JPH0780524A - Method for controlling plate thickness in plate rolling - Google Patents
Method for controlling plate thickness in plate rollingInfo
- Publication number
- JPH0780524A JPH0780524A JP5247455A JP24745593A JPH0780524A JP H0780524 A JPH0780524 A JP H0780524A JP 5247455 A JP5247455 A JP 5247455A JP 24745593 A JP24745593 A JP 24745593A JP H0780524 A JPH0780524 A JP H0780524A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- plate thickness
- thickness
- plate
- agc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Control Of Metal Rolling (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、板厚精度の優れた圧
延板を安定製造することができる板圧延での自動板厚制
御方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic plate thickness control method in plate rolling capable of stably producing a rolled plate having excellent plate thickness accuracy.
【0002】[0002]
【従来技術とその課題】図3で示したように、圧延機の
上下圧延ロ−ル(ワ−クロ−ル1,バックアップロ−ル
2)間で板材(鋼板等)を圧延する場合には、圧延機出
側の板厚が被圧延材3の“圧延機入側での板厚変動”や
“圧延方向の硬さ不均一”に起因して変動しやすく、従
って精度の良い圧延板を得るためには的確な上下圧延ロ
−ル間隔の制御が必要となる。2. Description of the Related Art As shown in FIG. 3, when a plate material (steel plate or the like) is rolled between upper and lower rolling rolls (work roll 1, backup roll 2) of a rolling mill. However, the strip thickness on the delivery side of the rolling mill tends to vary due to the "thickness variation on the rolling mill entry side" or "uneven hardness in the rolling direction" of the material 3 to be rolled, and therefore a highly accurate rolling strip should be provided. In order to obtain it, it is necessary to accurately control the interval between the upper and lower rolling rolls.
【0003】そこで、従来、圧延機出側の板厚が目標値
から外れないように、圧延機の前後に配設した入側板厚
偏差検出器4あるいは出側板厚偏差検出器5、また圧延
ロ−ルに設置した圧延反力測定器(ロ−ドセル)6等に
より、圧延機の入側又は出側における板厚偏差あるいは
圧延中に上下圧延ロ−ルに加わる圧延反力(荷重)を測
定しながら上下圧延ロ−ルの間隔を制御する自動板厚制
御(AGC:AutomaticGauge Contorol)が行われてき
た。Therefore, conventionally, in order to prevent the strip thickness on the delivery side of the rolling mill from deviating from the target value, the inlet strip thickness deviation detector 4 or the outlet strip thickness deviation detector 5 arranged before and after the rolling mill, or the rolling strip. -A rolling reaction force measuring device (load cell) 6 installed in the roll measures the thickness deviation on the inlet side or the outlet side of the rolling mill or the rolling reaction force (load) applied to the vertical rolling roll during rolling. However, automatic gauge control (AGC: Automatic Gauge Control) for controlling the interval between the upper and lower rolling rolls has been performed.
【0004】なお、圧延機出側の板厚偏差検出器の偏差
出力を用いて上下圧延ロ−ルの間隔を制御する手法で
は、圧延機出側の板厚偏差検出器に設定する基準値は被
圧延材の板厚目標値であり、板厚偏差検出器からの偏差
出力に比例させて圧延機の上下圧延ロ−ルの間隔を制御
すること(モニタAGC)によって目標の板厚を得よう
としている。In the method of controlling the interval between the upper and lower rolling rolls by using the deviation output of the strip thickness deviation detector on the rolling mill exit side, the reference value set in the strip thickness deviation detector on the rolling mill exit side is It is a target value for the thickness of the material to be rolled, and the target thickness can be obtained by controlling the interval between the upper and lower rolling rolls of the rolling mill in proportion to the deviation output from the thickness deviation detector (monitor AGC). I am trying.
【0005】一方、圧延機入側の板厚偏差検出器の偏差
出力を用いた上下圧延ロ−ル間隔の制御は、入側におけ
る板厚の変化を基にして出側の板厚変動を予想し、この
予想結果に基づいて出側の板厚変動を抑制しようとする
もので、例えば入側の板厚が基準値よりも大きい場合に
は予め上下ロ−ルの間隔をやや小さく調節することで出
側の板厚を目標の板厚に一致させようとする手法である
{フィ−ドフォワ−ドAGC(以降“FF−AGC”と
記す)}。On the other hand, the control of the interval between the upper and lower rolling rolls using the deviation output of the strip thickness deviation detector on the inlet side of the rolling mill predicts the sheet thickness variation on the outlet side on the basis of the sheet thickness variation on the inlet side. However, it is intended to suppress the variation of the plate thickness on the output side based on this predicted result.For example, when the plate thickness on the input side is larger than the reference value, the interval between the upper and lower rolls should be adjusted to be slightly smaller in advance. Is a method for making the outgoing side plate thickness match the target plate thickness {Feed Forward AGC (hereinafter referred to as "FF-AGC")}.
【0006】また、圧延中の上下ロ−ルに加わる圧延反
力(荷重)に相応させてロ−ルの間隔を制御する手法に
は、圧延開始から一定時間(極く短い噛み込み時間)を
経た後の制御開始(=ロックオン)時点における圧延反力
(荷重)P* ("ロックオン荷重”と呼ばれる)を基準と
し、圧延中の圧延反力(荷重)Pを測定しながら「P−
P* 」を算出して、この値に比例する量だけ上下ロ−ル
の間隔を変化させることで圧延方向での板厚の偏差が生
じないように制御する方法(以降“BISRA−AG
C”と記す)と、目標厚にまで圧下する際に生じる圧延
反力を予め推定し(この推定値をP0 とする)、圧延中
の圧延反力(荷重)Pを測定しながらこれと推定値との
差「P−P0 」を算出して、この値に比例する量だけ上
下ロ−ルの間隔を変化させることで目標とする板厚を得
るように制御する方法{絶対値AGC(以降“ABS−
AGC”と記す)}とがある。Further, as a method of controlling the roll interval in accordance with the rolling reaction force (load) applied to the upper and lower rolls during rolling, a certain time (extremely short biting time) from the start of rolling is used. Rolling reaction force (load) P * (called "lock-on load") at the start of control (= lock-on) after passing is used as a reference, while measuring rolling reaction force (load) P during rolling, "P-
P * "is calculated and the interval between the upper and lower rolls is changed by an amount proportional to this value to control so as to prevent the deviation of the plate thickness in the rolling direction (hereinafter referred to as" BISRA-AG
C ”), the rolling reaction force generated when rolling down to the target thickness is estimated in advance (this estimated value is P 0 ), and the rolling reaction force (load) P during rolling is measured. A method of calculating the difference "P-P 0 " from the estimated value and changing the interval between the upper and lower rolls by an amount proportional to this value so as to obtain a target plate thickness (absolute value AGC (Hereinafter "ABS-
AGC ″)).
【0007】しかし、何れのAGCも一長一短があり、
そのため例えばリバ−ス圧延が適用される厚鋼板等の場
合には、圧延パスの段階によって適用するAGCの種類
を使い分けているのが現状であった。However, each AGC has advantages and disadvantages,
Therefore, for example, in the case of a thick steel plate to which the reversal rolling is applied, the type of AGC to be applied is properly used depending on the stage of the rolling pass.
【0008】ここで、各AGCに関する長所短所の概要
を挙げると、例えばモニタAGCでは、被圧延材の板厚
そのものを計測しながら目標厚となるように上下圧延ロ
−ルの間隔を制御するためモデルの誤差とは無関係に目
標の板厚を得ることができるものの、圧延機出側の板厚
偏差をフィ−ドバックして圧延ロ−ル間隔の制御を行う
ことから制御遅れが生じる上、圧延機に入る前の被圧延
材に厚さや硬さの急激な変動があるとそれに十分対処で
きず、製品板厚精度が悪くなるという問題を有してい
た。Here, the advantages and disadvantages of each AGC will be summarized. For example, in the monitor AGC, the interval between the upper and lower rolling rolls is controlled so that the target thickness is obtained while measuring the plate thickness itself of the material to be rolled. Although the target strip thickness can be obtained irrespective of the model error, control delay occurs because the rolling roll interval is controlled by feeding back the strip thickness deviation on the delivery side of the rolling mill and rolling. If there is a sudden change in thickness or hardness of the material to be rolled before entering the machine, it cannot be sufficiently dealt with, resulting in a problem that the product sheet thickness accuracy deteriorates.
【0009】これに対して、FF−AGCでは、圧延機
入側の板厚偏差に基づいて圧延ロ−ル間隔の制御を行う
ことから、圧延前材料の厚さ変動にも的確に対象するこ
とができるため上記モニタAGCに比べると非常に有利
ではあるものの、被圧延材の圧延方向における硬さの不
均一に対応することが難しく、それ故やはり板厚精度の
点で十分とは言えなかった。On the other hand, in the FF-AGC, since the rolling roll interval is controlled based on the sheet thickness deviation on the rolling mill entrance side, the thickness variation of the material before rolling can be accurately controlled. Although it is very advantageous as compared with the above monitor AGC, it is difficult to deal with uneven hardness of the material to be rolled in the rolling direction, and therefore, it cannot be said that the plate thickness accuracy is sufficient. .
【0009】一方、BISRA−AGCは、一つの板内
における板厚偏差の抑制には非常に有効であるが、結果
的に噛み込み直後の板厚(制御開始時の板厚であって目
標板厚と一致しないことが多い)が基準となって全長厚
さがこの値となるように制御がなされるため、例えば圧
延荷重の予測誤差等に起因するセットアップの誤差があ
り、ロックオン時の板厚誤差が正(目標板厚より幾分厚
い値)となった場合にはそのまま正の板厚誤差が生まれ
るという問題があった。On the other hand, BISRA-AGC is very effective in suppressing the plate thickness deviation in one plate, but as a result, the plate thickness immediately after biting (the plate thickness at the start of control and the target plate (The thickness often does not match the thickness) is used as a reference, and the total length thickness is controlled to this value.Therefore, there are setup errors due to rolling load prediction errors, etc. When the thickness error is positive (a value that is slightly thicker than the target plate thickness), there is a problem that a positive plate thickness error is generated as it is.
【0010】また、ABS−AGCは、材質,圧下率,
圧延温度等に基づいて予め圧延反力を推定し、これと実
際の圧延反力(荷重)とに基づいて上下ロ−ルの間隔を
制御するものであるため、セットアップの誤差があって
もそれとは無関係に“一つの板内における板厚偏差”と
“目的板厚からの板厚誤差”を共に抑制する効果に優れ
ていてBISRA−AGCのような問題はないものの、
時に圧延反力(荷重)によって生じる圧延機の延び及び
ロ−ルの偏平,たわみ等の推定の誤差がそのまま板厚の
誤差となるため十分に安定した成果を得られないことが
あった。ABS-AGC is made of a material, a reduction ratio,
The rolling reaction force is estimated in advance based on the rolling temperature, etc., and the gap between the upper and lower rolls is controlled based on this and the actual rolling reaction force (load). Irrespective of its excellent effect of suppressing both "thickness deviation within one sheet" and "thickness error from target sheet thickness" and there is no problem like BISRA-AGC,
Occasionally, errors in estimation of elongation of the rolling mill, flattening of rolls, deflection, etc., caused by rolling reaction force (load), directly cause errors in plate thickness, so that it may not be possible to obtain sufficiently stable results.
【0011】このように、これまでに提案されたAGC
は何れにも一長一短が指摘されたことからそれに応じた
使い分けがなされていたが、近年、圧延製品の板厚精度
向上に対する一段と厳しい要望は厚鋼板等にまでも及ん
できており、これに応え得る板厚制御手段の開発が急務
となっていた。Thus, the AGCs proposed so far
The advantages and disadvantages of each were pointed out, and they were used accordingly, but in recent years, even more stringent demands for improving the thickness accuracy of rolled products have been extended to thick steel plates, etc. There was an urgent need to develop a means for controlling the plate thickness.
【0012】そこで、従来のAGCを個別に適用するの
ではなく各々のAGCの長所を複合させて引き出せるA
GCを実現しようとして、複数のAGCを組み合わせる
試みもなされたが、単なる組み合わせでは作用が相互に
干渉し合って逆効果となり、好ましい結果を得るのは非
常に難しかった。Therefore, rather than applying the conventional AGC individually, the advantages of each AGC can be combined and taken out.
Attempts have been made to combine a plurality of AGCs in an attempt to realize GC, but with a simple combination, the effects of each other interfere with each other and have the opposite effect, and it has been extremely difficult to obtain favorable results.
【0013】もっとも、特開昭56−141906号公
報には、BISRA−AGCとモニタAGCとを併用・
複合させて目標板厚を達成する手法として、圧延機出側
の板厚偏差が許容板厚範囲から外れた時点でモニタフィ
−ドバック信号により前述したロックオン荷重を修正
し、更に圧延機制御系のチュ−ニング率を調整する方法
が提案されている。しかしながら、この方法でも、入側
板厚が変動する場合や圧延方向の制御長さが短い場合に
は十分な対応ができないという問題は解決されなかっ
た。However, in JP-A-56-141906, BISRA-AGC and monitor AGC are used together.
As a method to achieve the target plate thickness by combining them, the lock-on load described above is corrected by the monitor feedback signal when the plate thickness deviation on the delivery side of the rolling mill deviates from the allowable thickness range, and the rolling mill control system A method of adjusting the tuning rate has been proposed. However, even this method has not solved the problem that sufficient measures cannot be taken when the inlet plate thickness varies or when the control length in the rolling direction is short.
【0014】また、特開昭63−309315号公報に
は、BISRA−AGCとFF−AGCとを併用・複合
させるべく、圧延機に噛み込まれる被圧延材の板厚を圧
延機の直前で連続的に測定して板厚偏差を求め、次いで
この板厚偏差から現パスにおける圧延荷重変動を予測
し、その予測された圧延荷重変動量と前述したロックオ
ン荷重とから上下圧延ロ−ルの間隔を時々刻々修正しな
がら圧延する方法が提案されている。しかし、この方法
にも、圧延開始直後に測定されるロックオン荷重が噛み
込み直後の荷重不安定領域での荷重となってしまった場
合にはやはり精度の良い板厚制御ができないという問題
があった。Further, in Japanese Patent Laid-Open No. 63-309315, in order to use and combine BISRA-AGC and FF-AGC together, the strip thickness of the material to be rolled into the rolling mill is continuously measured just before the rolling mill. Of the rolling thickness in the current pass is predicted from the sheet thickness deviation, and the gap between the upper and lower rolling rolls is calculated from the predicted rolling load variation and the lock-on load. The method of rolling while correcting the moment is proposed. However, this method also has a problem that the plate thickness cannot be accurately controlled when the lock-on load measured immediately after the start of rolling becomes the load in the load unstable region immediately after biting. It was
【0015】このようなことから、本発明の目的は、板
圧延に用いられてきた従来の板厚制御法に指摘される前
記問題を解消し、板厚精度の高い圧延板が安定して得ら
れる自動板厚制御手段を確立することに置かれた。From the above, the object of the present invention is to solve the above problems pointed out in the conventional plate thickness control method used for plate rolling, and to obtain a rolled plate with high plate thickness accuracy in a stable manner. Was placed in establishing an automatic plate thickness control means.
【0016】[0016]
【課題を解決するための手段】本発明は、上記目的を達
成するためになされたものであり、「上下圧延ロ−ルの
間隔を任意に変化させ得る圧下装置と板厚偏差検出器を
備えた圧延機を用い、 圧延機入側の板厚偏差を測定しな
がら前記ロ−ル間隔を調節して板厚を制御する板材の圧
延において、 目的厚を得ようとする際に圧延中の上下圧
延ロ−ルに加わる圧延反力を計算によって推定すると共
に、 この圧延反力の算出要素とする圧延機入側板厚値を
計算により求めて圧延機入側の板厚偏差検出器に対する
基準板厚値とし、 この板厚偏差検出器の出力に基づいて
圧延中の上下圧延ロ−ル間隔の制御量を算出し制御する
ことにより、精度良く目標の板厚を達成できるようにし
た点」に大きな特徴を有している。The present invention has been made in order to achieve the above-mentioned object, and is provided with "a rolling-down device capable of arbitrarily changing the interval between the upper and lower rolling rolls and a plate thickness deviation detector. Using a rolling mill, the rolling width of the strip is controlled by adjusting the roll interval while controlling the strip thickness deviation on the rolling mill entrance side. The rolling reaction force applied to the rolling roll is estimated, and the strip thickness value on the rolling mill entrance side, which is a factor for calculating this rolling reaction force, is calculated and the reference strip thickness for the strip thickness deviation detector on the rolling mill entry side is calculated. Value, and by calculating and controlling the control amount of the vertical rolling roll interval during rolling based on the output of this plate thickness deviation detector, it is possible to achieve the target plate thickness with high accuracy. It has features.
【0017】このように、本発明は、言わば「圧延中の
上下ロ−ルに加わる圧延反力に相応させてロ−ルの間隔
を制御する方法(BISRA−AGC又はABS−AG
C)とFF−AGCとを複合させて各々の利点を享受し
ようとしたものであり、BISRA−AGCとFF−A
GCとの併用あるいはABS−AGCとFF−AGCと
の併用に当って、「圧延機入側の板厚偏差検出器に設定
する基準板厚を適切に選ぶこと」及び「圧延中の上下圧
延ロ−ル間隔の制御系に与える目標値を適切に選ぶこ
と」によって前述した弊害を解消し、板厚精度の優れた
圧延板を安定して製造できるようにしたものであるが、
以下、本発明をより具体的に説明する。As described above, the present invention is, so to speak, "a method of controlling the interval between the rolls according to the rolling reaction force applied to the upper and lower rolls during rolling (BISRA-AGC or ABS-AG.
C) and FF-AGC are combined to try to enjoy their respective advantages. BISRA-AGC and FF-A
When using in combination with GC or ABS-AGC and FF-AGC, "Select the appropriate reference strip thickness to be set in the strip thickness deviation detector on the rolling mill entrance side" and "Upper and lower rolling rolls during rolling" -By appropriately selecting the target value given to the control system of the gap distance, it is possible to eliminate the above-mentioned adverse effects and to stably manufacture a rolled plate with excellent plate thickness accuracy.
Hereinafter, the present invention will be described more specifically.
【0018】図1は本発明法を実施するための板圧延設
備の要部を説明した概要図であり、図2はその制御ブロ
ック図である。図1において、被圧延材3は圧延機の上
下圧延ロ−ル(ワ−クロ−ル1,バックアップロ−ル
2)間で圧延されて所定厚(目的厚)とされるが、圧延
の直前に圧延機入側に配設された板厚偏差検出器4によ
って圧延前板厚の偏差が連続的に検出される。FIG. 1 is a schematic diagram for explaining a main part of a sheet rolling facility for carrying out the method of the present invention, and FIG. 2 is a control block diagram thereof. In FIG. 1, the material to be rolled 3 is rolled between the upper and lower rolling rolls (work roll 1 and backup roll 2) of the rolling mill to have a predetermined thickness (target thickness). The deviation of the sheet thickness before rolling is continuously detected by the sheet thickness deviation detector 4 provided on the inlet side of the rolling mill.
【0019】ここで、本発明者は「圧延前板厚の偏差を
測定するための基準厚」が「“目的厚を得ようとする際
に圧延中の上下圧延ロ−ルに加わる圧延反力(BISR
A−AGC又はABS−AGCにおける圧延中の圧延反
力で、 BISRA−AGC又はABS−AGCを実施時
に入側板厚等を要素として計算が行われる)”を計算す
る際に用いる板厚値」と一致しており、更にこの基準値
が前パス又は前スタンドでの目標板厚と一致していると
極めて精度良く板厚制御が行えることを発見したが、こ
れが本発明の根幹を成す思想となっている。Here, the inventor of the present invention said that "the reference thickness for measuring the deviation of the sheet thickness before rolling" is "the rolling reaction force applied to the upper and lower rolling rolls during rolling when the target thickness is to be obtained. (BISR
It is the rolling reaction force during rolling in A-AGC or ABS-AGC, and is calculated using BISRA-AGC or ABS-AGC as the factors such as the inlet side plate thickness when performing "). It is found that it is possible to control the plate thickness extremely accurately when the reference value and the target plate thickness in the front pass or the front stand are in agreement, but this is the idea that forms the basis of the present invention. ing.
【0020】これは以下の理由による。即ち、一般に圧
延機出側の板厚hは、上下圧延ロ−ルの開度S,圧延中
のロ−ル反力P,上下圧延ロ−ルの開度を単位長さ広げ
るために要する荷重M(ミル剛性係数)を用いて h=S+ P/M ……(1) で求められる。従って、圧延ロ−ルの設定開度S
set は、圧延中に発生すると推定される圧延反力(荷
重)をP0 、目標板厚をhaim とすれば、これらより Sset =haim − P0 / M ……(2) と決定すれば良いことになる。This is for the following reason. That is, generally, the plate thickness h on the delivery side of the rolling mill is the load required to increase the unit length of the opening S of the vertical rolling roll, the roll reaction force P during rolling, and the opening of the vertical rolling roll. Using M (mill stiffness coefficient), it can be calculated by h = S + P / M (1). Therefore, the set opening S of the rolling roll S
If the rolling reaction force (load) estimated to occur during rolling is P 0 and the target plate thickness is h aim , the set is determined as S set = h aim − P 0 / M …… (2) It will be good if you do.
【0021】なお、上記圧延反力P0 は、次式によって
算出される。 P0 =Kfm×lr ×W×Qp 但し、 Kfm:拘束変形抵抗, lr :接触弧長,W:被
圧延材板幅, Qp :圧下力関数。 ここで、Qp は材料温度,圧下量(= [圧延前板厚] −
[狙い厚] )等によって求められる。The rolling reaction force P 0 is calculated by the following equation. P 0 = K fm × l r × W × Q p However, K fm : Restraint deformation resistance, l r : Contact arc length, W: Rolled material strip width, Q p : Rolling force function. Here, Q p is the material temperature and the reduction amount (= [sheet thickness before rolling] −
[Target thickness]), etc.
【0022】本発明は、上記圧延反力P0 を求める際の
入側板厚として“前パス又は前スタンドで圧延する際の
目標の板厚”を使用することを特徴とする。これは、
“前パス又は前スタンドでの圧延により生じた誤差”を
“入側板厚の変動成分”として処理するFF−AGCを
適用し、出側板厚誤差を消去するためである。The present invention is characterized in that "the target plate thickness when rolling by the front pass or the front stand" is used as the entrance side plate thickness when the rolling reaction force P 0 is obtained. this is,
This is because the FF-AGC that processes the “error caused by rolling in the previous pass or the previous stand” as the “incoming-side thickness variation component” is applied to eliminate the output-side thickness error.
【0023】さて、FF−AGCにおける板厚偏差は
“前パス又は前スタンドでの圧延での目標の板厚”から
の偏差であるが、ここで例えばBISRA−AGCを併
用する場合には、以下に述べる本発明の方法により精度
良く目標の板厚を得ることが可能となる。The sheet thickness deviation in FF-AGC is a deviation from "the target sheet thickness in the rolling in the preceding pass or the preceding stand", but here, for example, when BISRA-AGC is used together, The target plate thickness can be obtained with high accuracy by the method of the present invention described below.
【0024】即ち、ABS−AGC又はBISRA−A
GCとFF−AGCとを併用した場合、圧延荷重PO と
圧延中の実荷重との差をΔP、PO を推定する際に使用
した入側板厚と圧延材の板厚との板厚差をΔH、ABS
−AGC又はBISRA−AGCのゲインをKA とする
と、圧延中の上下圧延ロ−ル間隔のセットアップ量から
の修正量ΔSの制御式は ΔS=−KA ×ΔP/M −(1−KA )×ΔH× QH/M ……(3) 但し、QH=∂P/∂H となる。なお、「QH=∂P/∂H」は“入側板厚の変
動に応じた圧延反力の変動”を表すものである。That is, ABS-AGC or BISRA-A
When both GC and FF-AGC are used together, the difference between the rolling load P O and the actual load during rolling ΔP, the difference between the plate thickness of the rolled material and the plate thickness of the rolled material used when estimating P O ΔH, ABS
-Assuming that the gain of AGC or BISRA-AGC is K A , the control formula of the correction amount ΔS from the setup amount of the vertical rolling roll interval during rolling is ΔS = -K A × ΔP / M- (1-K A ) × ΔH × QH / M (3) However, QH = ∂P / ∂H. In addition, "QH = ∂P / ∂H" represents "the fluctuation of the rolling reaction force according to the fluctuation of the entrance side plate thickness".
【0025】ABS−AGCとFF−AGCとを併用す
る場合、以下の理由によって本方式による精度良い板厚
の制御が可能となる。即ち、前記 (3)式においてΔPの
基準値となる荷重P0 を計算によって求める際に使用す
る入側基準板厚と、入側板厚偏差検出器に設定する基準
板厚が一致していない場合、その差をΔhとすると、
(3)式に示した第2項は (1−KA )×(ΔH+Δh)× QH/M となり、従って、「−(Δh×QH/M)」が制御量Δ
Sの誤差となるためである。When the ABS-AGC and the FF-AGC are used together, the plate thickness can be accurately controlled by this method for the following reasons. In other words, when the input side reference plate thickness used when calculating the load P 0 that is the reference value of ΔP in the equation (3) does not match the reference plate thickness set in the input side plate thickness deviation detector. , And the difference is Δh,
The second term shown in the equation (3) is (1-K A ) × (ΔH + Δh) × QH / M, so that “− (Δh × QH / M)” is the control amount Δ.
This is because it becomes an error of S.
【0026】一方、BISRA−AGCとFF−AGC
とを併用する場合には、以下の理由によって本方式によ
る精度良い板厚の制御が可能となる。即ち、材料の変形
抵抗をK、BISRA−AGCロックオン荷重を基準と
した圧延反力変動量,変形抵抗変動量,入側板厚変動量
をそれぞれΔP′,ΔK′,ΔH′とすると、 ΔP′=(∂P/∂K)×ΔK′+(∂P/∂H)×ΔH′ ……(4) が成立することは広く知られている。なお、上記 (4)式
において第1項たる「(∂P/∂K)×ΔK′」は変形
抵抗の変動に起因する圧延反力変動を表し、第2項たる
「(∂P/∂H)×ΔH′」は入側板厚の変動に起因す
る圧延反力変動を表す。On the other hand, BISRA-AGC and FF-AGC
When both and are used together, the plate thickness can be accurately controlled by this method for the following reasons. That is, if the deformation resistance of the material is K, and the rolling reaction force fluctuation amount, the deformation resistance fluctuation amount, and the inlet side plate thickness fluctuation amount based on the BISRA-AGC lock-on load are ΔP ′, ΔK ′, and ΔH ′, respectively, ΔP ′ It is widely known that = (∂P / ∂K) × ΔK ′ + (∂P / ∂H) × ΔH ′ (4) holds. In the above equation (4), the first term “(∂P / ∂K) × ΔK ′” represents the rolling reaction force variation due to the variation of the deformation resistance, and the second term “(∂P / ∂H ) × ΔH ′ ”represents the fluctuation of the rolling reaction force due to the fluctuation of the inlet plate thickness.
【0027】従って、BISRA−AGCロックオン後
における上下圧延ロ−ル間隔の制御量ΔSの制御式は、
(4)式を (3)式に代入して得られる式、即ち 但し、E=KA ×{(∂P/∂H)/M}×(ΔH−ΔH′)…(6) となる。Therefore, the control formula for the control amount ΔS of the interval between the upper and lower rolling rolls after the BISRA-AGC lock-on is:
The formula obtained by substituting Eq. (4) into Eq. (3), that is, However, E = K A × {(∂P / ∂H) / M} × (ΔH−ΔH ′) (6)
【0028】上記制御式(5) において、項Eは制御上の
外乱である。そのため、BISRA−AGCにおいて安
定した制御を行うには、この外乱成分Eを取り除く必要
がある。そして、この外乱成分Eを取り除くためには、
(6)式からして、BISRA−AGCの制御中において
「ΔH=ΔH′」となれば良いことが明らかである。従
って、圧延機入側に配設した板厚偏差検出器に対する基
準板厚値をBISRA−AGCロックオン時の入側板厚
計算値に一致させ、この板厚偏差検出器の出力に応じて
圧延中の上下圧延ロ−ル間隔の制御量を調整してやれ
ば、BISRA−AGCとFF−AGCとを併用して精
度良く目標の板厚を得ることができることになる。In the above control equation (5), the term E is a control disturbance. Therefore, in order to perform stable control in BISRA-AGC, it is necessary to remove this disturbance component E. Then, in order to remove this disturbance component E,
From equation (6), it is clear that “ΔH = ΔH ′” should be satisfied during the control of BISRA-AGC. Therefore, the reference strip thickness value for the strip thickness deviation detector disposed on the rolling mill entry side is made to match the entry side strip thickness calculated value at the time of BISRA-AGC lock-on, and rolling is performed according to the output of this strip thickness deviation detector. By adjusting the control amount of the interval between the upper and lower rolling rolls, it is possible to use BISRA-AGC and FF-AGC together to accurately obtain the target plate thickness.
【0029】このため、前記図1において、板厚偏差検
出器4に設定される基準板厚値は、圧延反力測定器(ロ
−ドセル)8の測定値を基にして算出された“BISR
A−AGCロックオン時の入側板厚計算値”とされる。
そして、このような基準板厚値を設定された板厚偏差検
出器4からの板厚偏差検出出力に基づいて演算器9で上
下圧延ロ−ル間隔制御量を算出し、ロ−ル間隔制御装置
(AGCコントロ−ラ)8及びロ−ル間隔変更装置7を
介して上下圧延ロ−ルの開度を調節すると、適正な板厚
制御が安定してなされることになる。Therefore, in FIG. 1, the reference plate thickness value set in the plate thickness deviation detector 4 is "BISR" calculated based on the measured value of the rolling reaction force measuring device (load cell) 8.
A-AGC lock-on input side plate thickness calculated value ".
Then, based on the plate thickness deviation detection output from the plate thickness deviation detector 4 for which such a reference plate thickness value is set, the calculator 9 calculates the vertical rolling roll interval control amount, and the roll interval control is performed. When the opening degree of the vertical rolling roll is adjusted through the device (AGC controller) 8 and the roll gap changing device 7, proper plate thickness control can be stably performed.
【0030】ところで、実際の制御においては、BIS
RA−AGCロックオン時の板厚偏差計の出力から板厚
を推定し、板厚偏差検出器の基準板厚を変更すること
は、設定替えに時間を要する等の問題がある。そのた
め、実際的な方法としては、圧延開始前に設定する基準
板厚は圧延荷重P0 を推定する際に使用した入側板厚
(=前パス又は前スタンドでの目標板厚)とし、圧延中
は、ロックオン時の計算板厚を記録しておき、これを板
厚偏差検出器の基準板厚から減じたものを板厚偏差検出
器の出力とすることで、BISRA−AGCとFF−A
GCの併用においても誤差なく目標の板厚を得ることが
できる。By the way, in actual control, BIS
Estimating the sheet thickness from the output of the sheet thickness deviation meter at the time of RA-AGC lock-on and changing the reference sheet thickness of the sheet thickness deviation detector has a problem that it takes time to change the setting. Therefore, as a practical method, the reference strip thickness set before the start of rolling is set to the entry strip thickness (= the target strip thickness in the previous pass or the stand) used when estimating the rolling load P 0, and Records the calculated plate thickness at the time of lock-on, and subtracts this from the reference plate thickness of the plate thickness deviation detector to obtain the output of the plate thickness deviation detector, so that BISRA-AGC and FF-A
The target plate thickness can be obtained without error even when using GC together.
【0031】[0031]
【実施例】長さが4000〜5000mm,幅が2000
〜3000mm,厚さが100mmのスラブ(鋼片)を準備
すると共に、図1及び図2に示した圧延設備を使用し、
本発明法に従った板材圧延と比較法による板材圧延を実
施した。なお、何れも目標板厚を12〜15mmに設定
し、それぞれ100個のスラブについて圧延を実施し
た。Example: Length is 4000 to 5000 mm, width is 2000
Prepare a slab (steel slab) with a thickness of up to 3000 mm and a thickness of 100 mm, and use the rolling equipment shown in FIGS. 1 and 2.
Sheet rolling according to the method of the present invention and sheet rolling according to the comparative method were performed. In each case, the target plate thickness was set to 12 to 15 mm, and rolling was performed on 100 slabs.
【0032】ここで、板厚偏差検出器としてはγ線厚み
計を適用し、鋼板センタ−部分の板厚を測定した。ま
た、本発明法を実施する際の“圧延反力”の検出には圧
延機上部に取り付けたロ−ドセルを適用し、ロ−ル間隔
の検出には磁気式測長機を用いた。Here, a γ-ray thickness gauge was applied as the plate thickness deviation detector, and the plate thickness at the steel plate center portion was measured. A load cell attached to the upper part of the rolling mill was applied to detect the "rolling reaction force" when the method of the present invention was carried out, and a magnetic length measuring machine was used to detect the roll interval.
【0033】さて、本実施例では「本発明法による制御
I(FF+BISRA)」,「本発明法による制御II
(FF+ABS)」,「比較法による制御I」及び「比
較法による制御II」の4種の試験を実施したが、その要
領を以下に説明する。In the present embodiment, "control I (FF + BISRA) according to the method of the present invention" and "control II according to the method of the present invention"
(FF + ABS) "," Control I by comparative method "and" Control II by comparative method "were carried out, and the procedure will be described below.
【0034】a) 本発明法による制御I 先に述べたスラブを1〜15パスのリバ−ス圧延にて圧
延した。なお、板厚検出器は圧延機入側のみに設置し、
最終パスでFF−AGCが使用可能となるよう圧延最初
の第1パスからの圧延方向を決定した。即ち、最終パス
では、図1に示した入側板厚偏差検出器4側から通板を
行い(この方向のパスを正転パス,その逆方向のパスを
逆転パスと定義する)、圧延を実施した。最終パス以外
のパスについては、最終パスでの圧延方向が正転パスに
なるよう、正転パス,逆転パスが交互になるように圧延
方向を決定した。AGCは、正転パスではFF−AGC
とABS−AGCを併用し、圧延機後面には板厚偏差検
出器が設置できないために逆転パスではABS−AGC
のみを使用した。 b) 本発明法による制御II ABS−AGCの代わりにBISRA−AGCを使用し
た以外は、上述した「本発明法による制御I」と同様の
要領で試験した。 c) 比較法による制御I 「本発明法による制御I」において、BISRA−AG
Cロックオン時に板厚検出器出力を変更しないで板厚制
御を行う。 c) 比較法による制御II FF−AGCのみによって板厚制御を行う。A) Control I by the method of the present invention The slab described above was rolled by reversal rolling for 1 to 15 passes. In addition, the plate thickness detector is installed only on the rolling mill entrance side,
The rolling direction from the first pass at the beginning of rolling was determined so that FF-AGC could be used in the final pass. That is, in the final pass, rolling is performed from the entrance side plate thickness deviation detector 4 side shown in FIG. 1 (passes in this direction are defined as forward rotation passes and reverse paths are defined as reverse rotation passes), and rolling is performed. did. For the passes other than the final pass, the rolling directions were determined so that the rolling direction in the final pass would be the forward pass and the forward and reverse passes would alternate. AGC is FF-AGC in the forward rotation path.
And ABS-AGC are used together, and since the thickness deviation detector cannot be installed on the rear surface of the rolling mill, ABS-AGC is used in the reverse pass.
Used only. b) Control II according to the method of the present invention Tests were carried out in the same manner as "Control I according to the present invention" described above, except that BISRA-AGC was used instead of ABS-AGC. c) Control I by the comparative method In "Control I by the method of the present invention", BISRA-AG
Plate thickness control is performed without changing the plate thickness detector output when C lock is on. c) Control by comparative method II Plate thickness control is performed only by FF-AGC.
【0035】そして、上記各方法を適用した圧延で得ら
れた板材について板厚偏差を調査したが、その結果を表
1に示す。表1に示される結果からも明らかなように、
本発明法によると板厚偏差が非常に小さい高精度の圧延
鋼板を得られることが分かる。Then, the plate thickness deviation of the plate material obtained by rolling applying each of the above methods was investigated, and the results are shown in Table 1. As is clear from the results shown in Table 1,
It can be seen that according to the method of the present invention, it is possible to obtain a highly accurate rolled steel sheet with a very small thickness deviation.
【0036】[0036]
【表1】 [Table 1]
【0037】[0037]
【効果の総括】以上に説明した如く、この発明によれ
ば、板厚精度の高い圧延板を簡単かつ安定して提供する
ことが可能になるなど、産業上有用な効果がもたらされ
る。[Summary of Effects] As described above, according to the present invention, industrially useful effects such as the ability to easily and stably provide a rolled plate having a high plate thickness accuracy are provided.
【図1】本発明法を実施するための板圧延設備の要部を
説明した概要図である。FIG. 1 is a schematic diagram illustrating a main part of a strip rolling facility for carrying out the method of the present invention.
【図2】本発明法を実施するに当っての制御ブロック図
である。FIG. 2 is a control block diagram for carrying out the method of the present invention.
【図3】圧延設備概要の説明図である。FIG. 3 is an explanatory diagram of an outline of rolling equipment.
1 ワ−クロ−ル 2 バックアップロ−ル 3 被圧延材 4 入側板厚偏差検出器 5 出側板厚偏差検出器 6 圧延反力測定器 7 ロ−ル間隔変更装置 8 ロ−ル間隔制御装置(AGCコントロ−ラ) 9 ロ−ル間隔,圧延反力,基準板厚の演算器 DESCRIPTION OF SYMBOLS 1 work roll 2 backup roll 3 material to be rolled 4 inlet side plate thickness deviation detector 5 output side plate thickness deviation detector 6 rolling reaction force measuring device 7 roll interval changing device 8 roll interval control device ( AGC controller) 9 Roll interval, rolling reaction force, reference thickness calculator
Claims (1)
得る圧下装置と板厚偏差検出器を備えた圧延機を用い、
圧延機入側の板厚偏差を測定しながら前記ロ−ル間隔を
調節して板厚を制御する板材の圧延において、目的厚を
得ようとする際に圧延中の上下圧延ロ−ルに加わる圧延
反力を計算によって推定すると共に、この圧延反力の算
出要素とする圧延機入側板厚値を計算により求めて圧延
機入側の板厚偏差検出器に対する基準板厚値とし、この
板厚偏差検出器の出力に基づいて圧延中の上下圧延ロ−
ル間隔の制御量を算出し制御することを特徴とする板厚
制御方法。1. A rolling mill equipped with a reduction device capable of arbitrarily changing the interval between the upper and lower rolling rolls and a plate thickness deviation detector,
In the rolling of a plate material in which the plate thickness is controlled by adjusting the roll interval while measuring the plate thickness deviation on the entrance side of the rolling mill, it is added to the upper and lower rolling rolls during rolling to obtain the target thickness. The rolling reaction force is estimated by calculation, and the plate thickness value on the rolling mill entrance side, which is the factor for calculating this rolling reaction force, is calculated and used as the reference plate thickness value for the rolling mill entrance side plate thickness deviation detector. Based on the output of the deviation detector,
A method for controlling plate thickness, which comprises calculating and controlling a control amount of the gap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5247455A JPH0780524A (en) | 1993-09-08 | 1993-09-08 | Method for controlling plate thickness in plate rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5247455A JPH0780524A (en) | 1993-09-08 | 1993-09-08 | Method for controlling plate thickness in plate rolling |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0780524A true JPH0780524A (en) | 1995-03-28 |
Family
ID=17163707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5247455A Pending JPH0780524A (en) | 1993-09-08 | 1993-09-08 | Method for controlling plate thickness in plate rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0780524A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012161835A (en) * | 2011-02-09 | 2012-08-30 | Kobe Steel Ltd | Plate thickness control method of rolling mill |
CN106180207A (en) * | 2014-11-13 | 2016-12-07 | 广东华冠新型材料有限公司 | A kind of control system rolling plate thickness |
-
1993
- 1993-09-08 JP JP5247455A patent/JPH0780524A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012161835A (en) * | 2011-02-09 | 2012-08-30 | Kobe Steel Ltd | Plate thickness control method of rolling mill |
CN106180207A (en) * | 2014-11-13 | 2016-12-07 | 广东华冠新型材料有限公司 | A kind of control system rolling plate thickness |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5054302A (en) | Hardness compensated thickness control method for wet skin-pass rolled sheet | |
KR100685038B1 (en) | Thickness control apparatus in rolling mill | |
JPH0780524A (en) | Method for controlling plate thickness in plate rolling | |
JPH0569021A (en) | Method and device for controlling rolling mill | |
JP3405499B2 (en) | Thickness and tension control method in tandem rolling mill | |
JP2000094023A (en) | Method and device for controlling leveling in hot finishing mill | |
JP3664067B2 (en) | Manufacturing method of hot rolled steel sheet | |
JPH08252624A (en) | Method for controlling finishing temperature in continuous hot rolling | |
JPS6195711A (en) | Method for controlling sheet camber in thick plate rolling | |
JP2719216B2 (en) | Edge drop control method for sheet rolling | |
JPS61189811A (en) | Control method of plate thickness | |
JPS62244513A (en) | Control method for plate thickness in continuous rolling mill | |
JPH08141614A (en) | Method for controlling thickness in hot rolling | |
JPS63194810A (en) | Automatic sheet thickness control method for rolled stock | |
JPS62197211A (en) | Plate thickness control method utilizing mill rigidity detection value | |
JPH03297508A (en) | Device for correcting setting for vertical mill of reversing mill | |
JPS63168210A (en) | Method for controlling width of sheet in sheet rolling | |
JPH0957322A (en) | Method for controlling plate width in hot rolling | |
JPS63174711A (en) | Device for controlling plate thickness in rolling mill | |
JPS5851771B2 (en) | Meandering control method in rolling | |
JPH03216208A (en) | Method for controlling meandering at the time of plate rolling | |
JPH09248614A (en) | Method for controlling meandering in rolling mill | |
JPH0818058B2 (en) | Automatic plate thickness control method for plate rolling | |
JPH0819808A (en) | Thickness controller | |
JPH05269516A (en) | Method for controlling shape in rolling of thick plate |