JPH0780794B2 - Separation and purification method of hydrocarbon pyrolysis gas - Google Patents

Separation and purification method of hydrocarbon pyrolysis gas

Info

Publication number
JPH0780794B2
JPH0780794B2 JP59256124A JP25612484A JPH0780794B2 JP H0780794 B2 JPH0780794 B2 JP H0780794B2 JP 59256124 A JP59256124 A JP 59256124A JP 25612484 A JP25612484 A JP 25612484A JP H0780794 B2 JPH0780794 B2 JP H0780794B2
Authority
JP
Japan
Prior art keywords
ethylene
refrigerant
fraction
ethane
pyrolysis gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59256124A
Other languages
Japanese (ja)
Other versions
JPS61134327A (en
Inventor
興哉 斎藤
彰吾 谷川
芳徳 横堀
雅彦 吉田
信一郎 小針
博志 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59256124A priority Critical patent/JPH0780794B2/en
Publication of JPS61134327A publication Critical patent/JPS61134327A/en
Publication of JPH0780794B2 publication Critical patent/JPH0780794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02P20/121

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はナフサ、天然ガス等を熱分解するエチレン製造
装置から得られる炭化水素熱分解ガスの分離精製法に関
するものであり、特に炭化水素熱分解ガスの冷却方法に
関する。
Description: FIELD OF THE INVENTION The present invention relates to a method for separating and refining hydrocarbon pyrolysis gas obtained from an ethylene production apparatus for pyrolyzing naphtha, natural gas and the like, and particularly to hydrocarbon pyrolysis. The present invention relates to a gas cooling method.

〔発明の背景〕[Background of the Invention]

熱分解によるエチレン製造装置から得られる炭化水素熱
分解ガスは水素、メタン(C1)、エチレン、エタン
(C2)、プロピレン、プロパン、ブチレン、ブタジエン
(C3+)等を含み、エチレン、プロピレン等は石油化学
の原料となり、特に重合原料用としては触媒に悪影響を
与えない為に極めて純度高く精製されねばならない。
Hydrocarbon pyrolysis gas obtained from ethylene production equipment by pyrolysis contains hydrogen, methane (C 1 ), ethylene, ethane (C 2 ), propylene, propane, butylene, butadiene (C 3 +), etc., and ethylene, propylene Etc. are raw materials for petrochemicals, and particularly for polymerization raw materials, they do not adversely affect the catalyst and must be purified to a very high degree of purity.

従来の炭化水素熱分解ガスの分離精製法の代表的例のフ
ローシートを第3図に示す。水素,C1,C2,C3+炭化水
素からなる炭化水素熱分解ガスFはライン1から冷却工
程へ導入される。冷却工程では熱分解ガスは第1冷却器
E1、及び第2冷却器E2においてプロピレン冷凍冷媒によ
り冷却され、次にライン2により第1段気液分離槽D1に
導入される。第1段気液分離槽D1において凝縮されたC2
炭化水素、C3以上炭化水素の大部分はライン4により前
工程に戻され、残りはライン5を経て脱メタン塔T1に導
入される。第1段気液分離槽D1で冷却された水素,メタ
ン,エチレン,エタンからなる未凝縮ガスはライン3を
経て熱交換器E3に導入されエチレン冷凍冷媒により冷却
された後、ライン6を経て第2段気液分離槽D2に導入さ
れる。第2段気液分離槽D2で凝縮されたメタン,エチレ
ン,エタン,及び少量の水素からなる凝縮液はライン8
を経て、また前記第1段気液分離槽D1からのライン5の
凝縮液と合流して脱メタン塔T1に導入される。また未凝
縮ガスはライン7よりエチレン回収系に送られる。
FIG. 3 shows a flow sheet of a typical example of a conventional separation and purification method for hydrocarbon pyrolysis gas. A hydrocarbon pyrolysis gas F composed of hydrogen, C 1 , C 2 and C 3 + hydrocarbon is introduced from line 1 into the cooling process. In the cooling process, the pyrolysis gas is the first cooler.
It is cooled by the propylene refrigerating refrigerant in E1 and the second cooler E2, and then introduced into the first-stage gas-liquid separation tank D1 via the line 2. C 2 condensed in the first-stage gas-liquid separation tank D1
Most of the hydrocarbons and C 3 or more hydrocarbons are returned to the previous step via line 4, and the rest are introduced into demethanizer T1 via line 5. The uncondensed gas composed of hydrogen, methane, ethylene, and ethane cooled in the first-stage gas-liquid separation tank D1 is introduced into the heat exchanger E3 via the line 3 and cooled by the ethylene refrigerating refrigerant, and then via the line 6 to the first It is introduced into the two-stage gas-liquid separation tank D2. Line 8 is a condensate composed of methane, ethylene, ethane, and a small amount of hydrogen condensed in the second-stage gas-liquid separation tank D2.
Through the first stage gas-liquid separation tank D1 and the condensate in line 5 to be introduced into the demethanizer T1. The uncondensed gas is sent to the ethylene recovery system via line 7.

次に脱メタン工程において、ライン8及びライン5から
の前記凝縮液は脱メタン塔T1に供給され、操作圧力約30
kg/cm2・Gで蒸留され、メタン留分は塔頂から、エチレ
ン・エタン留分は塔底から抜き出される。メタン留分は
ライン9からコンデンサE4に送られエチレン冷凍冷媒に
より冷却され、第3段気液分離槽D3で未凝縮ガスと凝縮
液に分離され、未凝縮ガスはライン11によりエチレン回
収系に送られ、凝縮液はライン10を経て脱メタン塔T1に
還流される。また、脱メタン塔T1で塔底液の一部はリボ
イラーE5によつてリボイルされる。
Next, in the demethanization step, the condensate from the lines 8 and 5 is supplied to the demethanizer T1 at an operating pressure of about 30.
It is distilled at kg / cm 2 · G, the methane fraction is withdrawn from the top of the column, and the ethylene / ethane fraction is withdrawn from the bottom of the column. The methane fraction is sent to the condenser E4 from the line 9 and cooled by the ethylene refrigerating refrigerant, separated into uncondensed gas and condensed liquid in the third gas-liquid separation tank D3, and the uncondensed gas is sent to the ethylene recovery system via line 11. The condensate is returned to the demethanizer T1 via the line 10. In the demethanizer T1, a part of the bottom liquid is reboiled by the reboiler E5.

次に、エチレン分離工程において、脱メタン塔T1からの
塔底液はライン12を経て膨張器V1によつて減圧膨張され
て操作圧力約7kg/cm2・G、温度約−56℃程度にされ、
基体の割合が約44mol%の状態でライン13を経てエチレ
ン塔T2に供給される。エチレン塔T2で蒸留された未凝縮
ガスのエチレン留分はライン14を経てコンデンサE6で凝
縮され、一部は還流液としてライン15を経てエチレン塔
T2に戻され、残りはライン16を経て製品エチレンPとし
て取り出される。また、エチレン塔T2の塔底から分離さ
れたエタン留分はライン17を経て冷熱の回収後、熱分解
原料にリサイクルされる。尚、塔底液の一部はリボイラ
ーE7によつてリボイルされる。
Next, in the ethylene separation step, the bottom liquid from the demethanizer T1 is decompressed and expanded by the expander V1 via the line 12 to an operating pressure of about 7 kg / cm 2 · G and a temperature of about -56 ° C. ,
It is fed to the ethylene column T2 via the line 13 in a state where the ratio of the substrate is about 44 mol%. The ethylene fraction of the uncondensed gas distilled in the ethylene tower T2 is condensed in the condenser E6 via the line 14, and part of it is refluxed as a reflux liquid in the ethylene tower.
It is returned to T2 and the rest is taken off as product ethylene P via line 16. Further, the ethane fraction separated from the bottom of the ethylene column T2 is recycled to the pyrolysis raw material after collecting cold heat through the line 17. A part of the bottom liquid is reboiled by the reboiler E7.

上記の如く炭化水素熱分解ガスに含まれている水素,
C1,C2,C3以上炭化水素は極めて低沸点であるので分離
するには低温に冷却しなければならない。分離精製装置
の中で冷却工程は最も冷凍冷媒の使用量が多い工程であ
り、この工程での冷凍冷媒使用量を低減させるために現
在まで多くのプロセスが実施されている。冷凍冷媒とし
ては種々の温度レベルからなるエチレン又はプロピレン
等の冷凍冷媒が使用されるが、エチレン・エタン留分を
凝縮させる為にどうしても多量の冷凍冷媒を使用せざる
を得ず、特にエチレン冷凍冷媒は多量のエネルギーを必
要とする高価な冷媒であり、この使用量を低減する方法
が要望されていた。
Hydrogen contained in the hydrocarbon pyrolysis gas as described above,
Hydrocarbons above C 1 , C 2 , C 3 have extremely low boiling points and must be cooled to a low temperature for separation. The cooling step is the step in which the amount of frozen refrigerant used is the largest in the separation and purification apparatus, and many processes have been implemented to date in order to reduce the amount of frozen refrigerant used in this step. Refrigerant such as ethylene or propylene having various temperature levels is used as the refrigerating refrigerant, but a large amount of refrigerating refrigerant must be used in order to condense the ethylene / ethane fraction. Is an expensive refrigerant that requires a large amount of energy, and there has been a demand for a method of reducing the amount used.

〔発明の目的〕[Object of the Invention]

本発明の目的は、上記した従来技術の問題点を解決し、
炭化水素熱分解ガスの低温分解精製工程及び冷凍冷媒の
製造に使用する高価な冷凍冷媒に係る冷凍圧縮機の所要
動力を大巾に低減する炭化水素分解ガスの分離精製法を
提供するものである。
The object of the present invention is to solve the above-mentioned problems of the prior art,
Provided is a method for separating and refining hydrocarbon cracked gas, which significantly reduces the power required for a refrigeration compressor related to an expensive refrigerating refrigerant used in a low temperature cracking and refining process of hydrocarbon pyrolysis gas and production of a refrigerating refrigerant. .

〔発明の概要〕[Outline of Invention]

本発明の炭化水素熱分解ガスの分離精製法は、水素及び
C1,C2,C3以上炭化水素からなる炭化水素熱分解ガスを
冷却工程で冷却し、次に脱メタン工程で水素・メタン留
分とエチレン・エタン留分に分離し、次にエチレン分離
工程でエチレン留分とエタン留分に分離する精製法にお
いて、前記脱メタン工程で分離した高圧のエチレン・エ
タン留分を減圧膨張して低温度にし、この低温度のエチ
レン・エタン留分を冷媒として使用した後、前記エチレ
ン分離工程に導入する方法である。
The method for separating and purifying hydrocarbon pyrolysis gas of the present invention is
Hydrocarbon pyrolysis gas consisting of C 1 , C 2 , C 3 or more hydrocarbons is cooled in the cooling process, then separated into hydrogen / methane fraction and ethylene / ethane fraction in the demethanization process, and then ethylene separation In the purification method of separating ethylene fraction and ethane fraction in the step, the high-pressure ethylene-ethane fraction separated in the demethanization step is decompressed to a low temperature, and the low-temperature ethylene-ethane fraction is used as a refrigerant. It is a method of introducing it into the ethylene separation step after it has been used as.

更に本発明の方法について詳しく述べる。脱メタン工程
において脱メタン塔から塔底液として抜き出される主と
してエチレン、エタンからなる留分は操作圧力25〜35kg
/cm2・G、通常30kg/cm2・G前後、温度−15〜10℃、通
常−5℃前後の状態であるが、減圧膨張されることによ
り操作圧力5〜20kg/cm2・G、通常7kg/cm2・G前後、
温度−70〜−30℃、通常−50℃以下に大巾に温度が下げ
られる。この極めて低温度のエチレン・エタン留分を前
記冷却工程等の熱交換器の冷媒に使用し、冷凍冷媒の使
用量を大巾に低減するものである。エチレン・エタン留
分を冷媒として使用した場合、エンタルピーが増加し、
最終工程のエチレン分離工程のエチレン塔に導入したと
き還流液を増加せざる得なくなる。従つて従来は低温度
のエチレン・エタン留分を冷媒として使用することが考
えられなかつた。しかし、本発明者はエチレン塔の運転
条件の解析、この留分の導入条件による還流量の増加傾
向、及び熱分解ガスの分離精製装置全体のエネルギーバ
ランスを検討した結果、エチレン塔還流量はエチレン・
エタン留分が過度の過熱蒸気状態にならない範囲であれ
ば、エチレンエタン留分のエンタルピー増加に対し大
巾に増加しないことを明らかになった。
Further, the method of the present invention will be described in detail. In the demethanization process, the operating pressure is 25 to 35 kg for the fraction mainly consisting of ethylene and ethane extracted from the demethanizer as bottom liquid.
/ cm 2 · G, usually 30kg / cm 2 · G before and after temperature -15~10 ° C., is a state of before and after the normal -5 ° C., operated by being decompressed and expanded pressure 5~20kg / cm 2 · G, Usually around 7kg / cm 2 · G,
Temperature can be drastically lowered to -70 to -30 ℃, usually -50 ℃ or less. This extremely low temperature ethylene-ethane fraction is used as a refrigerant for a heat exchanger in the cooling step or the like, and the amount of frozen refrigerant used is greatly reduced. When ethylene / ethane fraction is used as a refrigerant, enthalpy increases,
When introduced into the ethylene column of the final ethylene separation step, the reflux liquid must be increased. Therefore, it has never been considered to use a low-temperature ethylene-ethane fraction as a refrigerant. However, the present inventor has analyzed the operating conditions of the ethylene column, examined the increasing tendency of the reflux amount due to the introduction conditions of this distillate, and the energy balance of the entire pyrolysis gas separation and purification device.・
It has been clarified that the ethane fraction does not increase significantly with respect to the increase in the enthalpy of the ethylene ethane fraction as long as the ethane fraction does not become excessively superheated steam.

第2図にエチレン塔に導入されるエチレンエタン留分
のエンタルピー増加とエチレン塔還流量増加との関係を
示す。A点はエチレン・エタン留分を冷却工程等の冷媒
として使用しない場合、B及びC点は冷媒として使用し
た場合で、B点は後述の実施例の場合、C点はその留分
の全量が飽和蒸気になつた場合である。尚、A,B,C点の
ペーパ割合は夫々44,89,100mol%である。エチレン・エ
タン留分の冷熱を冷却工程の冷媒に使用し、その留分の
エンタルピー増加が全量飽和蒸気になるC点以下、好ま
しくはB点以下であればエチレン塔還流量の大巾な増加
はなく、炭化水素熱分解ガスの分離精製装置全体として
省エネルギーになる。
Fig. 2 shows the relationship between the increase in the enthalpy of the ethylene ethane fraction introduced into the ethylene column and the increase in the ethylene column reflux rate. Point A is the case where the ethylene / ethane fraction is not used as a refrigerant in the cooling step, points B and C are used as the refrigerant, point B is the case of the examples described later, point C is the total amount of the fraction. This is the case when saturated steam is reached. The paper proportions at points A, B and C are 44, 89 and 100 mol%, respectively. If the cold heat of the ethylene / ethane fraction is used as the refrigerant in the cooling step and the increase in the enthalpy of the fraction is C point or less, preferably B point or less, where the entire amount becomes saturated vapor, the ethylene column recirculation amount will be greatly increased. Instead, energy saving is achieved as a whole of the apparatus for separating and purifying hydrocarbon pyrolysis gas.

なお、脱メタン工程で分離した高圧のエチレン・エタン
留分を減圧膨張して得られる低温度の冷熱の有効な使用
方法としては、前記冷却工程の他、その他の低温分離精
製工程あるいは冷凍冷媒製造工程等に利用可能である
が、前記冷却工程で冷媒として使用することが好まし
い。
The effective use of low-temperature cold heat obtained by decompressing and expanding the high-pressure ethylene / ethane fraction separated in the demethanization step is, in addition to the cooling step, other low-temperature separation / purification step or frozen refrigerant production. Although it can be used in a process or the like, it is preferably used as a refrigerant in the cooling process.

〔発明の実施例〕Example of Invention

本発明の分離精製装置のフローシートを第1図に示し、
その方法について述べる。本装置は従来装置の第3図に
比べ、冷却工程の第2冷却器E2と第1段気液分離槽D1と
の間、及び第1段気液分離槽D1と第3冷却器E3との間に
夫々塔底液第1熱交換器E8、塔底液第2の熱交換器E9が
設けられ、脱メタン塔T1から抜き出された塔底液エチレ
ン・エタン留分が膨張器V1で減圧膨張された後で冷媒と
して使用される装置である。
A flow sheet of the separation and purification apparatus of the present invention is shown in FIG.
The method will be described. Compared with FIG. 3 of the conventional device, this device is provided between the second cooler E2 and the first-stage gas-liquid separation tank D1 in the cooling process, and between the first-stage gas-liquid separation tank D1 and the third cooler E3. A column bottom liquid first heat exchanger E8 and a column bottom liquid second heat exchanger E9 are provided between them, respectively, and the column bottom liquid ethylene / ethane fraction withdrawn from the demethanizer T1 is decompressed by the expander V1. A device used as a refrigerant after being expanded.

水素、及びC1,C2,C3以上炭化水素からなる炭化水素熱
分解ガスFはライン1から導入され、第1冷却器E1、第
2冷却器E2でプロピレン冷凍冷媒で冷却された後、塔底
液第1熱交換器E8に導入され、エチレン・エタン留分冷
媒によつて冷却され、第1段気液分離槽D1に導入され
る。次に第1段気液分離槽D1からの未凝縮ガスはライン
20を経て塔底液第2熱交換器E9に導入されエチレン・エ
タン留分冷媒によつて冷却される。冷媒としてのエチレ
ン・エタン留分は脱メタン塔T1から塔底液として抜き出
され、ライン12を経て膨張器V1によつて減圧膨張されて
低温にされ、ライン18を経て塔底液第2熱交換器E9を通
つた後、塔底液第1熱交換器E8に進み、蒸気割合が約90
mol%の状態になり、ライン19,13を経てエチレン塔T2に
導入される。一方、熱分解ガスの未凝縮ガスはライン20
を経ては塔底液第2熱交換器E9で冷却され、ライン21を
経て第3冷却器E3でエチレン冷凍冷媒で更に冷却され、
第2段気液分離槽D2に導入される。第2段気液分離槽D2
の凝縮液はライン8を経由し、また第1段気液分離槽D1
からの凝縮液の一部はライン5を経由して合流され、脱
メタンT1に導入される。第3冷却器E3の熱交換容量は塔
底液第1熱交換器E8及び塔底液第2熱交換器E9が設けら
れているので低減され、エチレン冷凍冷媒の使用量を減
少できる。脱メタン塔T1からのエチレン・エタン留分は
ライン12を経て膨張器V1によつて操作圧力31kg/cm2・G
から7.5kg/cm2・Gに減圧膨張され、温度−5.5℃から−
53℃に大きく低下され、前述のようにライン18を経て冷
却工程に導入され、冷媒として使用された後、ライン1
9,13を経てエチレン塔T2に導入される。エチレン塔T2で
製品のエチレン留分Pと原料にリサイクルされるエタン
留分17に分離される。
Hydrogen and a hydrocarbon pyrolysis gas F composed of C 1 , C 2 , C 3 or higher hydrocarbons is introduced from line 1 and cooled with propylene refrigeration refrigerant in the first cooler E1 and the second cooler E2, It is introduced into the column bottom liquid first heat exchanger E8, cooled by the ethylene-ethane distillate refrigerant, and introduced into the first stage gas-liquid separation tank D1. Next, the uncondensed gas from the first-stage gas-liquid separation tank D1
It is introduced into the second bottom heat exchanger E9 via 20 and cooled by the ethylene-ethane fraction refrigerant. The ethylene-ethane fraction as a refrigerant is withdrawn from the demethanizer T1 as a bottom liquid, expanded under reduced pressure by an expander V1 via a line 12 to a low temperature, and passed through a line 18 to generate a second heat of the bottom liquid. After passing through the exchanger E9, it proceeds to the bottom liquid first heat exchanger E8 where the steam ratio is about 90.
It becomes a mol% state and is introduced into the ethylene tower T2 through lines 19 and 13. On the other hand, the uncondensed gas of pyrolysis gas is
Via the column bottom liquid second heat exchanger E9, and further cooled with ethylene refrigerating refrigerant in the third cooler E3 via line 21;
It is introduced into the second stage gas-liquid separation tank D2. Second stage gas-liquid separation tank D2
Of the condensate passes through the line 8 and the first-stage gas-liquid separation tank D1
Part of the condensate from the is combined via line 5 and introduced into demethanizer T1. The heat exchange capacity of the third cooler E3 is reduced because the column bottom liquid first heat exchanger E8 and the column bottom liquid second heat exchanger E9 are provided, and the amount of ethylene refrigeration refrigerant used can be reduced. The ethylene / ethane fraction from the demethanizer T1 passes through the line 12 and is operated by the expander V1 at an operating pressure of 31 kg / cm 2 · G.
Decompressed and expanded to 7.5kg / cm 2 · G, and temperature from −5.5 ℃ to −
After being greatly reduced to 53 ° C., introduced into the cooling step via line 18 as described above, and used as a refrigerant, line 1
It is introduced into the ethylene tower T2 via 9,13. In the ethylene tower T2, it is separated into the ethylene fraction P of the product and the ethane fraction 17 recycled as the raw material.

第1表はエチレン生産45万t/年規模の設備に於いて、同
一の炭化水素熱分解ガスを供給し、本発明と従来例との
場合を比較したものである。第1表から本発明の方法
は、最終的に冷凍冷媒として使用するエチレン量,プロ
ピレン量は減少し、冷凍圧縮機の所要動力の減少となつ
て示され、即ちエチレン冷凍圧縮機とプロピレン冷凍圧
縮機の所要動力の合計について本発明の場合は従来例よ
りも1600KWの動力の低減が図られたことが明らかであつ
た。
Table 1 shows a comparison between the case of the present invention and the case of the conventional example, in which the same hydrocarbon pyrolysis gas was supplied to the facility for ethylene production of 450,000 tons / year. From Table 1, the method of the present invention shows that the amount of ethylene and propylene finally used as the refrigerating refrigerant is reduced and the required power of the refrigerating compressor is reduced, that is, ethylene refrigerating compressor and propylene refrigerating compressor. Regarding the total required power of the machine, it was clear that the present invention reduced the power by 1600 KW as compared with the conventional example.

尚、上記の方法は本発明の1実施例であり、この方法以
外に次のように行なうこともできる。第1図に示す実施
例では冷却工程の第2冷却器E2と第1段気液分離槽D1の
間に塔底液熱交換器E8を設けたが、これを省いて塔底液
熱交換器E9だけでもよい。また、第1図では塔底液熱交
換器E8とE9の各々にエチレン・エタン留分冷媒をシリー
ズに通したが、その冷媒を2つに分けてパラレルに通し
ても良い。
The above method is one embodiment of the present invention, and other than this method, the following method can be performed. Although the tower bottom liquid heat exchanger E8 is provided between the second cooler E2 and the first-stage gas-liquid separation tank D1 in the cooling step in the embodiment shown in FIG. 1, this is omitted and the tower bottom liquid heat exchanger is omitted. Only E9 is enough. Further, in FIG. 1, the ethylene-ethane fraction refrigerant is passed through the series in each of the bottom liquid heat exchangers E8 and E9, but the refrigerant may be divided into two and passed in parallel.

また、減圧膨張され低温度になつたエチレンエタン留
分を上記の冷媒工程に使用する他に、ライン18から冷凍
冷媒製造工程(図示せず)に導入し、冷凍冷媒製造用の
冷媒として使用した後、エチレン塔T2に導入することも
できる。このとき冷凍冷媒製造工程の所要動力を大巾に
低減できる。
Further, in addition to using the ethylene ethane fraction that has been expanded under reduced pressure to a low temperature in the above-mentioned refrigerant step, it is introduced into the refrigerating refrigerant manufacturing step (not shown) from the line 18 and used as a refrigerant for refrigerating refrigerant manufacturing. After that, it can also be introduced into the ethylene tower T2. At this time, the power required for the refrigerating refrigerant manufacturing process can be greatly reduced.

本発明の要はエチレン冷凍冷媒、プロピレン冷凍冷媒の
代りに減圧膨張したエチレン・エタン留分冷媒を過度の
過熱状態にならない範囲で、前記の冷却工程や他の一般
の冷却工程に有効に利用する方法である。
The essential point of the present invention is to effectively utilize the ethylene-refrigerant refrigerant and the ethylene-ethane fraction refrigerant which has been decompressed and expanded in place of the propylene refrigerant refrigerant in the cooling step and other general cooling steps within a range that does not result in an excessively superheated state. Is the way.

〔発明の効果〕〔The invention's effect〕

本発明の炭化水素熱分解ガスの分離精製方法は脱メタン
塔から抜き出したエチレン・エタン留分を減圧膨張して
極めて低温度にし、この低温度のエチレン・エタン留分
を熱分解ガスの冷却工程や冷凍冷媒製造工程等の熱交換
器の冷媒として使用する方法で、高価な冷凍冷媒の使用
量を大巾に減少し、また冷凍冷媒の製造に係る所要動力
を低減できるので、装置全体の省エネルギー効果が大
で、経済的効果も大きい。
The method for separating and purifying a hydrocarbon pyrolysis gas according to the present invention comprises expanding the ethylene / ethane fraction withdrawn from the demethanizer under reduced pressure to an extremely low temperature, and cooling the low temperature ethylene / ethane fraction with a pyrolysis gas. By using it as a refrigerant for a heat exchanger in a refrigerating refrigerant manufacturing process, etc., the amount of expensive refrigerating refrigerant used can be drastically reduced, and the power required for manufacturing the refrigerating refrigerant can be reduced. The effect is great, and the economic effect is also great.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の炭化水素熱分解ガスの分離精製装置の
フローシートを示し、第2図はエチレン・エタン留分の
エンタルピー増加とエチレン塔還流量増加の関係を示
し、第3図は従来の装置のフローシートを示す。 F……炭化水素熱分解ガス P……エチレン製品 E1……第1冷却器 E2……第2冷却器 E3……第3冷却器 E8……塔底液第1熱交換器 E9……塔底液第2熱交換器 D1……第1段気液分離槽 D2……第2段気液分離槽 T1……脱メタン塔 T2……エチレン塔 V1……膨張器
FIG. 1 shows a flow sheet of a separation and purification apparatus for hydrocarbon pyrolysis gas according to the present invention, FIG. 2 shows a relationship between an increase in enthalpy of ethylene / ethane fraction and an increase in ethylene column reflux amount, and FIG. 3 shows a flow sheet of the apparatus of FIG. F ... Hydrocarbon pyrolysis gas P ... Ethylene product E1 ... First cooler E2 ... Second cooler E3 ... Third cooler E8 ... Bottom liquid first heat exchanger E9 ... Bottom Liquid second heat exchanger D1 …… First-stage gas-liquid separation tank D2 …… Second-stage gas-liquid separation tank T1 …… Demethanizer T2 …… Ethylene tower V1 …… Expander

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小針 信一郎 千葉県市原市有秋台東3−2 (72)発明者 高木 博志 千葉県市原市有秋台東3−2 (56)参考文献 特公 昭59−35895(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichiro Kodai 3-2 Ariakidaihito Ichihara, Chiba Prefecture (72) Inventor Hiroshi Takagi 3-2 Ariakidaihito Ichihara, Chiba Prefecture (56) References Japanese Patent Publication Sho 59 -35895 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】水素及びC1,C2,C3以上炭化水素からなる
炭化水素熱分解ガスを冷却工程で冷却し、次に脱メタン
工程で水素・メタン留分とエチレン・エタン留分に分離
し、次にエチレン分離工程でエチレン留分とエタン留分
に分離する精製法において、前記脱メタン工程で分離し
たエチレン・エタン留分を減圧膨張して低温度にし、こ
の低温度のエチレン・エタン留分を冷媒として使用した
後、前記エチレン分離工程に導入することを特徴とする
炭化水素熱分解ガスの分離精製法。
1. A hydrocarbon pyrolysis gas comprising hydrogen and C 1 , C 2 , C 3 or higher hydrocarbons is cooled in a cooling step, and then in a demethanization step, hydrogen / methane fractions and ethylene / ethane fractions are obtained. In the purification method of separating and then separating into ethylene fraction and ethane fraction in the ethylene separation step, the ethylene-ethane fraction separated in the demethanization step is decompressed to a low temperature, and the ethylene A method for separating and purifying a hydrocarbon pyrolysis gas, which comprises using an ethane fraction as a refrigerant and then introducing it into the ethylene separation step.
【請求項2】前記脱メタン工程で分離したエチレン・エ
タン留分を減圧膨張して低温度にし、この低温度のエチ
レン・エタン留分を前記冷却工程の冷媒として使用する
ことを特徴とする特許請求の範囲第1項に記載の炭化水
素熱分解ガスの分離精製法。
2. A patent characterized in that the ethylene / ethane fraction separated in the demethanization step is expanded under reduced pressure to a low temperature and the low temperature ethylene / ethane fraction is used as a refrigerant in the cooling step. The method for separating and purifying a hydrocarbon pyrolysis gas according to claim 1.
JP59256124A 1984-12-04 1984-12-04 Separation and purification method of hydrocarbon pyrolysis gas Expired - Lifetime JPH0780794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59256124A JPH0780794B2 (en) 1984-12-04 1984-12-04 Separation and purification method of hydrocarbon pyrolysis gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59256124A JPH0780794B2 (en) 1984-12-04 1984-12-04 Separation and purification method of hydrocarbon pyrolysis gas

Publications (2)

Publication Number Publication Date
JPS61134327A JPS61134327A (en) 1986-06-21
JPH0780794B2 true JPH0780794B2 (en) 1995-08-30

Family

ID=17288230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256124A Expired - Lifetime JPH0780794B2 (en) 1984-12-04 1984-12-04 Separation and purification method of hydrocarbon pyrolysis gas

Country Status (1)

Country Link
JP (1) JPH0780794B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245553B2 (en) * 1982-08-25 1990-10-09 Hitachi Ltd SUIREIYOSETSUYOREIKYAKUJIGU

Also Published As

Publication number Publication date
JPS61134327A (en) 1986-06-21

Similar Documents

Publication Publication Date Title
EP0029678B1 (en) Recovery of c2 hydrocarbons from demethanizer overhead
US7082787B2 (en) Refrigeration system
JP2575045B2 (en) Method for recovery and purification of ethylene
US5421167A (en) Enhanced olefin recovery method
US4368061A (en) Method of and apparatus for manufacturing ethylene
USRE33408E (en) Process for LPG recovery
CA1250220A (en) Process for the separation of a c in2 xx hydrocarbon fraction from natural gas
US5453559A (en) Hybrid condensation-absorption olefin recovery
US6308532B1 (en) System and process for the recovery of propylene and ethylene from refinery offgases
US3186182A (en) Low-temperature, low-pressure separation of gases
WO1999030093B1 (en) Enhanced ngl recovery processes
US4629484A (en) Process for separating hydrogen and methane from an ethylene rich stream
JP2869357B2 (en) Ethylene recovery method
CN112028731B (en) Method for separating propylene reaction product from propane dehydrogenation
US5253479A (en) Method and apparatus for recovery of ethylene and propylene from gas produced by the pyrolysis of hydrocarbons
JPS6096686A (en) Separation of hydrocarbon mixture
US4274850A (en) Rectification of natural gas
US4312652A (en) Separation system
US3320754A (en) Demethanization in ethylene recovery with condensed methane used as reflux and heat exchange medium
WO2007018506A1 (en) Low cost expansion of capacity for ethylene recovery
JPS6289634A (en) Energy collection from ethane condensation recycle stream
US4664687A (en) Process for the separation of C2+, C3+ or C4+ hydrocarbons
US4460396A (en) Method for producing purified ethylene through thermo-coupled distillation and ethylene-producing apparatus using the said method
WO2005050109A1 (en) Gas liquefying plant
US4675036A (en) Process for the separation of C2+ or C3+ hydrocarbons from a pressurized hydrocarbon stream