧振動成形を行っても、造粒しないものに比
べ充填性が悪いため成形体の空隙率は大きく、また大き
な空隙が欠陥として残りやすい。その結果、成形体は強
度性状に劣り、また外観上、空隙が目立ち美観に劣るも
のとなる。
(Ii) Concrete and mortar in which granulated lumps are generated have a large porosity of the molded body even if subjected to pressure vibration molding as compared with those not granulated, and the void ratio of the molded body is large. Easy to remain. As a result, the molded product is inferior in strength properties, and voids are conspicuous in appearance and inferior in aesthetics.

【0010】造粒の発生を低減するためには、単位水量
を大きく減少すればよいが、パサパサで乾燥状態ぎみの
混練物となるため加圧振動成形による締固め性が悪く、
成形体の空隙率が著しく大きくなる、更にセメントの水
和に必要な水が十分に供給されないため強度の発現性が
著しく悪く、高強度な成形体が得られない。
In order to reduce the generation of granulation, the unit amount of water should be greatly reduced, but since the kneaded product is dry and dry, the compaction property by pressure vibration molding is poor,
Since the porosity of the molded product is remarkably increased, and further, the water required for hydration of cement is not sufficiently supplied, the developability of strength is remarkably poor, and a high-strength molded product cannot be obtained.

【0011】逆に、成形体の空隙率を低減し、かつセメ
ントの水和に十分な水を供給する目的で、単位水量を増
加させても、それに伴い、造粒塊の発生量が増加する。
また、単位水量を増加させるに伴い、加圧振動成形後の
脱型時にコンクリート、モルタルの自重による変形が顕
著となり、ダレ、フクレを生じ、成形体として所定の形
状が得られない、また寸法精度に劣る、成形体底部にバ
リを生じる等の製造上の大きな問題が生じる。
On the contrary, even if the unit amount of water is increased for the purpose of reducing the porosity of the molded body and supplying sufficient water for hydration of the cement, the amount of granulated agglomerates also increases accordingly. .
Also, as the unit water volume is increased, the deformation of concrete and mortar due to its own weight becomes noticeable at the time of demolding after pressure vibration molding, causing sagging and blistering, and it is not possible to obtain a predetermined shape as a molded body, and dimensional accuracy Inferior in quality, and burrs are generated on the bottom of the molded body, which causes a serious problem in manufacturing.

【0012】(2)締固めによる方法 本発明を適用する加圧振動成形方法は、比較的低い加圧
力(0.1〜10kgf/cm2 )のもとで、振動成形
(振動数2000〜12000rpm程度、振幅0.2
〜2.0mm程度)を主体に行うものであり、コンクリ
ート又はモルタルを緻密に締固める代表的かつ一般的な
即時脱型締固め方法である。加圧振動条件は従来から研
究され、締固め効果に優れ、工業的に有利な条件がわか
っており、加圧振動条件を変えることで大きな高強度化
を行うことはできず、また工業的に不利となる。
(2) Method by compaction The pressure vibration molding method to which the present invention is applied is vibration molding (frequency 2000 to 12000 rpm) under a relatively low pressure (0.1 to 10 kgf / cm 2 ). Degree, amplitude 0.2
Is about 2.0 mm) and is a typical and general method for instant demolding compaction for compacting concrete or mortar. The pressure vibration condition has been studied so far, and it has been known that it has an excellent compaction effect and is industrially advantageous.By changing the pressure vibration condition, it is not possible to significantly increase the strength. It will be a disadvantage.

【0013】他の即時脱型が可能な締固め方法として
は、高圧プレス成形方法(加圧力10〜500kgf/
cm2 程度)がある。しかし、高圧プレス方法は大きな
能力の油圧装置を必要とし、また、加圧断面積が大きい
もの、成形厚さが厚いものには適用が困難である、粒径
の大きな骨材を使用できない、などの欠点を有する。
As another compaction method capable of immediate demolding, a high-pressure press molding method (pressurizing pressure: 10 to 500 kgf /
cm 2 ). However, the high-pressure pressing method requires a hydraulic device with a large capacity, and it is difficult to apply it to those with a large pressure cross-sectional area and thick molding thickness, and it is not possible to use aggregates with a large particle size. Has the drawback of.

【0014】(3)養生による方法 即時脱型後の成形体を、圧力容器を用いオートクレープ
養生することによって高強度化を図る方法がある。混和
材としてシリカ質微粉末を用いると10%程度の強度増
加が見られるが、この方法は上記(1),(2)の配合
上や成形上の問題を除去した後でないと適用できないも
のである。
(3) Method by Curing There is a method of increasing the strength by subjecting the molded body after immediate mold release to autoclave curing using a pressure vessel. When silica fine powder is used as an admixture, a strength increase of about 10% can be seen, but this method can only be applied after the compounding and molding problems of (1) and (2) above are eliminated. is there.

【0015】(4)成形体の硬化後の含浸処理による方
法 コンクリート又はモルタル硬化体の空隙にポリマー(例
えば、メチルメタアクリレート)や加熱溶融イオウなど
を含浸・充填し、高強度化する方法がある。この方法
は、基材となるコンクリート又はモルタル硬化体の乾
燥、加熱、脱気、含浸などを行うための特殊な設備・工
程を必要とし、かつ含浸剤のコストが高いため、安価に
製品を製造することができないという欠点を有する。
(4) Method by impregnation treatment after hardening of molded body There is a method of impregnating and filling a polymer (for example, methylmethacrylate), heated molten sulfur, or the like into voids of a concrete or mortar cured body to increase strength. . This method requires special equipment and processes for drying, heating, degassing, and impregnating the concrete or mortar hardened material that is the base material, and the cost of the impregnating agent is high, so products can be manufactured at low cost. It has the drawback that it cannot.

【0016】以上のように、減水剤を用い水結合材比を
低減して高強度化をはかる従来の技術では、加圧振動成
形即時脱型に適した成形性及び脱型時の保形性を満足
し、かつ混練時の材料の造粒を抑制し、均質なコンクリ
ート及びモルタル混練物を製造することができなかっ
た。そのため、材料及び配合が持つ性能を生かして、効
果的に高強度化を行うことができなかった。また、造粒
塊による影響で成形体中に大きな空隙が欠陥として生じ
やすいが、それは強度面で不利となるだけではなく、外
観上、美観に優れた製品を製造することができない、と
いう大きな問題であった。
As described above, according to the conventional technique in which the water binder ratio is reduced by using the water-reducing agent to increase the strength, the moldability suitable for the pressure vibration molding immediate mold release and the shape retention property at the time of mold release are obtained. However, it was not possible to produce a homogeneous concrete and mortar kneaded product that satisfies the above requirements and suppresses granulation of the material during kneading. Therefore, it was not possible to effectively increase the strength by taking advantage of the performance of the material and the composition. Also, due to the influence of the granulated mass, large voids are likely to occur as defects in the molded body, but this is not only disadvantageous in terms of strength, but it is also a major problem that it is not possible to manufacture products with excellent appearance and aesthetics. Met.

【0017】しかして、一般的な加圧振動即時脱型方法
で、成形体を含浸処理などの特殊な後処理をすることな
く得られる強度は、圧縮強度で500kgf/cm2
度、曲げ強度で80kgf/cm2 程度が工業的に容易
に製造できる実用上の限界であった。
However, the strength obtained by the general method of immediate release from pressure and vibration without any special post-treatment such as impregnation of the molded body is about 500 kgf / cm 2 in compressive strength and in bending strength. The limit of about 80 kgf / cm 2 was a practical limit that allows easy industrial production.

【0018】本発明は、特殊な即時脱型成形装置を必要
とせず、また成形後に成形体を含浸処理をすることな
く、従来から用いられている一般的な加圧振動即時成形
機を用い、一般的な養生(例えば蒸気養生、オートクレ
ープ養生、自然養生など)でコンクリート又はモルタル
を高強度化できることを特徴とし、減水剤を使用し水結
合材比を低減させ高強度化を行う場合、自重による脱型
時の変形を抑制するためにできるだけ少ない単位水量と
し、かつ混練物が乾燥気味にならず、締固め可能で成形
体の空隙率を小さくするに十分な単位水量とすると、ミ
キサでの材料混練中に、セメントや細骨材などの微細材
料が著しく造粒するため均質な混練ができないという問
題を除去し、均質かつ充填性に優れたコンクリート及び
モルタルが得られ、かつ脱型時の自重による変形やバリ
の発生を抑制できる高強度の加圧振動成形即時脱型用コ
ンクリート又はモルタルを、効率的に、工業的に有利に
製造する方法を提供しようとするものである。
The present invention does not require a special instant demolding apparatus, and does not impregnate the molded body after molding, and uses a conventional pressure vibration immediate molding machine, The feature is that concrete or mortar can be strengthened by general curing (eg steam curing, autoclave curing, natural curing, etc.), and when a water reducing agent is used to reduce the ratio of water binder to increase the strength, self-weight In order to suppress the deformation at the time of demolding due to, the unit water amount is as small as possible, and the kneaded product does not become dry, and the unit water amount is sufficient for compaction and to reduce the porosity of the molded body. During the mixing of materials, the problem that homogeneous materials cannot be mixed because fine materials such as cement and fine aggregate are remarkably granulated is eliminated, and concrete and mortar with excellent homogeneity and filling properties can be obtained. It is intended to provide a method for efficiently and industrially producing a high-strength, pressure-vibration-molded concrete or mortar for immediate demolding that can suppress deformation and burrs due to its own weight during demolding. is there.

【0019】[0019]

【課題を解決するための手段】請求項1の加圧振動成形
即時脱型用コンクリート又はモルタルの製造方法は、セ
メント、骨材、水、混和材、減水剤等からなる加圧振動
成形即時脱型用コンクリート又はモルタルの製造方法に
おいて、吸水膨潤後もゲル化せず粒状を維持する吸水性
樹脂を水に分散・懸濁し、吸水性樹脂が吸水した状態
で、流体状態として取り扱える吸水性樹脂混入水を混練
水として用いることを特徴とする。
A method for producing concrete or mortar for immediate release from pressure vibration molding according to claim 1 is a method for immediate removal from pressure vibration molding including cement, aggregate, water, admixture, water reducing agent and the like. In a method for producing mold concrete or mortar, a water-absorbent resin that does not gel and remains granular after water-swelling is dispersed and suspended in water and mixed with water-absorbent resin that can be handled as a fluid state when the water-absorbent resin absorbs water. It is characterized in that water is used as kneading water.

【0020】請求項2の加圧振動成形即時脱型用コンク
リート又はモルタルの製造方法は、請求項1の方法にお
いて、前記吸水性樹脂混入水が、吸水性樹脂を、混練水
として使用する水における吸水性樹脂の吸水能の1.1
倍〜4.0倍の水に分散・懸濁し、吸水させ、流体状態
として取り扱える吸水性樹脂混入水であることを特徴と
する。
The method for producing concrete or mortar for rapid vibration molding immediate demolding according to claim 2 is the method according to claim 1, wherein the water mixed with the water-absorbent resin is water containing the water-absorbent resin as kneading water. 1.1 Water absorption capacity of water absorbent resin
It is characterized in that it is water mixed with a water-absorbent resin that can be handled as a fluid state by dispersing and suspending it in twice to 4.0 times as much water.

【0021】請求項3の加圧振動成形即時脱型用コンク
リート又はモルタルの製造方法は、請求項1又は2の方
法において、混和材が微粉末無機物質であることを特徴
とする。
According to a third aspect of the present invention, in the method for producing concrete or mortar for pressure vibration molding immediate demolding, in the method of the first or second aspect, the admixture is a fine powder inorganic substance.

【0022】請求項4の加圧振動成形即時脱型用コンク
リート又はモルタルの製造方法は、請求項1ないし3の
いずれか1項に記載の方法において、更に、コンクリー
ト又はモルタル用補強繊維を配合してなることを特徴と
する。
The method for producing concrete or mortar for pressure vibration molding immediate demolding according to claim 4 is the method according to any one of claims 1 to 3, further comprising reinforcing fibers for concrete or mortar. It is characterized by

【0023】[0023]

【作用】加圧振動成形即時脱型用コンクリートやモルタ
ルは、脱型の際の自重による変形、ダレやバリを抑制す
るために、単位水量が少ないバサバサの湿った砂状のも
のを用いる必要がある。しかし、高強度化のために減水
剤を用いた場合、自重による脱型時の変形を抑制するた
めにできるだけ少ない単位水量とし、かつ混練物が乾燥
気味にならず、締固め可能で成形体の空隙率を小さくす
るに十分な単位水量とすると、ミキサでの材料混練中
に、セメントや細骨材などの微細材料が著しく造粒する
ため均質なコンクリートやモルタルを得ることができな
い。造粒を抑制するため単位水量を大きく低減すると、
造粒は少なくなるが、加圧振動成形を行っても締固まら
ず、空隙率がきわめて大きいものとなる、かつセメント
の水和反応に必要な水が不足するため高強度が得られな
い。
[Operation] As for the concrete and mortar for pressure vibration molding immediate demolding, it is necessary to use damp sand with a small amount of water in order to suppress deformation, sagging and burrs due to its own weight during demolding. is there. However, when a water reducing agent is used to increase the strength, the unit water content is as small as possible in order to suppress the deformation at the time of demolding due to its own weight, and the kneaded product does not tend to be dry, and compaction is possible with compaction. If the amount of unit water is sufficient to reduce the porosity, a homogeneous concrete or mortar cannot be obtained because the fine material such as cement or fine aggregate is remarkably granulated during the material kneading in the mixer. If the unit water volume is greatly reduced to suppress granulation,
Although granulation is reduced, even if pressure vibration molding is performed, compaction does not occur, the porosity becomes extremely large, and water required for the hydration reaction of cement is insufficient, so high strength cannot be obtained.

【0024】本発明によれば、吸水膨潤後もゲル化せず
粒状を維持する吸水性樹脂を、混練水中に分散し、あら
かじめ混練水の一部を吸水性樹脂に吸水させておくこと
によって、ミキサで材料を混練する際の、造粒発生を著
しく低減し、材料を均質に混練することができる。混練
水中の吸水した樹脂は、ミキサ内でセメントなどの材料
と混練されると、混練物のアルカリ雰囲気下において、
吸水していた水を徐々に放出するが、混練終了時におい
ても水をすべて放出することなく、一部を保水状態に保
っている。そのため、見かけ上、単位水量を減少させた
のと同じ効果が得られ混練物の造粒は著しく低減する。
また造粒が著しく低減されることにより、材料を均質に
混練することができる。更に、本発明によれば、混練物
を加圧振動成形する際には、混練終了後も吸水性樹脂に
保水されている水の一部が加圧振動成形時に放出され、
混練物の充填性を向上させるため、成形体を低空隙率と
することができる。しかも、加圧振動成形後の脱型の際
の、自重による成形体の変形や底部のバリ発生を低減す
る効果も併せ持つため、製品としての満足できる寸法精
度を持つ高強度な成形体が得られる。
According to the present invention, the water-absorbent resin which does not gel even after water-swelling and swelling is dispersed in the kneading water, and a part of the kneading water is preliminarily absorbed by the water-absorbing resin. It is possible to significantly reduce the generation of granulation when kneading the material with the mixer, and to knead the material uniformly. The water-absorbed resin in the kneading water, when kneaded with a material such as cement in the mixer, in an alkaline atmosphere of the kneaded product,
Although it gradually releases the absorbed water, it does not release all the water at the end of the kneading and keeps part of it in a water retaining state. Therefore, apparently, the same effect as that of reducing the unit amount of water is obtained, and the granulation of the kneaded product is significantly reduced.
Further, since the granulation is remarkably reduced, the materials can be uniformly kneaded. Further, according to the present invention, when pressure-kneading the kneaded product, part of the water retained in the water-absorbent resin even after the kneading is released during the pressure-vibration molding,
In order to improve the filling property of the kneaded product, the molded product can have a low porosity. In addition, it also has the effect of reducing deformation of the molded body due to its own weight and occurrence of burrs at the bottom at the time of demolding after pressure vibration molding, so that a high-strength molded body with satisfactory dimensional accuracy as a product can be obtained. .

【0025】吸水性樹脂は、混練水として使用する水に
おける吸水性樹脂の吸水能の1.1倍〜4.0倍、更に
好ましくは1.1倍〜2.0倍の水に樹脂を分散・懸濁
し、十分吸水させた状態で用いることで本発明の効果が
得られる。吸水性樹脂を吸水能の4.0倍を超えた水に
混入して用いても効果的ではない。また、吸水能の1.
1倍未満の水に混入すると、もはや工業的に流体状態と
しては取り扱えず、作業性が悪く、取り扱いが困難とな
り、更にミキサ内での分散が悪くなる。
The water-absorbent resin is dispersed in water which is 1.1 times to 4.0 times, more preferably 1.1 times to 2.0 times, the water absorbing capacity of the water absorbing resin in water used as kneading water. -The effect of the present invention can be obtained by using in a state of being suspended and sufficiently absorbed water. It is not effective to mix the water absorbent resin with water having a water absorption capacity of more than 4.0 times. In addition, the water absorption capacity of 1.
When mixed with less than 1 time of water, it can no longer be industrially handled as a fluid state, the workability is poor, the handling becomes difficult, and the dispersion in the mixer becomes worse.

【0026】なお、吸水性樹脂には、吸水するとゲル化
するものがあるが、そのような吸水性樹脂では、逆に混
練物の粘性を増加させ、かえって造粒塊の発生を著しく
するため、本発明には用いることはできない。
Although some water-absorbent resins gel when water is absorbed, such water-absorbent resins, on the contrary, increase the viscosity of the kneaded product and, on the contrary, remarkably generate granulated lumps. It cannot be used in the present invention.

【0027】更に、工業的な取り扱い上、次のような大
きな長所を有する。すなわち、吸水性樹脂を混練水に分
散懸濁させ、流体状態として取り扱えるため、所定量の
吸水性樹脂を混入した混練水をタンクに準備しておけ
ば、ミキサへの投入は、既存の混練水供給計量システム
をそのまま用いることができる。
Further, it has the following great advantages in industrial handling. That is, since the water-absorbent resin is dispersed and suspended in the kneading water and can be handled as a fluid state, if the kneading water mixed with a predetermined amount of the water-absorbing resin is prepared in the tank, the mixer is charged with the existing kneading water. The supply metering system can be used as is.

【0028】[0028]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、本発明はその要旨を超えない限
り以下の実施例に限定されるものではない。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.

【0029】なお、用いた材料は次の通りである。 ・セメント:早強ポルトランドセメント ・シリカフューム:BET比表面積 21m2 /g ・フライアッシュ:ブレーン比表面積 3800cm2
/g ・骨材1:山砂及び砕砂の混合砂 ・骨材2:砕石(粒径2.5〜10mm) ・水:水道水 ・減水剤:ポリカルボン酸系高性能減水剤 ・炭素繊維:PAN系,繊維長12mm ・吸水性樹脂:ポリアクリル酸系の球状粉体。純水にお
ける吸水能は600倍、使用した水道水における吸水能
は約240倍である。
The materials used are as follows.・ Cement: Early strength Portland cement ・ Silica fume: BET specific surface area 21 m 2 / g ・ Fly ash: Blaine specific surface area 3800 cm 2
/ G-Aggregate 1: Mixed sand of mountain sand and crushed sand-Aggregate 2: Crushed stone (particle size 2.5 to 10 mm) -Water: Tap water-Water reducing agent: Polycarboxylic acid high-performance water reducing agent-Carbon fiber: PAN-based, fiber length 12 mm-Water-absorbent resin: polyacrylic acid-based spherical powder. The water absorption capacity in pure water is 600 times, and the water absorption capacity in the tap water used is about 240 times.

【0030】また、材料の混練及び成形方法並びに各試
験方法は次の通りである。混練及び成形方法 混練は、強制パン型ミキサを使用し、セメント、骨材な
どの固体材料を30秒間空練りした後、高性能減水剤及
び吸水性樹脂混入混練水を加え、更に3分間混練を行な
った。吸水性樹脂混入混練水は、ポリ容器中の水道水
に、所定量の吸水性樹脂を投入、撹拌し、十分に分散・
懸濁した後、5分間以上静置し、十分に吸水させたもの
を用いた。
The kneading and molding methods for the materials and the respective test methods are as follows. Kneading and molding method Kneading is performed by using a forced-bread type mixer, and after kneading solid materials such as cement and aggregate for 30 seconds, kneading water mixed with high-performance water reducing agent and water-absorbent resin is added, and kneading is continued for 3 minutes. I did. The kneading water mixed with the water-absorbent resin can be sufficiently dispersed by adding a predetermined amount of the water-absorbent resin to tap water in a plastic container and stirring.
After suspending, the suspension was allowed to stand for 5 minutes or more to absorb water sufficiently.

【0031】コンクリートの場合、水道水への吸水性樹
脂の混入量は、水道水に対し1/300とした。これ
は、使用した水道水における、吸水性樹脂の吸水能24
0倍に対し、1.25倍の水道水への混入添加に相当す
る。一方、モルタルの場合、水道水への吸水性樹脂の混
入量は、水道水に対し1/275とした。これは使用し
た水道水における、吸水性樹脂の吸水能240倍に対
し、1.15倍の水道水への混入添加に相当する。
In the case of concrete, the amount of water-absorbent resin mixed into tap water was 1/300 with respect to tap water. This is the water absorption capacity of the water absorbent resin in the tap water used.
This corresponds to the addition of 1.25 times the mixture of tap water to 0 times. On the other hand, in the case of mortar, the amount of the water-absorbent resin mixed into tap water was 1/275 with respect to tap water. This corresponds to the addition of 1.15 times more water to the tap water than the water absorption capacity of the water absorbent resin in the used tap water.

【0032】加圧振動成形は、コンクリート又はモルタ
ルを10×20cmの型枠に投入し、加圧力0.25k
gf/cm2 、振動数3140rpm、振幅1.4m
m、加圧時間8秒間で行ない、その後、成形体を型枠よ
りプレス版で押し抜いて縦20cm、横10cm、高さ
8cmの成形体を製造した。
In the pressure vibration molding, concrete or mortar is put into a mold of 10 × 20 cm, and a pressing force is 0.25 k.
gf / cm 2 , frequency 3140 rpm, amplitude 1.4 m
m, pressurizing time was 8 seconds, and then the molded body was pressed out from the mold with a press plate to produce a molded body having a length of 20 cm, a width of 10 cm, and a height of 8 cm.

【0033】試験方法 造粒塊発生量の評価試験法 コンクリートにおける造粒塊の発生程度は、練り上がっ
たコンクリートをふるいでふるって、各ふるいを通過す
る量を測定し、造粒塊の発生状態を評価した。モルタル
における造粒塊の発生程度は、目視にて評価した。
Test method Evaluation test method for the amount of granulated lumps The degree of generation of granulated lumps in concrete is determined by sieving the kneaded concrete with a sieve and measuring the amount passing through each sieve to determine the generation state of the granulated lumps. evaluated. The degree of formation of granulated lumps in the mortar was visually evaluated.

【0034】 強度試験 モルタル及びコンクリートの曲げ強度は、10×20×
8cmの加圧振動成形体を用い、スパン160mm、中
央1点載荷試験方法で行なった。 圧縮強度 モルタル及びコンクリートの圧縮強度は、10×20×
8cm加圧振動成形体からφ8cm×8cmのコアを採
取し、圧縮強度試験に供した。
Strength Test Flexural strength of mortar and concrete is 10 × 20 ×
Using a pressure vibration molded body of 8 cm, a span of 160 mm and a central one-point loading test method were used. Compressive strength Compressive strength of mortar and concrete is 10 × 20 ×
A φ8 cm × 8 cm core was sampled from the 8 cm pressure vibration molded body, and subjected to a compressive strength test.

【0035】実施例1、比較例1 表1に、本発明による実施例1の配合、及び比較のため
行った吸水性樹脂を添加しない水道水を混練水として用
いた比較例1の配合を示す。実施例1の配合及び比較例
1の配合にてコンクリートを混練し、練り上がり直後の
コンクリートふるい分け試験を行った。結果を表3に示
す。実施例1に比べ比較例1の方が粒径が大きな混練物
が多く、10mmふるいを通過する部分が実施例1が9
6%に対し、比較例1が78%、5mmふるいを通過す
る部分が、実施例1が80%に対し、比較例1が38%
と、本発明方法によれば著しく造粒の程度を低減させる
ことができた。
Example 1 and Comparative Example 1 Table 1 shows the composition of Example 1 according to the present invention and the composition of Comparative Example 1 in which tap water containing no water absorbent resin was used as a kneading water for comparison. . Concrete was kneaded with the composition of Example 1 and the composition of Comparative Example 1, and a concrete sieving test was performed immediately after kneading. The results are shown in Table 3. Compared with Example 1, Comparative Example 1 had a larger amount of kneaded material with a larger particle size, and the portion passing through the 10 mm sieve had Example 9
Compared with 6%, 78% in Comparative Example 1 and 80% in the portion passing through the 5 mm sieve, and 38% in Comparative Example 1 against 80% in Example 1.
According to the method of the present invention, the degree of granulation could be significantly reduced.

【0036】加圧振動成形即時脱型後の成形体の観察結
果、成形体の空隙率、及び材令14日における強度試験
結果を表4に示す。同表からわかるように、本発明によ
れば、加圧振動成形脱型後の自重による変形及びバリの
発生がなく、また、成形体の空隙率は比較例に比べ小さ
いものとすることができる。更に、造粒が著しく少な
く、コンクリートが均質に混練され、材料が持つ強度発
現能力を効果的に引き出すことができ、また、強度を大
きく低下させる要因となる大きな空隙が少なくすること
ができるという特長を有し、表4に示したように比較例
に比べ高強度が得られる。
Table 4 shows the observation results of the molded product after the pressure vibration molding immediate demolding, the porosity of the molded product, and the strength test result at 14 days of age. As can be seen from the table, according to the present invention, there is no deformation and burrs due to its own weight after the pressure vibration molding demolding, and the porosity of the molded body can be smaller than that of the comparative example. . Furthermore, the features are that the amount of granulation is extremely small, the concrete is homogeneously kneaded, the strength manifesting ability of the material can be effectively brought out, and large voids that cause a significant decrease in strength can be reduced. Therefore, as shown in Table 4, higher strength can be obtained as compared with the comparative example.

【0037】実施例2,3、比較例2,3 混和材として、微粉末無機物質であるシリカフューム、
及びフライアッシュを用いた本発明による実施例配合を
表1の実施例2及び実施例3に示す。比較のため行った
吸水性樹脂無添加の水道水を混練水として用いた例を表
1の比較例2及び比較例3に示す。各例における加圧振
動成形即時脱型後の成形体の観察結果、成形体の空隙
率、及び材令14日における強度試験結果を表4に示
す。これらの実施例においても、混練時の造粒はきわめ
て少なく、表4に示す如く、成形体は自重による変形、
バリの発生がなく、空隙率の小さいものとなり、実施例
では、比較例に比べ高強度が得られた。混和材として用
いる微粉末無機物質としては、本実施例のシリカフュー
ム、フライアッシュに限定されず、高炉スラグ微粉末、
石灰石微粉末、珪石微粉末などの混和材を用いた場合に
も適用できる。
Examples 2 and 3 and Comparative Examples 2 and 3 As an admixture, silica fume which is a fine powder inorganic substance,
Example formulations according to the present invention using ash and fly ash are shown in Examples 1 and 2 of Table 1. Comparative examples 2 and 3 in Table 1 show examples in which tap water containing no water-absorbent resin was used as kneading water for comparison. Table 4 shows the observation results of the molded product after the pressure vibration molding immediate demolding in each example, the porosity of the molded product, and the strength test result at 14 days of age. Also in these examples, granulation during kneading was extremely small, and as shown in Table 4, the molded body was deformed by its own weight,
No burr was generated and the porosity was small, and in the example, high strength was obtained as compared with the comparative example. The finely powdered inorganic substance used as the admixture is not limited to the silica fume and fly ash of this example, and the blast furnace slag fine powder,
It can also be applied when an admixture such as limestone fine powder or silica fine powder is used.

【0038】実施例4、比較例4 補強繊維をコンクリートに混入した場合、繊維無混入に
比べ、更に造粒塊やフィアバーボールを生じやすいこと
は一般に知られている。補強用繊維として炭素繊維を用
いた場合の実施例配合を表2の実施例4に、試験結果を
表4に示す。吸水性樹脂無添加の水道水を混練水として
用いた場合の比較例として、比較配合を表2の比較例4
に、その試験結果を表4に示す。表4より明らかなよう
に、本発明によれば、補強繊維を混入した場合において
も、造粒塊やファイバーボールの発生を著しく低減する
ことができ、成形体の空隙率を小さいものとすることが
可能で、高強度な成形体が得られる。補強繊維として
は、本実施例の炭素繊維に限定されず、コンクリート及
びモルタル用として用いられる、鋼繊維、アラミド繊
維、ガラス繊維、ビニロン繊維、ポロプロピレン繊維な
どを用いた場合にも適用できる。
Example 4, Comparative Example 4 It is generally known that when reinforcing fibers are mixed into concrete, granulated lumps and fibre-bar balls are more likely to be formed, as compared with the case where no fibers are mixed. The composition of the examples when carbon fibers are used as the reinforcing fibers are shown in Example 4 of Table 2 and the test results are shown in Table 4. As a comparative example in the case of using tap water containing no water-absorbent resin as the kneading water, the comparative formulation is shown in Comparative Example 4 in Table 2.
Table 4 shows the test results. As is clear from Table 4, according to the present invention, even when reinforcing fibers are mixed, the generation of granulated lumps and fiber balls can be remarkably reduced, and the void ratio of the molded body can be made small. It is possible to obtain a molded product with high strength. The reinforcing fiber is not limited to the carbon fiber of this embodiment, and can be applied to the case of using steel fiber, aramid fiber, glass fiber, vinylon fiber, polypropylene fiber, etc. used for concrete and mortar.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】実施例5、比較例5 減水剤を添加したモルタルの高強度化を図る場合にも、
本発明によればコンクリートの場合と同様な効果が得ら
れ、造粒を著しく低減でき、加圧振動成形における充填
性及び成形性に優れた混練物を得ることができることを
確認した。
Example 5 and Comparative Example 5 Also in the case of increasing the strength of a mortar containing a water reducing agent,
According to the present invention, it was confirmed that the same effects as in the case of concrete can be obtained, granulation can be significantly reduced, and a kneaded product excellent in filling property and moldability in pressure vibration molding can be obtained.

【0044】表5に実施例及び比較例のモルタル配合、
及び目視による造粒の観察結果を示す。表6にはモルタ
ル成形体の試験結果を示す。
Table 5 shows the mortar formulations of Examples and Comparative Examples,
And the observation result of granulation by visual observation is shown. Table 6 shows the test results of the mortar compacts.

【0045】[0045]

【表5】 [Table 5]

【0046】[0046]

【表6】 [Table 6]

【0047】[0047]

【発明の効果】以上詳述した通り、本発明の加圧振動成
形即時脱型用コンクリート又はモルタルの製造方法によ
れば、加圧振動成形即時脱型用コンクリート又はモルタ
ルの製造において、減水剤を用い、低水セメント比化に
よって高強度化するに当り、造粒塊の発生を低減し、均
質かつ充填性に優れたコンクリート又はモルタルを得、
また、脱型時の自重による変形やバリの発生を低減し
て、高強度の加圧振動成形即時脱型用コンクリート又は
モルタルを、効率的に、工業的に有利に製造することが
可能とされる。
As described in detail above, according to the method for producing a concrete or mortar for pressure vibration molding immediate demolding according to the present invention, a water reducing agent is used in the production of the concrete for pressure vibration molding immediate demolding or mortar. Used to increase the strength by lowering the cement ratio in water, reduce the generation of granulated lumps and obtain concrete or mortar that is homogeneous and has excellent filling properties.
In addition, it is possible to reduce deformation and burrs due to its own weight at the time of demolding, and to manufacture high-strength pressure vibration molding immediate demolding concrete or mortar efficiently and industrially advantageously. It

【0048】請求項2の方法によれば、より一層優れた
効果を確実に得ることができる。請求項3、4の方法に
よれば、微粉末無機物質又は補強繊維配合による高特
性、高機能性コンクリート又はモルタルを製造すること
ができる。
According to the method of the second aspect, it is possible to surely obtain a further excellent effect. According to the methods of claims 3 and 4, it is possible to manufacture high-performance, high-performance concrete or mortar by incorporating a fine powder inorganic substance or reinforcing fibers.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 16:04 22:06 A 18:08 14:06 Z 24:04 14:38) A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C04B 16:04 22:06 A 18:08 14:06 Z 24:04 14:38) A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セメント、骨材、水、混和材、減水剤等
からなる加圧振動成形即時脱型用コンクリート又はモル
タルの製造方法において、吸水膨潤後もゲル化せず粒状
を維持する吸水性樹脂を水に分散・懸濁し、吸水性樹脂
が吸水した状態で、流体状態として取り扱える吸水性樹
脂混入水を混練水として用いることを特徴とする加圧振
動成形即時脱型用コンクリート又はモルタルの製造方
法。
1. A method for producing concrete for pressure vibration molding immediate demolding or mortar comprising cement, aggregate, water, admixture, water-reducing agent, etc., which retains granularity without gelation even after water swelling. Manufacture of concrete or mortar for pressure vibration molding immediate release, characterized by using water mixed with water-absorbent resin that can be handled as a fluid state when the resin is dispersed and suspended in water and the water-absorbent resin absorbs water Method.
【請求項2】 請求項1の方法において、前記吸水性樹
脂混入水が、吸水性樹脂を、混練水として使用する水に
おける吸水性樹脂の吸水能の1.1倍〜4.0倍の水に
分散・懸濁し、吸水させ、流体状態として取り扱える吸
水性樹脂混入水である加圧振動成形即時脱型用コンクリ
ート又はモルタルの製造方法。
2. The method according to claim 1, wherein the water mixed with the water absorbent resin is 1.1 times to 4.0 times the water absorbing ability of the water absorbent resin in water using the water absorbent resin as kneading water. A method for producing concrete or mortar for rapid vibration molding immediate demolding, which is water mixed with a water-absorbing resin that can be dispersed / suspended in, absorbed in water, and treated as a fluid state.
【請求項3】 請求項1又は2の方法において、混和材
が微粉末無機物質である加圧振動成形即時脱型用コンク
リート又はモルタルの製造方法。
3. The method for producing concrete or mortar for pressure vibration molding immediate demolding according to claim 1 or 2, wherein the admixture is a finely powdered inorganic substance.
【請求項4】 請求項1ないし3のいずれか1項に記載
の方法において、更に、コンクリート又はモルタル用補
強繊維を配合してなることを特徴とする加圧振動成形即
時脱型用コンクリート又はモルタルの製造方法。
4. The concrete or mortar for pressure vibration molding immediate demolding according to any one of claims 1 to 3, further comprising a reinforcing fiber for concrete or mortar. Manufacturing method.
JP23012393A 1993-09-16 1993-09-16 Production of concrete or mortar for immediate removal after pressurization vibration molding Withdrawn JPH0780811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23012393A JPH0780811A (en) 1993-09-16 1993-09-16 Production of concrete or mortar for immediate removal after pressurization vibration molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23012393A JPH0780811A (en) 1993-09-16 1993-09-16 Production of concrete or mortar for immediate removal after pressurization vibration molding

Publications (1)

Publication Number Publication Date
JPH0780811A true JPH0780811A (en) 1995-03-28

Family

ID=16902933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23012393A Withdrawn JPH0780811A (en) 1993-09-16 1993-09-16 Production of concrete or mortar for immediate removal after pressurization vibration molding

Country Status (1)

Country Link
JP (1) JPH0780811A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509328A (en) * 1999-09-22 2003-03-11 ダブリュ・アール・グレイス・アンド・カンパニー・コネテイカット Efflorescence control in cementitious compositions and masonry units
JP2003104767A (en) * 2001-09-28 2003-04-09 Grace Chemicals Kk Method for producing quickly demoldable concrete
JP2011042518A (en) * 2009-08-20 2011-03-03 Sumitomo Osaka Cement Co Ltd Instantly demoldable concrete product and method for manufacturing the same
JP2012206882A (en) * 2011-03-29 2012-10-25 Sumitomo Osaka Cement Co Ltd Scaling-reduced concrete product, and method for producing the concrete product
JP2015519279A (en) * 2012-04-19 2015-07-09 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Admixtures and methods for freeze-thaw resistance and scale resistance of cement compositions
CN113416052A (en) * 2021-07-30 2021-09-21 四川兴事发门窗有限责任公司 Composite inorganic fireproof core material for door frame
CN115403338A (en) * 2022-09-27 2022-11-29 无锡南方混凝土有限公司 High-crack-resistance low-shrinkage high-performance concrete

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509328A (en) * 1999-09-22 2003-03-11 ダブリュ・アール・グレイス・アンド・カンパニー・コネテイカット Efflorescence control in cementitious compositions and masonry units
JP2003104767A (en) * 2001-09-28 2003-04-09 Grace Chemicals Kk Method for producing quickly demoldable concrete
JP2011042518A (en) * 2009-08-20 2011-03-03 Sumitomo Osaka Cement Co Ltd Instantly demoldable concrete product and method for manufacturing the same
JP2012206882A (en) * 2011-03-29 2012-10-25 Sumitomo Osaka Cement Co Ltd Scaling-reduced concrete product, and method for producing the concrete product
JP2015519279A (en) * 2012-04-19 2015-07-09 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Admixtures and methods for freeze-thaw resistance and scale resistance of cement compositions
CN113416052A (en) * 2021-07-30 2021-09-21 四川兴事发门窗有限责任公司 Composite inorganic fireproof core material for door frame
CN115403338A (en) * 2022-09-27 2022-11-29 无锡南方混凝土有限公司 High-crack-resistance low-shrinkage high-performance concrete

Similar Documents

Publication Publication Date Title
JPH0780811A (en) Production of concrete or mortar for immediate removal after pressurization vibration molding
JP2000119074A (en) Production of porous concrete and porous concrete
JP3088665B2 (en) Fiber-reinforced porous concrete molding and method for producing the same
JP3101129B2 (en) Method of manufacturing heavy concrete
JP3290171B2 (en) Manufacturing method of porous concrete
JPS63100081A (en) Manufacture of hydraulic matter
JPS6221737A (en) Manufacture of fiber reinforced cement formed body
JPS61201740A (en) Method for agglomerating fine ore or metal
JP4434388B2 (en) Coal ash plate manufacturing method
JPH0680455A (en) Production of formed concrete/mortar article having high strength
JP3526639B2 (en) Cement composition for dewatering press molding and method for producing cement molding using the same
JP3103195B2 (en) Concrete composition
JPH026360A (en) Lightweight cement composition and production of lightweight cement form therefrom
JPH06106153A (en) Cement solidification of incineration ash and cement solidified product of incineration ash
JPS6230651A (en) Manufacture of fiber reinforced cement formed body
JPH0624817A (en) Production of hydraulic inorganic molding
JP2699164B2 (en) HEAVY CONCRETE AND PROCESS FOR PRODUCING HIGH SPECIFIC DEFORMATION BLOCK USING THE HEAVY CONCRETE
JPS6389446A (en) Hydraulic composition
JP2597323B2 (en) Re-solidification method of pulverized concrete hardened material and laitance
JPH07267713A (en) Production of cement molded body
JPH0567581B2 (en)
JPS61123503A (en) Manufacture of high-strength cement product through press molding
JPS6367109A (en) Method of dispersing and kneading short fiber
JPS6350358A (en) Manufacture of gypsum product
JPS5932417B2 (en) Molding method of hydraulic bonding material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128