JPH0780642B2 - Control device for hydraulic elevator - Google Patents

Control device for hydraulic elevator

Info

Publication number
JPH0780642B2
JPH0780642B2 JP62007308A JP730887A JPH0780642B2 JP H0780642 B2 JPH0780642 B2 JP H0780642B2 JP 62007308 A JP62007308 A JP 62007308A JP 730887 A JP730887 A JP 730887A JP H0780642 B2 JPH0780642 B2 JP H0780642B2
Authority
JP
Japan
Prior art keywords
control valve
pressure
rising
flow rate
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62007308A
Other languages
Japanese (ja)
Other versions
JPS63176276A (en
Inventor
立郎 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62007308A priority Critical patent/JPH0780642B2/en
Publication of JPS63176276A publication Critical patent/JPS63176276A/en
Publication of JPH0780642B2 publication Critical patent/JPH0780642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、油圧エレベータの制御装置に関するもので
ある。
The present invention relates to a control device for a hydraulic elevator.

[従来の技術] 第2図は特開昭57-126369号公報に従来例として示され
たものと近似した油圧エレベータの制御装置の油圧回路
図である。
[Prior Art] FIG. 2 is a hydraulic circuit diagram of a control device for a hydraulic elevator similar to that shown as a conventional example in JP-A-57-126369.

第2図において、1は油圧エレベータのかご、2はかご
1を昇降させるための油圧ジャッキ、3は油圧ポンプ、
4は油圧ポンプ3を駆動する電動機、5は油タンク、6
は油圧ポンプ3の吐出側と油圧ジャッキ2を接続した上
昇用主回路、7は上昇用主回路6から分岐して油タンク
5に開口し、上昇用主回路6の一部を構成するバイパス
回路6aに設けた上昇用流量制御弁、8は上昇用流量制御
弁7の背室、9は上昇用主回路6と上昇用流量制御弁7
の背室8と油タンク5とに接続した上昇用パイロット回
路、10は上昇用パイロット回路9に設けた上昇用電磁
弁、11は上昇用パイロット回路9の上昇用電磁弁10両側
に配設した第1可変絞り、12は上昇用パイロット回路9
の上昇用電磁弁10両側に配設した第2可変絞り、13は上
昇用主回路6のバイパス回路6a及び上昇用パイロット回
路9の分岐部より油圧ジャッキ2側に設けた逆止弁であ
る。14は油圧ジャッキ2に接続した油タンク5側に開口
した下降用主回路、15は下降用主回路14に設けた下降用
流量制御弁、17は下降用主回路14と下降用流量制御弁15
の背室16と油タンク5とに接続した下降用パイロット回
路、18は下降用電磁弁、19は第3可変絞りであり、20は
第4可変絞りであり、第3可変絞り19と第4可変絞り20
は下降用パイロット回路17に下降用電磁弁18と共にこの
電磁弁18の両側に位置させて設けてある。
In FIG. 2, 1 is a cage of a hydraulic elevator, 2 is a hydraulic jack for moving the cage 1 up and down, 3 is a hydraulic pump,
4 is an electric motor for driving the hydraulic pump 3, 5 is an oil tank, 6
Is a lift main circuit connecting the discharge side of the hydraulic pump 3 and the hydraulic jack 2, and 7 is a bypass circuit that branches from the lift main circuit 6 and opens into the oil tank 5 to form a part of the lift main circuit 6. 6a, the rising flow control valve, 8 is the back chamber of the rising flow control valve 7, 9 is the rising main circuit 6 and the rising flow control valve 7
Of the rising pilot circuit connected to the back chamber 8 and the oil tank 5, 10 is a rising solenoid valve provided in the rising pilot circuit 9, 11 is arranged on both sides of the rising solenoid valve 10 of the rising pilot circuit 9. 1st variable throttle, 12 is pilot circuit 9 for ascent
The second variable throttles arranged on both sides of the rising solenoid valve 10 are reference valves 13 provided on the hydraulic jack 2 side of the bypass circuit 6a of the rising main circuit 6 and the branch portion of the rising pilot circuit 9. 14 is a lowering main circuit opened to the oil tank 5 side connected to the hydraulic jack 2, 15 is a lowering flow control valve provided in the lowering main circuit 14, 17 is a lowering main circuit 14 and a lowering flow control valve 15
Of the descent pilot circuit connected to the back chamber 16 and the oil tank 5, 18 is a descent solenoid valve, 19 is a third variable throttle, 20 is a fourth variable throttle, the third variable throttle 19 and the fourth variable throttle. Variable aperture 20
Is provided in the descending pilot circuit 17 together with the descending solenoid valve 18 on both sides of this solenoid valve 18.

次に、このように構成された従来例の動作について説明
する。
Next, the operation of the conventional example thus configured will be described.

かご1を上昇運転するときには、油圧ポンプ3の駆動に
よって上昇用主回路6に圧油が供給され、初期にはバイ
パス回路6aによって圧油の全流量が上昇用流量制御弁7
を通過し、油タンク5に還流される。上昇用電磁弁10が
励磁され、上昇用主回路6の圧油が上昇用パイロット回
路9の第1可変絞り11を通過して上昇用流量制御弁7の
背室8に流入すると、上昇用流量制御弁7がバイパス回
路6aの通路を閉じる方向に制御され、油タンク5への還
流油量を減少させることにより、上昇用主回路6から油
圧ジャッキ2に供給する圧油を多くし、かご1の上昇が
加速される。そして、上昇用流量制御弁7の通路が全閉
し、このときから油圧ポンプ3の全吐出流量の圧油が油
圧ジャッキ2に供給され、かご1が最高速度で上昇走行
する。次に、上昇用電磁弁10が消磁されると、上昇用流
量制御弁7の背室8の圧油が第2可変絞り12を通過して
油タンク5に流出し、このため、上昇用流量制御弁7は
通路を開く方向に制御され、油タンク5にバイパス回路
6aから還流する油量が増加し、油圧ジャッキ2への供給
油量が減少することにより、かご1が減速走行され、上
昇用流量制御弁7がこの通路を全開することにより、油
圧ポンプ3の全吐出流量の圧油が油タンク5に還流さ
れ、かご1が停止する。
When the car 1 is raised, the hydraulic pump 3 is driven to supply pressure oil to the rising main circuit 6, and the bypass circuit 6a initially causes the total flow rate of the pressure oil to rise.
And is returned to the oil tank 5. When the rising solenoid valve 10 is excited and the pressure oil of the rising main circuit 6 passes through the first variable throttle 11 of the rising pilot circuit 9 and flows into the back chamber 8 of the rising flow control valve 7, the rising flow rate is increased. The control valve 7 is controlled in the direction to close the passage of the bypass circuit 6a, and the amount of return oil to the oil tank 5 is reduced to increase the amount of pressure oil supplied from the raising main circuit 6 to the hydraulic jack 2. Is accelerated. Then, the passage of the ascending flow rate control valve 7 is fully closed, and from this time, the hydraulic oil at the full discharge flow rate of the hydraulic pump 3 is supplied to the hydraulic jack 2, and the car 1 travels upward at the maximum speed. Next, when the rising solenoid valve 10 is demagnetized, the pressure oil in the back chamber 8 of the rising flow rate control valve 7 passes through the second variable throttle 12 and flows out to the oil tank 5, so that the rising flow rate is increased. The control valve 7 is controlled to open the passage, and the oil tank 5 is bypassed.
By increasing the amount of oil recirculated from 6a and decreasing the amount of oil supplied to the hydraulic jack 2, the car 1 is decelerated and the rising flow control valve 7 fully opens this passage, so that the hydraulic pump 3 The pressure oil at the full discharge flow rate is returned to the oil tank 5, and the car 1 stops.

また、かご1を下降運転するときには、下降用電磁弁18
が励磁され、下降用流量制御弁15の背室16の油圧が下降
用パイロット回路17の第4可変絞り20を通過して油タン
ク5に流出し、下降用流量制御弁15の通路が開き、油圧
ジャッキ2内の圧油が油タンク5に排出され、かご1が
下降し加速される。そして、下降用流量制御弁15の通路
が全開し、このときから、かご1が最高速度で下降走行
する。次に、下降用電磁弁18が消磁されると、下降用主
回路14から圧油が第3可変絞り19を通過して下降用流量
制御弁15の背室16に流入し、下降用流量制御弁15は通路
を閉じる方向に移動し、下降用流量制御弁15を通過する
圧油の流量が減少し、かご1が減速走行され、下降用流
量制御弁15が通路を全閉されることにより、かご1が停
止する。
In addition, when the car 1 is lowered, the lowering solenoid valve 18
Is excited, the hydraulic pressure in the back chamber 16 of the descending flow control valve 15 passes through the fourth variable throttle 20 of the descending pilot circuit 17, flows out to the oil tank 5, and the passage of the descending flow control valve 15 is opened. The pressure oil in the hydraulic jack 2 is discharged to the oil tank 5, and the car 1 is lowered and accelerated. Then, the passage of the descending flow control valve 15 is fully opened, and from this time, the car 1 travels downward at the maximum speed. Next, when the descending solenoid valve 18 is demagnetized, the pressure oil from the descending main circuit 14 passes through the third variable throttle 19 and flows into the back chamber 16 of the descending flow rate control valve 15 to control the descending flow rate. The valve 15 moves in the direction to close the passage, the flow rate of the pressure oil passing through the descending flow rate control valve 15 is reduced, the car 1 is decelerated, and the descending flow rate control valve 15 is fully closed. , Car 1 stops.

[発明が解決しようとする問題点] 従来のエレベータの制御装置は、このように構成され、
かご内の乗客の人数などによる負荷の変動によって、油
圧ジャッキ2内の圧力が変動し、これに伴って、上昇用
流量制御弁7または下降用流量制御弁15を有する上昇用
主回路6または下降用主回路14の圧力も変化し、上昇用
パイロット回路9、下降用パイロット回路17を流れる圧
油の流量も変化する。このため、前記上昇用流量制御弁
7または下降用流量制御弁15の移動速度、即ち、通路開
閉速度が油圧ジャッキ2内の圧力によって異なり、かご
1の上昇、下降走行の加速,減速、更に、階床に合致さ
せて停止させるための微速走行(以下、単に『停止走
行』という)時間が変化する。したがって、乗心地が悪
く、運動効率が低下し、更に、所要動力量が増加すると
いう問題点があった。
[Problems to be Solved by the Invention] A conventional elevator control device is configured in this way,
The pressure in the hydraulic jack 2 fluctuates due to the fluctuation of the load due to the number of passengers in the car, etc., and accordingly, the rising main circuit 6 having the ascending flow control valve 7 or the descending flow control valve 15 or the descent. The pressure of the main circuit 14 for change also changes, and the flow rate of the pressure oil flowing through the ascending pilot circuit 9 and the descending pilot circuit 17 also changes. Therefore, the moving speed of the ascending flow rate control valve 7 or the descending flow rate control valve 15, that is, the passage opening / closing speed varies depending on the pressure in the hydraulic jack 2, and the car 1 is moved up and down to accelerate and decelerate. The slow speed travel (hereinafter simply referred to as “stop travel”) time for stopping the vehicle in conformity with the floor changes. Therefore, there are problems that the riding comfort is poor, the exercise efficiency is reduced, and the required power amount is increased.

そこで、この発明は、上記のような問題点を解決するた
めになされたもので、油圧ジャッキ内の圧力が変化して
も、かごの上昇、下降走行の加速,減速,停止走行時間
を一定にできる油圧エレベータの制御装置の提供を課題
とするものである。
Therefore, the present invention has been made to solve the above-described problems, and even if the pressure in the hydraulic jack changes, the car traveling speed is raised, the car is accelerated, decelerated, and stopped at a constant time. An object of the present invention is to provide a control device for a hydraulic elevator that can be used.

[問題点を解決するための手段] この発明に係る油圧エレベータの制御装置は、油圧ジャ
ッキに油を供給してかごを上昇運転させる上昇用主回路
に接続した上昇用流量制御弁と、前記油圧ジャッキから
油を排出してかごを下降運転させる下降用主回路に接続
した下降用流量制御弁と、前記上昇用流量制御弁と下降
用流量制御弁と油タンクとの間に配設し、一方に前記油
圧ジャッキ内の圧力を導き、他方に前記上昇用流量制御
弁及び下降用流量制御弁の下流側の圧力を導き、両方の
圧力差で動作するスプール弁が前記油圧ジャッキ内の圧
力が高いときに、前記上昇用流量制御弁及び下降用流量
制御弁から油タンクに流れるオリフィスを縮小する定差
減圧弁とを具備し、前記上昇用主回路の油圧を前記上昇
用流量制御弁の背室に接続するとともに、前記上昇用流
量制御弁の背室と前記上昇用流量制御弁及び前記定差減
圧弁の間の主回路に接続した上昇用パイロット回路と、
前記下降用主回路の油圧を前記下降用流量制御弁の背室
に接続するとともに、前記下降用流量制御弁の背室と前
記下降用流量制御弁及び前記定差減圧弁の間の主回路に
接続した下降用パイロット回路との少なくとも一方のパ
イロット回路とを具備したものである。
[Means for Solving Problems] A control device for a hydraulic elevator according to the present invention includes an ascending flow control valve connected to an ascending main circuit for supplying oil to a hydraulic jack to ascend the car, and the hydraulic pressure. A descending flow control valve connected to a descending main circuit for discharging oil from the jack to descend the car, and arranged between the ascending flow control valve, the descending flow control valve and the oil tank, and Leading the pressure in the hydraulic jack to the other, leading to the pressure on the downstream side of the ascending flow control valve and the descending flow control valve to the other, the spool valve operating with the pressure difference of both has a high pressure in the hydraulic jack. And a constant differential pressure reducing valve for reducing an orifice flowing from the ascending flow rate control valve and the descending flow rate control valve to the oil tank, and adjusting the hydraulic pressure of the ascending main circuit to the back chamber of the ascending flow control valve. With connecting to A rising pilot circuit connected to the main circuit between the back chamber of the rising flow control valve and the rising flow control valve and the constant difference pressure reducing valve;
The hydraulic pressure of the lowering main circuit is connected to the back chamber of the lowering flow control valve, and the main circuit between the lower chamber of the lowering flow control valve and the lowering flow control valve and the constant difference pressure reducing valve is connected. It is provided with at least one of the connected pilot circuits for descending.

[作用] この発明においては、上昇用主回路の油圧を上昇用流量
制御弁の背室に接続した上昇用パイロット回路及び下降
用主回路の油圧を下降用流量制御弁の背室に接続した下
降用パイロット回路を、上昇用流量制御弁と下降用流量
制御弁と定差減圧弁との間に接続したものであるから、
上昇用主回路または下降用主回路内の圧力及び上昇用パ
イロット回路または下降用パイロット回路の下流端の圧
力が油圧ジャッキ内の圧力に影響されることなく、常に
一定になり、上昇用パイロット回路または下降用パイロ
ット回路を通過する圧油及び上昇用流量制御弁または下
降用流量制御弁から流出する圧油の流量もそれぞれ一定
になり、油圧ジャッキ内の圧力が変化しても、かごの上
昇,下降走行の加速,減速,停止走行時間を一定にする
ことができる。
[Operation] In the present invention, the hydraulic pressure of the rising main circuit is connected to the back chamber of the rising flow control valve, and the hydraulic pressure of the lowering main circuit is connected to the back chamber of the lowering flow control valve. Since the pilot circuit for use is connected between the ascending flow control valve, the descending flow control valve and the constant pressure reducing valve,
The pressure in the rising main circuit or the falling main circuit and the pressure at the downstream end of the rising pilot circuit or the falling pilot circuit are always constant without being affected by the pressure in the hydraulic jack, and the rising pilot circuit or The flow rate of the pressure oil that passes through the descending pilot circuit and the pressure oil that flows out of the ascending flow control valve or the descending flow control valve will also be constant, and even if the pressure inside the hydraulic jack changes, the car will rise and fall. Acceleration, deceleration, and stopping of traveling can be kept constant.

[実施例] 以下、この発明の一実施例を第1図について説明する。[Embodiment] An embodiment of the present invention will be described below with reference to FIG.

第1図はこの発明の一実施例にかかる油圧エレベータの
制御装置を示す油圧回路図である。なお、図中、従来例
と同一符号及び記号は従来例の構成部分と同一または相
当する構成部分を示すものであるから、ここでは重複す
る説明を省略する。
FIG. 1 is a hydraulic circuit diagram showing a control device for a hydraulic elevator according to an embodiment of the present invention. In the figure, the same reference numerals and symbols as those of the conventional example indicate the same or corresponding components as those of the conventional example, and therefore, duplicated description is omitted here.

第1図において、21は定差減圧弁、22は定差減圧弁21に
油圧ジャッキ2の圧力を導く第1パイロット回路、23は
定差減圧弁21に定差減圧弁21の直前の圧力を導く第2パ
イロット回路、24は定差減圧弁21を設けた還流主回路で
ある。還流主回路24は、一端が上昇用主回路6の一部を
構成するバイパス回路6aの上昇用流量制御弁7の下流側
と下降用主回路14の下降用流量制御弁15下流側が接続す
る部分に接続され、定差減圧弁21を介して他端が油タン
ク5に開口されている。また、上昇用パイロット回路9
及び下降用パイロット回路17の下流端は、第2パイロッ
ト回路23が還流主回路24に接続された部分直前のバイパ
ス回路6a及び下降用主回路14にそれぞれ接続されてい
る。
In FIG. 1, 21 is a constant pressure reducing valve, 22 is a first pilot circuit that guides the pressure of the hydraulic jack 2 to the constant pressure reducing valve 21, and 23 is a pressure immediately before the constant pressure reducing valve 21 to the constant pressure reducing valve 21. A second pilot circuit 24, which leads, is a return main circuit provided with a constant pressure reducing valve 21. The reflux main circuit 24 is a portion where one end of the bypass circuit 6a, which constitutes a part of the rising main circuit 6, is connected to the downstream side of the rising flow control valve 7 and the downstream main circuit 14 to the falling flow control valve 15 downstream side. , And the other end is opened to the oil tank 5 via the constant pressure reducing valve 21. In addition, the pilot circuit 9 for rising
The downstream ends of the descending pilot circuits 17 are respectively connected to the bypass circuit 6a and the descending main circuit 14 immediately before the portion where the second pilot circuit 23 is connected to the return main circuit 24.

更に、定差減圧弁21はスプール弁21aの一側に第1パイ
ロット回路22による油圧ジャッキ2内の圧力が作用する
ピストン21bが設けられ、前記スプール弁21aの他端にば
ね21eのばね力と第2パイロット回路23による上昇用流
量制御弁7、下降用流量制御弁15の下流側の圧力、即
ち、還流主回路24の定差減圧弁21の上流側の圧力が作用
するピストン21cが設けられ、油圧ジャッキ2内の圧力
が高いときにスプール弁21に設けたV字形切欠からなる
オリフィス21dが縮小するようにされたものである。な
お、この実施例の前記構成以外の構成は、第2図に示す
ものと同様である。
Further, the constant pressure reducing valve 21 is provided with a piston 21b on one side of the spool valve 21a on which the pressure in the hydraulic jack 2 by the first pilot circuit 22 acts, and at the other end of the spool valve 21a, a spring force of a spring 21e is provided. A piston 21c on which the pressure on the downstream side of the ascending flow rate control valve 7 and the descending flow rate control valve 15 by the second pilot circuit 23, that is, the pressure on the upstream side of the constant pressure reducing valve 21 of the reflux main circuit 24 acts is provided. When the pressure in the hydraulic jack 2 is high, the orifice 21d formed by the V-shaped notch provided in the spool valve 21 is reduced. The structure other than the above structure of this embodiment is the same as that shown in FIG.

次に、この実施例の動作について説明する。Next, the operation of this embodiment will be described.

かご1を上昇運転するときには、油圧ポンプ3の駆動に
よって上昇用主回路6に圧油が供給される。このとき、
上昇用流量制御弁7を通過した定差減圧弁21を通って油
タンク5に還流される。そして、定差減圧弁21の一側に
は第1パイロット回路22により油圧ジャッキ2内の圧力
が導かれ、他端には第2パイロット回路23により定差減
圧弁21の直前の還流主回路24の圧力とばね力が作用して
いる。
When the car 1 is raised, the hydraulic pump 3 is driven to supply pressure oil to the raising main circuit 6. At this time,
The oil is returned to the oil tank 5 through the constant pressure reducing valve 21 that has passed through the rising flow rate control valve 7. Then, the pressure in the hydraulic jack 2 is guided to one side of the constant pressure reducing valve 21 by the first pilot circuit 22, and the return main circuit 24 immediately before the constant pressure reducing valve 21 is guided to the other end by the second pilot circuit 23. The pressure and the spring force are acting.

これによって、油圧ジャッキ2内の圧力が高いときに定
差減圧弁21のスプール弁21aが移動する。スプール弁21a
が油圧ジャッキ2内の圧力が高いときに、上昇用流量制
御弁及び下降用流量制御弁15から油タンク5に流れるオ
リフィスを縮小する。油圧ジャッキ2内の圧力変化の影
響を受けることなく、油圧ジャッキ2内の圧力と定差減
圧弁21の直前の還流主回路24の圧力の差がほぼ一定にな
る。このため、かご1の上昇運転時に、油圧ポンプ3か
ら吐出された圧油の圧力、即ち、上昇用主回路6内の圧
力は油圧ジャッキ2内の圧力とほぼ同一となる。また、
上昇用パイロット回路9は一端が上昇用主回路6に、他
端が定差減圧弁21の直前に接続されているので、上昇用
パイロット回路9の両端の圧力差が油圧ジャッキ2内の
圧力変化の影響を受けることなく、常にほぼ一定にな
り、上昇用パイロット回路9を通過する圧油の流量がほ
ぼ一定となる。即ち、上昇用電磁弁10が励磁されたとき
に、上昇用パイロット回路9を通過して上昇用流量制御
弁7の背室8に流入する圧油の流量と、上昇用電磁弁10
が消磁されたときに、上昇用流量制御弁7の背室8から
流出する油圧の流量は、ともに油圧ジャッキ2内の圧力
にかかわらずほぼ一定になる。これは、上昇用流量制御
弁7が開閉する時間が一定になることであり、かご1の
動きは、上昇運転時に加速,減速,停止走行時間が油圧
ジャッキ2内の圧力に関係なくほぼ一定になり、安定し
た上昇運転走行になる。
As a result, the spool valve 21a of the constant pressure reducing valve 21 moves when the pressure inside the hydraulic jack 2 is high. Spool valve 21a
When the pressure in the hydraulic jack 2 is high, the orifice flowing from the ascending flow control valve and the descending flow control valve 15 to the oil tank 5 is reduced. The difference between the pressure in the hydraulic jack 2 and the pressure in the return main circuit 24 immediately before the constant difference pressure reducing valve 21 becomes substantially constant without being affected by the pressure change in the hydraulic jack 2. Therefore, when the car 1 is in the ascending operation, the pressure of the pressure oil discharged from the hydraulic pump 3, that is, the pressure in the ascending main circuit 6 becomes substantially the same as the pressure in the hydraulic jack 2. Also,
Since one end of the ascending pilot circuit 9 is connected to the ascending main circuit 6 and the other end immediately before the constant pressure reducing valve 21, the pressure difference between the both ends of the ascending pilot circuit 9 causes a pressure change in the hydraulic jack 2. Is not affected by the above, it becomes almost constant at all times, and the flow rate of the pressure oil passing through the ascending pilot circuit 9 becomes substantially constant. That is, when the rising solenoid valve 10 is excited, the flow rate of the pressure oil that passes through the rising pilot circuit 9 and flows into the back chamber 8 of the rising flow control valve 7 and the rising solenoid valve 10
When is demagnetized, the flow rate of the hydraulic pressure flowing out from the back chamber 8 of the rising flow control valve 7 is substantially constant regardless of the pressure inside the hydraulic jack 2. This means that the opening and closing time of the rising flow control valve 7 becomes constant, and the movement of the car 1 is almost constant regardless of the pressure in the hydraulic jack 2 during the ascending, decelerating and stopping traveling times during the ascending operation. It becomes a stable ascending driving run.

また、かご1を下降運転するときには、油圧ジャッキ2
内の圧油を、下降用流量制御弁15、定差減圧弁21を通し
て油圧タンク5に排出する。このとき、定差減圧弁21の
動作は、上述した上昇運転時と同じである。そして、下
降用パイロット回路17は、一端が下降用主回路14に接続
され、他端が定差減圧弁21の直前に接続されているの
で、下降用パイロット回路17の両端の圧力差が油圧ジャ
ッキ2内の圧力にかかわらず、常にほぼ一定になり、下
降用パイロット回路17を通過する圧油の流量がほぼ一定
になる。即ち、下降用電磁弁18が励磁されたときに下降
用流量制御弁15の背室16から下降用パイロット回路17を
通って流出する圧油の流量と、下降用電磁弁18が消磁さ
れたときに下降用電磁弁18の背室16に流入する圧油の流
量は、ともに油圧ジャッキ2内の圧力にかかわらずほぼ
一定になる。これは、下降用流量制御弁15が開閉する時
間がほぼ一定になることであり、かご1の動きは、下降
運転時に加速,減速,停止走行時間が油圧ジャッキ2内
の圧力に関係なくほぼ一定になり、安定した下降運転走
行になる。
When the car 1 is moved down, the hydraulic jack 2
The pressure oil therein is discharged to the hydraulic tank 5 through the descending flow rate control valve 15 and the constant difference pressure reducing valve 21. At this time, the operation of the constant pressure reducing valve 21 is the same as during the ascending operation described above. Since one end of the descending pilot circuit 17 is connected to the descending main circuit 14 and the other end is connected immediately before the constant difference pressure reducing valve 21, the pressure difference between the both ends of the descending pilot circuit 17 is reduced to the hydraulic jack. Regardless of the pressure in 2, the flow rate of the pressure oil passing through the descending pilot circuit 17 is almost constant and is almost constant. That is, when the descending solenoid valve 18 is excited, the flow rate of pressure oil flowing from the back chamber 16 of the descending flow control valve 15 through the descending pilot circuit 17 and when the descending solenoid valve 18 is demagnetized. The flow rate of the pressure oil flowing into the back chamber 16 of the descending solenoid valve 18 is substantially constant regardless of the pressure inside the hydraulic jack 2. This means that the opening / closing time of the descending flow rate control valve 15 becomes almost constant, and the movement of the car 1 is almost constant regardless of the pressure in the hydraulic jack 2 during the descending operation. It becomes a stable descent running.

このように、本実施例の油圧エレベータの制御装置は、
油圧ジャッキ2に油を供給してかご1を上昇運転させる
上昇用主回路6に接続した上昇用流量制御弁7と、油圧
ジャッキ2から油を排出してかご1を下降運転させる下
降用主回路14に接続した下降用流量制御弁15と、上昇用
流量制御弁7と下降用流量制御弁15と油タンク5との間
に配設し、一方に油圧ジャッキ2内の圧力を導き、他方
に上昇用流量制御弁7及び下降用流量制御弁15の下流側
の圧力を導き、両方の圧力差で動作するスプール弁21a
が油圧ジャッキ2内の圧力が高いときに、上昇用流量制
御弁7及び下降用流量制御弁15から油タンク5に流れる
オリフィスを縮小する定差減圧弁21と、上昇用主回路6
の油圧を上昇用流量制御弁7の背室8と定差減圧弁21に
接続した上昇用パイロット回路9と、下降用主回路14の
油圧を下降用流量制御弁15の背室16と定差減圧弁21に接
続した下降用パイロット回路17とを具備するものであ
る。
As described above, the control device for the hydraulic elevator according to the present embodiment,
An ascending flow control valve 7 connected to an ascending main circuit 6 for supplying oil to the hydraulic jack 2 to make the car 1 ascend, and a descending main circuit for discharging oil from the hydraulic jack 2 and making the car 1 descend. It is arranged between the descending flow rate control valve 15 connected to 14, the ascending flow rate control valve 7, the descending flow rate control valve 15 and the oil tank 5, and introduces the pressure in the hydraulic jack 2 to one side and to the other side. A spool valve 21a that guides the pressure on the downstream side of the ascending flow control valve 7 and the descending flow control valve 15 and operates with the pressure difference between them.
When the pressure in the hydraulic jack 2 is high, a constant differential pressure reducing valve 21 that reduces the orifices flowing from the rising flow control valve 7 and the falling flow control valve 15 to the oil tank 5, and the rising main circuit 6
Hydraulic pressure of the rising pilot circuit 9 connected to the back chamber 8 of the rising flow control valve 7 and the constant pressure reducing valve 21, and the hydraulic pressure of the lowering main circuit 14 to the back chamber 16 of the lowering flow control valve 15 The lowering pilot circuit 17 is connected to the pressure reducing valve 21.

したがって、上昇用主回路6の油圧を上昇用流量制御弁
7の背室8に接続した上昇用パイロット回路9を、上昇
用流量制御弁7と下降用流量制御弁15と定差減圧弁21と
の間に、また、下降用主回路14の油圧を下降用流量制御
弁15の背室16に接続した下降用パイロット回路17を、上
昇用流量制御弁7と下降用流量制御弁15と定差減圧弁21
との間に、それぞれ接続したものであるから、上昇用主
回路7または下降用主回路15内の圧力及び上昇用パイロ
ット回路6または下降用パイロット回路14の下流端の圧
力が油圧ジャッキ2内の圧力に影響されることなく常に
ほぼ一定になり、上昇用パイロット回路9または下降用
パイロット回路22を通過する圧油及び上昇用流量制御弁
7または下降用流量制御弁15から流出する圧油の流量も
それぞれほぼ一定になり、油圧ジャッキ2内の圧力が変
化しても、かご1の上昇,下降走行の加速,減速,停止
走行時間をほぼ一定にすることができる。
Therefore, the ascending pilot circuit 9 in which the hydraulic pressure of the ascending main circuit 6 is connected to the back chamber 8 of the ascending flow rate control valve 7 is connected to the ascending flow rate control valve 7, the descending flow rate control valve 15, and the constant difference pressure reducing valve 21. In the meantime, the lowering pilot circuit 17 in which the hydraulic pressure of the lowering main circuit 14 is connected to the back chamber 16 of the lowering flow rate control valve 15 has a constant difference between the rising flow rate control valve 7 and the lowering flow rate control valve 15. Pressure reducing valve 21
And the pressure in the rising main circuit 7 or the lowering main circuit 15 and the pressure at the downstream end of the rising pilot circuit 6 or the lowering pilot circuit 14 in the hydraulic jack 2 respectively. The flow rate of pressure oil flowing through the ascending pilot circuit 9 or the descending pilot circuit 22 and flowing out from the ascending flow rate control valve 7 or the descending flow rate control valve 15 is almost constant without being affected by the pressure. Are also substantially constant, and even if the pressure in the hydraulic jack 2 changes, the acceleration, deceleration, and stop traveling times of the car 1 ascending and descending can be made substantially constant.

なお、この発明を実施する場合には、必ずしもこの実施
例に限られることなく、上昇用流量制御弁7と下降用流
量制御弁15は、一方の制御弁の背室と前記制御弁及び前
記定差減圧弁の間の主回路に接続することによって動作
を決定するものであればよく、また、前記両上昇用流量
制御弁7及び下降用流量制御弁15のうち他方の制御弁の
背室と上昇用主回路6、下降用主回路14の対応する上昇
用流量制御弁7または下降用流量制御弁15と油タンク5
の間に接続するようにすればよい。
When the present invention is carried out, the present invention is not necessarily limited to this embodiment, and the ascending flow control valve 7 and the descending flow control valve 15 include the back chamber of one control valve, the control valve, and the constant valve. It is only necessary to determine the operation by connecting it to the main circuit between the differential pressure reducing valves, and the back chamber of the other control valve of the both ascending flow control valve 7 and the descending flow control valve 15. Ascending flow control valve 7 or descending flow control valve 15 and oil tank 5 corresponding to the ascending main circuit 6 and the descending main circuit 14.
It should be connected between.

[発明の効果] 以上説明したように、この発明の油圧エレベータの制御
装置によれば、上昇用主回路の油圧を上昇用流量制御弁
の背室に接続した上昇用パイロット回路及び下降用主回
路の油圧を下降用流量制御弁の背室に接続した下降用パ
イロット回路を、各々上昇用流量制御弁と定差減圧弁ま
たは下降用流量制御弁と定差減圧弁との間に接続し、上
昇用主回路または下降用主回路内の圧力及び上昇用パイ
ロット回路または下降用パイロット回路の下流端の圧力
が油圧ジャッキ内の圧力に影響されることなく、常にほ
ぼ一定となり、上昇用パイロット回路または下降用パイ
ロット回路を通過する圧油及び上昇用流量制御弁または
下降用流量制御弁から流出する圧油の流量もそれぞれほ
ぼ一定になり、油圧ジャッキ内の圧力が変化しても、か
ごの上昇,下降走行の加速,減速,停止走行時間をほぼ
一定にすることができる。したがって、かご内の乗客の
人数などによる負荷の変動に関係なく、安定した乗心地
を確保でき、また運転効率を向上させ、所要動力量を低
減させ得るという効果がある。
[Effects of the Invention] As described above, according to the control device for a hydraulic elevator of the present invention, the oil pressure of the ascending main circuit is connected to the back chamber of the ascending flow control valve, and the ascending pilot circuit and the descending main circuit. Connect the lowering pilot circuit in which the hydraulic pressure of the above is connected to the back chamber of the lowering flow control valve between the rising flow control valve and the constant difference pressure reducing valve or between the lowering flow control valve and the constant difference pressure reducing valve, respectively. The pressure in the main circuit for lowering or the main circuit for lowering and the pressure at the downstream end of the pilot circuit for lowering or the pilot circuit for lowering are almost always constant without being affected by the pressure in the hydraulic jack. The flow rate of the pressure oil that passes through the pilot pilot circuit and the flow rate of the pressure oil that flows out from the rising flow control valve or the falling flow control valve becomes almost constant, and even if the pressure in the hydraulic jack changes, the cage The rise, fall, acceleration, deceleration, and stop traveling times of the vehicle can be made almost constant. Therefore, there is an effect that the stable riding comfort can be secured, the driving efficiency can be improved, and the required power amount can be reduced irrespective of the fluctuation of the load due to the number of passengers in the car.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例にかかる油圧エレベータの
制御装置を示す油圧回路図、第2図は従来の油圧エレベ
ータの制御装置を示す油圧回路図である。 図において、 1……かご、2……油圧ジャッキ、5……油タンク、6
……上昇用主回路、6a……バイパス回路、7……上昇用
流量制御弁、8,16……背室、9……上昇用パイロット回
路、10,18……電磁弁、11,12,19,20……可変絞り、14…
…下降用主回路、15……下降用流量制御弁、17……下降
用パイロット回路、21……定差減圧弁、22,23……第1,
第2パイロット回路、24……還流主回路 である。 なお、図中、同一符号及び記号は同一または相当する構
成部分を示すものである。
FIG. 1 is a hydraulic circuit diagram showing a hydraulic elevator control device according to an embodiment of the present invention, and FIG. 2 is a hydraulic circuit diagram showing a conventional hydraulic elevator control device. In the figure, 1 ... basket, 2 ... hydraulic jack, 5 ... oil tank, 6
...... Ascending main circuit, 6a ...... Bypass circuit, 7 ...... Ascending flow control valve, 8, 16 ...... Back chamber, 9 ...... Ascending pilot circuit, 10, 18 ...... Solenoid valve, 11, 12, 19,20 ... Variable diaphragm, 14 ...
… Main circuit for lowering, 15 …… Flow control valve for lowering, 17 …… Pilot circuit for lowering, 21 …… Constant pressure reducing valve, 22,23 …… First, 1st
2nd pilot circuit, 24 ... It is a return main circuit. In the drawings, the same reference numerals and symbols indicate the same or corresponding constituent parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】油圧ジャッキに油を供給してかごを上昇運
転させる上昇用主回路に接続した上昇用流量制御弁と、 前記油圧ジャッキから油を排出してかごを下降運転させ
る下降用主回路に接続した下降用流量制御弁と、 前記上昇用流量制御弁あるいは下降用流量制御弁と油タ
ンクとの間に配設し、一方に前記油圧ジャッキ内の圧力
を導き、他方に前記上昇用流量制御弁あるいは下降用流
量制御弁の下流側の圧力を導き、両方の圧力差で動作す
るスプール弁が前記油圧ジャッキ内の圧力が高いとき
に、前記上昇用流量制御弁あるいは下降用流量制御弁か
ら油タンクに流れるオリフィスを縮小する定差減圧弁
と、 前記上昇用流量制御弁の背室と前記上昇用流量制御弁及
び前記定差減圧弁の間の主回路に接続した上昇用パイロ
ット回路と、前記下降用流量制御弁の背室と前記下降用
流量制御弁及び前記定差減圧弁の間の主回路に接続した
下降用パイロット回路との少なくとも一方のパイロット
回路と を具備することを特徴とする油圧エレベータの制御装
置。
1. A raising flow control valve connected to a raising main circuit for supplying oil to a hydraulic jack to raise a car, and a lowering main circuit for discharging oil from the hydraulic jack to lower a car. Is installed between the descending flow rate control valve connected to the oil tank and the ascending flow rate control valve or the descending flow rate control valve and the oil tank, and the pressure in the hydraulic jack is introduced to one side and the rising flow rate to the other side. When the spool valve that guides the pressure on the downstream side of the control valve or the flow control valve for lowering and operates at a pressure difference between the two is high in the pressure inside the hydraulic jack, from the flow control valve for raising or the flow control valve for lowering A constant pressure reducing valve for reducing the orifice flowing to the oil tank, a rising pilot circuit connected to the main circuit between the back chamber of the rising flow rate control valve and the rising flow rate control valve and the constant pressure reducing valve, The descent A back chamber of the flow control valve, and at least one pilot circuit of a lowering pilot circuit connected to the main circuit between the lowering flow control valve and the constant difference pressure reducing valve. Control device.
JP62007308A 1987-01-14 1987-01-14 Control device for hydraulic elevator Expired - Fee Related JPH0780642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62007308A JPH0780642B2 (en) 1987-01-14 1987-01-14 Control device for hydraulic elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62007308A JPH0780642B2 (en) 1987-01-14 1987-01-14 Control device for hydraulic elevator

Publications (2)

Publication Number Publication Date
JPS63176276A JPS63176276A (en) 1988-07-20
JPH0780642B2 true JPH0780642B2 (en) 1995-08-30

Family

ID=11662377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62007308A Expired - Fee Related JPH0780642B2 (en) 1987-01-14 1987-01-14 Control device for hydraulic elevator

Country Status (1)

Country Link
JP (1) JPH0780642B2 (en)

Also Published As

Publication number Publication date
JPS63176276A (en) 1988-07-20

Similar Documents

Publication Publication Date Title
US4800990A (en) Three speed valve control for high performance hydraulic elevator
JPH08312604A (en) Flow rate detector of liquid-operated elevator control valve
EP0222801A1 (en) Electrically controlled valve apparatus.
JPH0780642B2 (en) Control device for hydraulic elevator
JPH04277172A (en) Fluid pressure elevator and method of controlling thereof
JPH11322207A (en) Hydraulic elevator device
JPH075240B2 (en) Hydraulic elevator valve device
JP3175418B2 (en) Hydraulic elevator controller
JPH0742057B2 (en) Hydraulic elevator controller
JPH0522544Y2 (en)
JP3148396B2 (en) Hydraulic elevator equipment
JPS58148160A (en) Controller for speed of hydraulic elevator
JPH075239B2 (en) Hydraulic elevator valve device
JPS61150974A (en) Controller for flow rate of compressed oil for hydraulic elevator
JPH0212873B2 (en)
JP3175258B2 (en) Hydraulic elevator equipment
JPH10101277A (en) Hydralic elevator device
JP3257384B2 (en) Hydraulic elevator equipment
JP3449134B2 (en) Hydraulic elevator equipment
JP3036646U (en) Hydraulic elevator equipment
JPH075242B2 (en) Hydraulic elevator valve equipment
JPH01127580A (en) Controller for hydraulic elevator
JP3368554B2 (en) Hydraulic elevator equipment
JP3435934B2 (en) Hydraulic elevator equipment
JPH0121070B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees