JPH0780070A - Fmtheta induction device - Google Patents

Fmtheta induction device

Info

Publication number
JPH0780070A
JPH0780070A JP5252124A JP25212493A JPH0780070A JP H0780070 A JPH0780070 A JP H0780070A JP 5252124 A JP5252124 A JP 5252124A JP 25212493 A JP25212493 A JP 25212493A JP H0780070 A JPH0780070 A JP H0780070A
Authority
JP
Japan
Prior art keywords
frequency
circuit
low frequency
wave
fmθ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5252124A
Other languages
Japanese (ja)
Other versions
JP2814419B2 (en
Inventor
Kazumi Masaki
和三 政木
Osamu Matsuda
修 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5252124A priority Critical patent/JP2814419B2/en
Priority to CA002131950A priority patent/CA2131950A1/en
Priority to US08/305,834 priority patent/US5954630A/en
Priority to NO943442A priority patent/NO943442L/en
Priority to EP94306755A priority patent/EP0644525A3/en
Priority to KR1019940023630A priority patent/KR950009526A/en
Publication of JPH0780070A publication Critical patent/JPH0780070A/en
Application granted granted Critical
Publication of JP2814419B2 publication Critical patent/JP2814419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To provide the device for artificially inducting Fmtheta by providing the device with a circuit for generating modulated waves formed by superposing a specific very low frequency on a low frequency of an audible range and an electro-acoustic converter which is connected to the output terminal of this circuit for generating modulated wave and converts the modulated waves to audible stimuli. CONSTITUTION:A first oscillation circuit O1 generates a sinusoidal wave of about 150Hz frequency and a second oscillation circuit O2 generates the very low frequency of <=20Hz frequency having the sinusoidal waveform. The output terminals of the oscillation circuits O1, O2 are connected to the input terminal of a modulation circuit M where the low frequency and the very low frequency are amplified and modulated. The modulated waves superposed with the low frequency and the very low frequency are derived at the output terminal thereof. The output terminal of the oscillation circuit O1 is connected via a changeover switch S to the input terminal of an amplifier circuit A1 and the output terminal of the modulation circuit M is connected to the input terminal of the changeover switch A2 and the contact (b) of the changeover switch S. A headphone P as the electro-acoustic converter is connected to the output terminals of the amplifier circuits A1, A2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ヒトの聴覚を刺激し
て特定の脳波を誘導する装置に関するものであり、詳細
には、ヒトの聴覚を変調波により刺激することにより、
Fmθを誘導する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for stimulating human hearing to induce specific brain waves, and more specifically, by stimulating human hearing with a modulation wave,
The present invention relates to a device for inducing Fmθ.

【0002】[0002]

【従来の技術】大脳皮質や頭皮上の相違する2点間に観
察される電位差は「脳波」と呼ばれ、心身の状態に対応
する独特の波形、律動を有している。脳波は、律動の周
期に依って、通常、α波、β波、θ波及びδ波の4波に
分類される。このうち、周期8乃至13ヘルツのα波
は、心身が弛緩するにつれて、強く、広範囲に連続して
出現するようになる。周期18乃至30ヘルツのβ波
は、逆に、心身が緊張するにつれ、強く、広範囲に出現
するようになる。周期4乃至8ヘルツのθ波と周期4ヘ
ルツ未満のδ波は入睡眠に関連する脳波であり、入眠時
にはθ波が強く現われ、睡眠が深くなるにつれてδ波が
優勢になると言われている。イノウエ等、『ジ・イー・
イー・ジー・オブ・メンタル・アクティビティーズ』、
第136〜148頁(1988年)に見られるように、
θ波のうちでも、成人の前頭正中部付近に観察される6
乃至7ヘルツの優勢なθ律動は「Fmθ」と呼ばれ、精
神作業に深く関与すると言われている。精神作業してい
るヒトの脳波を分析すると、作業者の前頭正中部付近に
Fmθが出現しているのが観察され、その強度と分布
は、作業者の注意力や集中力が高まれば高まるほど、強
く、広範囲に出現するようになる。
2. Description of the Related Art A potential difference observed between two different points on the cerebral cortex and scalp is called "electroencephalogram" and has a unique waveform and rhythm corresponding to the state of mind and body. The electroencephalogram is usually classified into four waves of α wave, β wave, θ wave, and δ wave, depending on the cycle of rhythm. Among them, the α-wave having a period of 8 to 13 Hertz becomes strong and continuously appears in a wide range as the mind and body relax. On the contrary, the β wave having a period of 18 to 30 Hertz becomes strong and appears in a wide range as the mind and body get nervous. The θ wave having a period of 4 to 8 hertz and the δ wave having a period of less than 4 hertz are brain waves related to sleep onset, and the θ wave appears strongly during sleep onset, and it is said that the δ wave becomes dominant as the sleep deepens. Inoue et al.
Easy of Mental Activities '',
As seen on pages 136-148 (1988),
Of the θ waves, it is observed near the median frontal region in adults 6
The dominant θ rhythm of 7 to 7 Hz is called “Fmθ” and is said to be deeply involved in mental work. An analysis of the EEG of a human who is mentally working reveals that Fmθ appears near the median frontal region of the worker, and its intensity and distribution increase as the worker's attention and concentration increase. , Strong, will come to widespread.

【0003】このように、Fmθが注意・集中力と密接
な関係を有していることから、何等かの方法で人為的に
Fmθを誘導できれば、作業者の注意力や集中力を向上
でき、作業の効率や精度を改善できると期待される。し
かしながら、これまで、人為的にFmθを誘導し得る装
置や方法は全く知られていなかった。
Since Fmθ has a close relationship with attention and concentration as described above, if Fmθ can be artificially guided by some method, the attention and concentration of the worker can be improved. It is expected to improve work efficiency and accuracy. However, up to now, no device or method capable of artificially inducing Fmθ has been known.

【0004】[0004]

【発明が解決しようとする課題】斯かる状況に鑑み、こ
の発明の目的は、人為的にFmθを誘導する装置を提供
するものである。
In view of such circumstances, an object of the present invention is to provide a device for artificially inducing Fmθ.

【0005】[0005]

【課題を解決するための手段】本発明者が、斯かる課題
を達成し得る手段について鋭意研究したところ、可聴域
の低周波に、周波数約20ヘルツ以下の超低周波が重畳
してなる変調波により聴覚を通じてヒトを刺激すると、
Fmθがより強く、広範囲に出現することを見出した。
この発明は、斯かる新規な知見に基づくものであり、可
聴域の低周波に周波数約20ヘルツ以下の超低周波が重
畳してなる変調波発生回路と、その変調波発生回路の出
力端に接続され、前記変調波を可聴刺激に変換する電気
音響変換器とを含んでなるFmθ誘導装置の構造を要旨
とするものである。
Means for Solving the Problems The inventors of the present invention have conducted extensive research into means for achieving the above-mentioned object. As a result, a modulation in which an ultralow frequency of about 20 Hz or less is superimposed on a low frequency in the audible range. When you stimulate humans through the hearing with waves,
It was found that Fmθ was stronger and appeared in a wide range.
The present invention is based on such a new finding, and provides a modulated wave generating circuit in which an ultralow frequency having a frequency of about 20 hertz or less is superimposed on a low frequency in the audible range, and an output end of the modulated wave generating circuit. The gist is the structure of an Fmθ induction device that is connected and includes an electroacoustic transducer that converts the modulated wave into an audible stimulus.

【0006】[0006]

【発明の作用】この発明においては、変調波発生回路が
発生する可聴域の低周波に、周波数約20ヘルツ以下の
超低周波が重畳してなる変調波は、電気音響変換器によ
り可聴刺激に変換される。この発明による変調波は、聴
覚を通じてヒトを刺激すると、その脳波におけるFmθ
の出現を促す。殊に、超低周波の周波数が約2乃至10
ヘルツの範囲にあるときには、Fmθのみならず、α波
の出現をも促す。
According to the present invention, a modulated wave in which an extremely low frequency of about 20 hertz or less is superposed on a low frequency in the audible range generated by the modulated wave generation circuit is audibly stimulated by an electroacoustic transducer. To be converted. When the human being is stimulated through hearing, the modulated wave according to the present invention produces Fmθ in the brain wave.
Encourage the emergence of. In particular, the very low frequency is about 2 to 10
When it is in the range of Hertz, not only Fmθ but also the appearance of α wave is prompted.

【0007】以下、実施例、実験例などによりこの発明
を詳細に説明するに、この発明でいう変調波とは、可聴
域の低周波に、周波数約20ヘルツ以下の超低周波が重
畳してなるものである。斯かる低周波としては、通常、
超低周波の周波数を越え、約20,000ヘルツを越え
ない周波数の適宜波形の連続波やパルス波が使われる。
本発明者が健常者を対象に種々試験したところ、低周波
の周波数が約6,000ヘルツを越えると、被検者の一
部が聴き取り難さや軽微な不快感を訴えることがあっ
た。実際には、超低周波の周波数や電気音響変換器の周
波数特性などを勘案すると、通常、約50乃至3,00
0ヘルツ、望ましくは、約100乃至500ヘルツ、さ
らに望ましくは、約120乃至200ヘルツに設定する
のがよい。波形についても同様に種々試験したところ、
正弦波のような連続波や、例えば、鋸状波、方形波、三
角波、矩形波などのパルス波であって、パルスの持続時
間が比較的長いものが好適であった。一方、超低周波に
は、周波数約20ヘルツ以下、通常、約2乃至10ヘル
ツの連続波若しくはパルス波が望ましく、また、その波
形は、低周波の場合と同様、正弦波のような連続波や、
持続時間の比較的長いパルス波が好適である。
The present invention will be described in detail below with reference to examples and experimental examples. The modulated wave referred to in the present invention is a super low frequency of about 20 hertz or less superposed on a low frequency in the audible range. It will be. As such a low frequency,
A continuous wave or a pulse wave having an appropriate waveform with a frequency exceeding the extremely low frequency and not exceeding about 20,000 hertz is used.
As a result of various tests conducted by the present inventor on healthy subjects, when the low-frequency frequency exceeds about 6,000 Hz, some subjects may complain of difficulty in hearing or slight discomfort. Actually, when considering the frequency of the ultra-low frequency and the frequency characteristic of the electroacoustic transducer, it is usually about 50 to 3,000.
It is set to 0 hertz, preferably about 100 to 500 hertz, and more preferably about 120 to 200 hertz. When various tests were performed on the waveform as well,
A continuous wave such as a sine wave or a pulse wave such as a sawtooth wave, a square wave, a triangular wave, or a rectangular wave, which has a relatively long pulse duration, was suitable. On the other hand, a continuous wave or a pulse wave having a frequency of about 20 hertz or less, usually about 2 to 10 hertz is desirable for an extremely low frequency, and its waveform is a continuous wave such as a sine wave as in the case of a low frequency. Or
A pulse wave with a relatively long duration is preferred.

【0008】この発明でいう変調波発生回路とは、前記
のとおり、特定の低周波に特定の超低周波が重畳してな
る変調波を発生する電気回路であり、通常、低周波を発
生する第一の発振回路と、超低周波を発生する第二の発
振回路と、それら発振回路の出力端に接続された入力端
を有し、その低周波を超低周波で変調する変調回路とを
含んでなる。発振回路及び変調回路における回路構成や
回路素子については、変調回路の出力端に現われる変調
波が前記要件を満たす限りにおいて、特に制限を設けな
いが、通常一般には、トランジスタ、電界効果トランジ
スタ及び/又は集積回路を中心に構成される。変調回路
の出力自体が低かったり、変調回路の出力端と電気音響
変換器とがインピーダンス的に整合しないなどの理由に
より、変調回路のみでは電気音響変換器を実質的に付勢
し得ない場合には、変調回路と電気音響変換器との間に
適宜の増幅器や整合回路などを介挿することを妨げな
い。斯かる実施態様も、当然、この発明に包含されるも
のとする。
The modulated wave generating circuit referred to in the present invention is an electric circuit for generating a modulated wave in which a specific ultra-low frequency is superimposed on a specific low frequency, as described above, and normally generates a low frequency. A first oscillator circuit, a second oscillator circuit that generates an ultra-low frequency, and a modulator circuit that has an input end connected to the output ends of the oscillator circuits and that modulates the low frequency with the ultra-low frequency. Comprises. Regarding the circuit configuration and circuit elements in the oscillation circuit and the modulation circuit, no particular limitation is imposed as long as the modulated wave appearing at the output end of the modulation circuit satisfies the above requirements, but generally, a transistor, a field effect transistor, and / or It is mainly composed of integrated circuits. When the output of the modulation circuit itself is low, or because the output end of the modulation circuit and the electroacoustic transducer do not match in impedance, the electroacoustic transducer cannot be substantially activated by the modulation circuit alone. Does not prevent insertion of an appropriate amplifier or matching circuit between the modulation circuit and the electroacoustic transducer. Such embodiments are naturally included in the present invention.

【0009】変調波発生回路の別の態様としては、変調
波発生回路を再生回路と、必要に応じて、増幅回路とに
より構成し、その再生回路により、磁気若しくは光学記
録体に記録された前記変調波を再生し、その再生出力
を、必要に応じて増幅した後、電気音響変換器に供給す
るようにしてもよい。磁気記録体としては、例えば、磁
気テープ、磁気ディスク、磁気フロッピーなどが、ま
た、光学記録体としては光ディスクなどが挙げられる。
より具体的に説明すると、例えば、当該変調波を通常一
般のオーディオテープやコンパクトディスクなどに記録
しておき、これを通常一般の再生装置で再生して対象者
に聴かせるのである。斯かる態様によるときには、家庭
用オーディオ・ビデオ装置がそのまま利用できるので、
極めて好都合である。
As another mode of the modulated wave generating circuit, the modulated wave generating circuit is composed of a reproducing circuit and, if necessary, an amplifying circuit, and the reproducing circuit records the data on a magnetic or optical recording medium. The modulated wave may be reproduced, the reproduction output may be amplified as necessary, and then supplied to the electroacoustic transducer. Examples of magnetic recording materials include magnetic tapes, magnetic disks, and magnetic floppies, and examples of optical recording materials include optical disks.
More specifically, for example, the modulated wave is recorded on an ordinary audio tape, a compact disc, or the like, and is reproduced by an ordinary reproducing apparatus to be heard by a subject. In such a case, since the home audio / video device can be used as it is,
It is extremely convenient.

【0010】ところで、本発明者が、Fmθの誘導能と
副作用ということに着目して、健常者を対象に、当該変
調波の変調度について種々試験したところ、約30乃至
100%、望ましくは、約70乃至90%の範囲にある
ときに、不快感などの副作用を実質的に惹起することな
く、最高レベルのFmθを誘導することができた。した
がって、超低周波による低周波の変調度がこの範囲にな
るように発振回路等の出力を設定するか、あるいは、変
調回路においてこの範囲になるよう調節するのが望まし
い。超低周波による低周波の変調度や低周波及び超低周
波の最適周波数は、個々の対象者に依って若干相違する
のが通例であるから、各個の対象者が最適の変調度や周
波数の可聴刺激を受けられるよう、発振回路及び/又は
変調回路にこれら変調度や周波数を一定の範囲内で調節
できる機能を設けるのが望ましい。
By the way, the present inventor has conducted various tests on the degree of modulation of the modulated wave, focusing on the inducibility of Fmθ and side effects, and examined the degree of modulation of the modulated wave in healthy subjects. When it was in the range of about 70 to 90%, it was possible to induce the highest level of Fmθ without substantially causing side effects such as discomfort. Therefore, it is desirable to set the output of the oscillation circuit or the like so that the modulation degree of the low frequency due to the ultra-low frequency falls within this range, or to adjust the modulation circuit so that it falls within this range. Since the low frequency modulation degree by the ultra low frequency and the optimum frequencies of the low frequency and the ultra low frequency are usually slightly different depending on the individual subject, each individual subject has the optimum modulation degree and frequency. It is desirable to provide the oscillation circuit and / or the modulation circuit with a function of adjusting the modulation degree and the frequency within a certain range so as to receive an audible stimulus.

【0011】この発明による可聴刺激は、いわゆる「1
/fゆらぎ」を付加すると、Fmθ誘導能が顕著に高ま
る。すなわち、可聴刺激の出現頻度、持続時間、周波数
及び/又は強度を1/fゆらぎ則にしたがって変動させ
るときには、当該変調波に基づく可聴刺激と1/fゆら
ぎ則による変動とが相乗的に作用し、何れか一方のみで
は容易に達成できない程度にFmθの出現を促すことが
判明した。とりわけ、脳波、心拍数、血圧、呼吸、体温
を始めとする生体現象の長期的変動からサンプリングし
た1/fゆらぎを有する系列は極めて有用であり、斯か
る系列に基づいて可聴刺激の出現頻度、持続時間、周波
数及び/又は強度を変動させるときには、僅少の刺激量
で極めて高レベルのFmθを誘導でき、しかも、それが
刺激後も長時間持続する。これは、ヒトの生体現象にお
ける長期的変動からサンプリングした1/fゆらぎを有
する系列には、神経系に代表される生体制御機構に関す
る多くの重要な情報が含まれており、その情報は、聴覚
を通じて知覚させると、Fmθの出現促進にことのほか
効果的に作用し、この発明による可聴刺激の生理作用を
相乗的に高める結果であると理解される。可聴刺激に斯
かる変動を付与するには、例えば、前記したような系列
をマイクロプロセッサに記憶させておき、そこから取り
出した擬似1/fゆらぎ系列を含む電気信号をインター
フェースを介してオン/オフ回路に導出し、そのオン/
オフ回路により、前記発振回路や変調回路を導通制御す
ればよい。
The audible stimulus according to the present invention is so-called "1.
Addition of "/ f fluctuation" significantly enhances the Fmθ inducing ability. That is, when the appearance frequency, duration, frequency, and / or intensity of the audible stimulus is changed according to the 1 / f fluctuation rule, the audible stimulus based on the modulation wave and the fluctuation due to the 1 / f fluctuation rule act synergistically. It was found that the appearance of Fmθ was promoted to such an extent that it could not be easily achieved by only one of them. In particular, a series having 1 / f fluctuation sampled from long-term fluctuations of biological phenomena such as brain waves, heart rate, blood pressure, respiration, and body temperature is extremely useful, and the frequency of appearance of audible stimuli based on such series, When varying the duration, frequency and / or intensity, a very small amount of stimulus can induce a very high level of Fmθ, which lasts for a long time after stimulation. This is because a series having 1 / f fluctuations sampled from long-term fluctuations in human biological phenomena contains a lot of important information regarding biological control mechanisms represented by the nervous system, and the information is auditory information. It is understood that when it is perceived through the above, it acts effectively in addition to promoting the appearance of Fmθ, and synergistically enhances the physiological action of the audible stimulus according to the present invention. In order to impart such a variation to the audible stimulus, for example, the above-described sequence is stored in a microprocessor, and an electric signal including the pseudo 1 / f fluctuation sequence extracted from the sequence is turned on / off via an interface. Derived to the circuit and turn it on /
The off circuit may control conduction of the oscillation circuit and the modulation circuit.

【0012】以上のようにして得られる変調波は電気音
響変換器に供給され、そこで可聴刺激に変換される。こ
の発明でいう可聴刺激とは、ヒトが聴覚器官により知覚
し得る刺激を意味し、通常は音波による刺激を意味す
る。したがって、この発明でいう電気音響変換器とは、
前述のようにして電気的に発生させた変調波を音波に変
換する手段ということになる。個々の電気音響変換器と
しては、例えば、動電スピーカ、電磁スピーカなどの電
磁型変換器や静電スピーカ、圧電スピーカなどの静電型
変換器、あるいは、これらを適宜組合せたものなどが挙
げられる。変換器の動作原理、形状・形態、大きさにつ
いては特に制限がなく、使用者がその聴覚を通じて当該
変調波を知覚し得るものである限り、何れもこの発明で
使用することができる。この発明の装置を携帯して使用
する場合には、小形ヘッドホンやイヤホンが好適であ
る。
The modulated wave obtained as described above is supplied to an electroacoustic transducer, where it is converted into an audible stimulus. The audible stimulus referred to in the present invention means a stimulus that can be perceived by a human auditory organ, and usually means a sonic stimulus. Therefore, the electroacoustic transducer in the present invention is
This is a means for converting the modulated wave electrically generated as described above into a sound wave. Examples of the individual electroacoustic transducers include electromagnetic transducers such as electrodynamic speakers and electromagnetic speakers, electrostatic loudspeakers, electrostatic transducers such as piezoelectric speakers, and combinations thereof. . The operating principle, shape / form, and size of the converter are not particularly limited, and any one can be used in the present invention as long as the user can perceive the modulated wave through his or her hearing. When the device of the present invention is carried and used, small headphones or earphones are suitable.

【0013】変調波発生回路で発生させた変調波を電気
音響変換器に供給する方法であるが、斯かる方法は二種
類に大別され、その一つは、変調波発生回路と電気音響
変換器をケーブル等により直接接続する有線方式であ
る。この方式においては、通常、対象者又はその補助者
が、対象者が実際に聴く場所で変調波発生回路を含む電
気的構成部分を操作する。いま一つの方式は、変調波発
生回路を含む電気的構成部分と電気音響変換器を含む電
気的構成部分とを別個に構成し、変調波発生回路の出力
を無線通信や光通信などにより後者の電気的構成部分に
供給する無線方式である。無線方式においては、通常、
対象者又はその補助者が、対象者が実際に聴く場所とは
やや離れた場所でその電気的構成部分を操作することと
なる。Fmθを誘導するということにおいては、何れの
方式を採用しても実質的な違いは無いけれども、後者の
方式の場合には、複数の対象者を同時に可聴刺激するの
が容易となり、しかも、無線の到達範囲内であれば、対
象者が自由に移動できるという利点がある。
The method of supplying the modulated wave generated by the modulated wave generating circuit to the electroacoustic transducer is roughly classified into two types, one of which is the modulated wave generating circuit and the electroacoustic transducer. It is a wired system in which the devices are directly connected by a cable or the like. In this method, a subject or his / her assistant usually operates an electric component including a modulated wave generating circuit at a place where the subject actually listens. Another method is to separately configure an electrical component part including a modulated wave generation circuit and an electrical component part including an electroacoustic transducer, and to output the output of the modulated wave generation circuit by wireless communication or optical communication. It is a wireless system that supplies electrical components. In wireless systems,
The subject or his assistant will operate the electrical components at a location somewhat remote from where the subject actually listens. In terms of inducing Fmθ, there is no substantial difference in adopting any method, but in the case of the latter method, it becomes easy to simultaneously audibly stimulate a plurality of subjects, and moreover, wirelessly. Within the reach range of, there is an advantage that the subject can move freely.

【0014】次に、この発明による装置の使用方法につ
いて説明すると、使用目的にも依るが、一般に、この発
明の装置による可聴刺激は、最初はやや強く、徐々に弱
めていくのがよい。使用目的が精神作業時における注意
力や集中力の向上にあるときには、必要に応じて、その
都度その都度、作業前若しくは作業時に適当時間刺激す
ればよい。疾病等の予防・治療が目的の場合には、対象
者の状態を注意深く観察しつつ、例えば、1日に1乃至
3回、一回の最大刺激時間として約2時間までを目安
に、毎週1乃至7日、1カ月乃至1年に亙って継続すれ
ばよい。使用目的や対象者にも依るが、そのときの可聴
刺激の音圧は、通常、約20乃至90dB、望ましく
は、約30乃至80dBとするのがよい。この発明によ
る聴覚刺激は、通常、一方の耳からのみ聴かせても、両
方の耳から聴かせても、Fmθ誘導能において実質的な
違いがない。この発明の可聴刺激を長時間聴かせ続ける
必要がある場合には、例えば、一方の耳のみを可聴刺激
するか、発振回路と電気音響変換器との間に切換スイッ
チ等を介挿し、この切換スイッチを操作することによ
り、一方の耳には変調波を聴かせ、他方の耳には無変調
の低周波を聴かせるようにしてもよい。なお、対象者に
も依るが、この発明の装置による可聴刺激には、長期間
聴き続けると、その後はごく短時間聴くか、全く聴かな
くてもFmθの出現を促す性質がある。斯かる対象者に
とって、この発明の装置は、いわゆる「メンタルトレー
ニング」の手段として有用である。
Next, a method of using the device according to the present invention will be described. Generally, the audible stimulus by the device according to the present invention should be slightly strong at first but gradually weakened, depending on the purpose of use. If the purpose of use is to improve attention and concentration during mental work, it may be stimulated before or during work for each time as needed. For the purpose of preventing and / or treating diseases, carefully monitor the condition of the subject and, for example, 1 to 3 times a day, with a maximum stimulation time of about 2 hours per week as a guideline. ~ 7 days, 1 month to 1 year. The sound pressure of the audible stimulus at that time is usually about 20 to 90 dB, preferably about 30 to 80 dB, though it depends on the purpose of use and the target person. The auditory stimulus according to the present invention generally has no substantial difference in the Fmθ inducing ability between the one ear and the both ears. When it is necessary to keep the audible stimulus of the present invention for a long time, for example, only one ear is audibly stimulated, or a changeover switch or the like is inserted between the oscillation circuit and the electroacoustic transducer, and this changeover is performed. By operating the switch, one ear may hear the modulated wave and the other ear may hear the unmodulated low frequency. It should be noted that the audible stimulus by the device of the present invention has a property of stimulating the appearance of Fmθ after listening for a long period of time, depending on the target person, after listening for a short period of time or even without listening at all. For such a subject, the device of the present invention is useful as a means of so-called “mental training”.

【0015】以下、図示実施例及び実験例により、この
発明をより具体的に説明する。
Hereinafter, the present invention will be described more specifically with reference to illustrated embodiments and experimental examples.

【0016】[0016]

【実施例1】図1に示すのは、この発明による一実施例
における電気的構成部分のブロックダイアグラムであ
る。図中、O1及びO2は、それぞれ、第一の発振回路
又は第二の発振回路であり、通常、オペアンプが使われ
る。第一の発振回路O1は、周波数約150ヘルツの正
弦波を発生し、第二の発振回路O2は、正弦波波形を有
する周波数約2乃至10ヘルツの超低周波を発生する。
第二の発振回路O2には可変抵抗器V1が設けられ、こ
れを操作することにより、超低周波の周波数を約2乃至
10ヘルツの範囲で変えられるようになっている。Mは
変調回路であり、その入力端には第一の発振回路O1と
第二の発振回路O2の出力端が接続されており、前記低
周波と超低周波はここで振幅変調され、その出力端には
低周波に超低周波が重畳してなる変調波が導出される。
変調回路Mに設けられた可変抵抗器V2は振幅変調の深
度を調節するためのものであり、これを操作することに
より、変調度を約30乃至100%の範囲で変えること
ができる。第一の発振回路O1の出力端は切換スイッチ
Sを介して第一の増幅回路A1の入力端に、また、変調
回路Mの出力端は第二の増幅回路A2の入力端と切換ス
イッチSにおける接点bに接続されている。第一及び第
二の増幅回路A1、A2の出力端には、断接自在なコネ
クタCを介して電気音響変換器としてのヘッドホンPが
接続されている。一対の増幅器A1、A2の入力端にそ
れぞれ設けられた可変抵抗器V3は、それら増幅器A
1、A2に加える電気信号の大きさを変えることによ
り、ヘッドホンPにおける左右のスピーカユニットから
輻射される可聴刺激の大きさを調節するためのものであ
る。一対の増幅器A1、A2の入力端間に交叉して設け
られた可変抵抗器V4は、それら増幅器A1、A2に加
える電気信号の大きさを加減することにより、ヘッドホ
ンPにおける左右のスピーカユニットから輻射される可
聴刺激のバランスをとるためのものである。
First Embodiment FIG. 1 is a block diagram of electrical components in an embodiment according to the present invention. In the figure, O1 and O2 are respectively a first oscillation circuit or a second oscillation circuit, and an operational amplifier is usually used. The first oscillating circuit O1 generates a sine wave having a frequency of about 150 Hertz, and the second oscillating circuit O2 generates an ultra-low frequency having a sine wave waveform and having a frequency of about 2 to 10 Hertz.
The second oscillating circuit O2 is provided with a variable resistor V1 which can be operated to change the frequency of the ultra-low frequency in the range of about 2 to 10 hertz. M is a modulation circuit, the output ends of the first oscillating circuit O1 and the second oscillating circuit O2 are connected to its input end, and the low frequency and the ultra-low frequency are amplitude-modulated here, and the output At the end, a modulated wave in which a super low frequency is superposed on a low frequency is derived.
The variable resistor V2 provided in the modulation circuit M is for adjusting the depth of the amplitude modulation, and by operating this, the modulation degree can be changed in the range of about 30 to 100%. The output terminal of the first oscillation circuit O1 is connected to the input terminal of the first amplifier circuit A1 via the changeover switch S, and the output terminal of the modulation circuit M is connected to the input end of the second amplifier circuit A2 and the changeover switch S. It is connected to the contact b. Headphones P as an electroacoustic transducer are connected to the output ends of the first and second amplifier circuits A1 and A2 via a connector C that can be freely connected and disconnected. The variable resistor V3 provided at the input ends of the pair of amplifiers A1 and A2 is
By adjusting the magnitude of the electric signal applied to A and A2, the magnitude of the audible stimulus radiated from the left and right speaker units of the headphones P is adjusted. The variable resistor V4 provided so as to intersect between the input terminals of the pair of amplifiers A1 and A2 adjusts the magnitude of the electric signal applied to the amplifiers A1 and A2, thereby radiating from the left and right speaker units of the headphone P. This is to balance the audible stimuli that are generated.

【0017】本例の動作について説明するに、切換スイ
ッチSを接点bの位置にした状態で回路を始動させる
と、第一及び第二の発振回路O1、O2の出力は変調回
路Mに供給される。両出力はここで混合され、振幅変調
されて、変調回路Mの出力端には図2に示すような波形
の変調波が導出される。図2に見られるように、この変
調波には、周波数約150ヘルツの正弦波に周波数約2
乃至10ヘルツの正弦波が重畳されている。変調回路M
の出力は増幅器A1、A2により増幅され、ヘッドホン
Pにおける一対のスピーカユニットを付勢する。切換ス
イッチSを接点aに接続すると、変調波は増幅器A2の
みに供給され、増幅器A1には、第一の発振回路O1が
発生する周波数約150ヘルツの低周波が供給される。
この場合には、ヘッドホンPにおける一方のスピーカユ
ニットからは変調波が輻射され、もう一方のスピーカユ
ニットからは無変調の正弦波が輻射されることとなる。
To explain the operation of the present example, when the circuit is started with the changeover switch S in the position of the contact b, the outputs of the first and second oscillation circuits O1 and O2 are supplied to the modulation circuit M. It Both outputs are mixed here and amplitude-modulated, and a modulated wave having a waveform as shown in FIG. 2 is derived from the output end of the modulation circuit M. As shown in FIG. 2, this modulated wave has a frequency of about 2 to a sine wave of about 150 Hertz.
A sine wave of 10 Hz is superimposed. Modulation circuit M
Is amplified by amplifiers A1 and A2, and energizes a pair of speaker units in the headphones P. When the changeover switch S is connected to the contact a, the modulated wave is supplied only to the amplifier A2, and the amplifier A1 is supplied with a low frequency of about 150 hertz generated by the first oscillation circuit O1.
In this case, the modulated wave is radiated from one speaker unit in the headphone P, and the unmodulated sine wave is radiated from the other speaker unit.

【0018】本例は斯く構成されているので、対象者が
その頭部にヘッドホンPを装着した状態で動作させる
と、対象者の耳には周波数約150ヘルツの正弦波か、
この正弦波に周波数約2乃至10ヘルツの正弦波が重畳
してなる変調波を聴くことができる。
Since this example is constructed as described above, when the subject operates with the headphones P worn on his / her head, the subject's ear may be a sine wave with a frequency of about 150 Hz.
It is possible to hear a modulated wave in which a sine wave having a frequency of about 2 to 10 hertz is superimposed on this sine wave.

【0019】[0019]

【実施例2】図3に示すのは、変調波発生回路の出力を
無線方式により電気音響変換器に供給する、この発明に
よる別の実施例の電気的構成部分を示すブロックダイア
グラムである。図中の符合O1、O2、M、V1乃至V
4、P及びCは、図1に示す実施例の場合と全く同じ回
路乃至回路素子を参照するためのものであり、それらの
使用目的、機能も実質同じである。
[Embodiment 2] FIG. 3 is a block diagram showing an electric component of another embodiment according to the present invention for supplying the output of the modulated wave generating circuit to the electroacoustic transducer by a wireless system. Reference numerals O1, O2, M, V1 to V in the figure
Reference numerals 4, P and C refer to the same circuits or circuit elements as in the case of the embodiment shown in FIG. 1, and their purpose of use and function are also substantially the same.

【0020】図3に示すように、本例は送信系統と受信
系統からなる。送信系統においては、第一の発振回路O
1、第二の発振回路O2及び変調回路Mで発生した変調
波又は正弦波は、前の実施例と同様、切換スイッチSを
介してステレオ方式の周波数変調回路FSMの入力端に
接続されている。周波数変調回路FSMは、通常、前記
入力端に印加される変調波乃至正弦波を増幅するための
低周波増幅回路と、その低周波増幅回路の出力端に接続
された入力端を有し、前記変調波乃至正弦波に基づいて
周波数変調された高周波に変換する周波数変調回路など
により構成される。周波数変調回路FSMの出力端に
は、前記高周波を適宜増幅するための高周波電力増幅回
路RFPの入力端が接続され、高周波電力増幅回路RF
Pの出力端には、高周波を輻射するための空中線ANT
1が接続されている。受信系統は、高周波を受信するた
めの空中線ANT2と、空中線ANT2からの高周波電
圧を元の変調波乃至正弦波を含む電気信号に復調するス
テレオ方式の受信回路FSRと、その受信回路FSRの
出力を可聴刺激に変換する電気音響変換器としてのヘッ
ドホンPを含んでなるものである。
As shown in FIG. 3, this example comprises a transmission system and a reception system. In the transmission system, the first oscillator circuit O
The modulated wave or the sine wave generated by the first and second oscillator circuits O2 and M is connected to the input end of the stereo frequency modulation circuit FSM via the changeover switch S as in the previous embodiment. . The frequency modulation circuit FSM usually has a low frequency amplification circuit for amplifying a modulation wave or a sine wave applied to the input end, and an input end connected to the output end of the low frequency amplification circuit. It is composed of a frequency modulation circuit for converting into a high frequency frequency-modulated based on a modulated wave or a sine wave. The output end of the frequency modulation circuit FSM is connected to the input end of a high frequency power amplification circuit RFP for appropriately amplifying the high frequency, and the high frequency power amplification circuit RF is connected.
At the output end of P, the antenna ANT for radiating high frequency
1 is connected. The reception system includes an antenna ANT2 for receiving high frequencies, a stereo type reception circuit FSR for demodulating the high frequency voltage from the antenna ANT2 into an electric signal including the original modulation wave or sine wave, and the output of the reception circuit FSR. The headphone P is included as an electroacoustic transducer for converting into an audible stimulus.

【0021】本例の動作について説明すると、本例は斯
く構成されているので、送信系統を動作させた状態で受
信系統を始動させると、ヘッドホンPにおける一対のス
ピーカユニットには、周波数約150ヘルツの正弦波
か、この正弦波に周波数約2乃至10ヘルツの正弦波が
重畳してなる変調波が輻射される。
The operation of this example will be described. Since this example is configured as described above, when the receiving system is started while the transmitting system is operating, the pair of speaker units in the headphone P has a frequency of about 150 hertz. Or a modulated wave in which a sine wave having a frequency of about 2 to 10 hertz is superimposed on this sine wave.

【0022】本例は斯く構成されているので、一つの送
信系統に対して、一又は複数の受信系統を設けておき、
この受信系統を個々の対象者が携帯し、ヘッドホンPを
頭部に装着した状態で適宜これを動作させれば、変調波
を聴くことができる。本例は、比較的広い場所で、複数
の対象者を同時に聴覚刺激するのに有用である。
Since this example is constructed in this way, one or a plurality of receiving systems are provided for one transmitting system,
If each subject carries this reception system and operates the headphone P while wearing it on his / her head, the modulated wave can be heard. This example is useful for simultaneously auditorily stimulating a plurality of subjects in a relatively large area.

【0023】次に、実験例により、この発明の奏する作
用効果について具体的に説明する。
Next, the function and effect of the present invention will be specifically described with reference to experimental examples.

【0024】[0024]

【実験例】精神神経疾患のない20歳台の男女それぞれ
5名を被検者とし、その頭部にステレオヘッドホンとと
もに、脳波計測用生体電極を『国際脳波学会連合標準電
極配置法』にしたがって装着した。脳波測定用生体電極
にはデータ処理装置を備えたNEC三栄株式会社が製造
・販売する脳波計『1A97A型』を、また、ステレオ
ヘッドホンには超低周波の周波数範囲を若干拡大した以
外、実施例2と同様に作製した装置を接続した。次に、
先ず、被検者を可聴刺激しない状態で、精神作業として
クレペリン試験(連続一位加算作業)を15分間負荷
し、その間、被検者の脳波を検出し、増幅した後、ティ
アック株式会社が製造・販売するデータレコーダ『XR
−710型』に記録した。前半の試験が終了した後、被
検者を5分間休憩させ、今度は、可聴刺激しながら後半
15分間のクレペリン試験を負荷するとともに、その
間、前記と同様にして被検者の脳波を検出し、得られた
データを増幅した後、データレコーダに記録した。な
お、可聴刺激の音圧は、被検者の鼓膜上で約70dBに
なるように設定した。
[Experimental Example] Five male and female subjects in their 20's who are not suffering from neuropsychiatric disease were the subjects, and their heads were equipped with stereo headphones and bioelectrodes for EEG measurement according to the "International Electroencephalographic Society Standard Electrode Arrangement Method". did. The electroencephalogram “1A97A type” manufactured and sold by NEC Sanei Co., Ltd., which is equipped with a data processing device for the biomedical electrode for measuring the electroencephalogram, and the stereo headphone, except that the frequency range of ultra-low frequency is slightly expanded, is an example. The device prepared in the same manner as 2 was connected. next,
First, the Kraepelin test (consecutive first-order addition work) is applied for 15 minutes as mental work without audible stimulation to the subject, and during that period, the brain waves of the subject are detected and amplified, and then manufactured by TEAC Corporation.・ Data recorder to sell "XR
-710 type ". After the test in the first half was completed, the subject was allowed to rest for 5 minutes, and this time, while receiving an audible stimulus, the Kraepelin test in the latter half 15 minutes was applied, while the electroencephalogram of the subject was detected in the same manner as described above. The obtained data was amplified and then recorded in a data recorder. The sound pressure of the audible stimulus was set to about 70 dB on the subject's eardrum.

【0025】試験終了後、データレコーダに記録したデ
ータをNEC三栄株式会社が製造・販売するシグナルプ
ロセッサ『7T18A型』により9回加算演算処理し、
周波数解析した後、被検者10名のFmθを平均して1
分間当たりのトポグラフとして表示した。それととも
に、前半、後半それぞれ15分間に亙る精神作業中、被
検者頭部におけるF3、Fz及びF4部位から導出した
Fmθにつき、前半15分間及び後半15分間について
それぞれ1分間当たりの平均強度(マイクロボルト)を
求め、得られた平均強度を部位ごとに数1に代入してF
mθ増加率(%)を計算した。これらトポグラフとFm
θ増加率をもって、各可聴刺激のFmθ誘導能を判断す
る目安とした。結果を表1及び図4、図5に示す。
After the test is completed, the data recorded in the data recorder is added and processed nine times by the signal processor "7T18A type" manufactured and sold by NEC Sanei Co., Ltd.
After frequency analysis, Fmθ of 10 subjects was averaged to 1
It was displayed as a topograph per minute. At the same time, during the mental work for 15 minutes each in the first half and the second half, for Fmθ derived from the F3, Fz, and F4 sites in the head of the subject, the average intensity per minute for the first 15 minutes and the second half 15 minutes (micro (Volts), and substitute the obtained average strength into the number 1 for each part to obtain F
The mθ increase rate (%) was calculated. These topographs and Fm
The rate of increase in θ was used as a guide for judging the Fmθ inducing ability of each audible stimulus. The results are shown in Table 1 and FIGS. 4 and 5.

【0026】[0026]

【数1】 [Equation 1]

【0027】対照として、可聴刺激を全く聴かせない系
(以下、「対照1」と言う。)と、無変調波、すなわ
ち、周波数約150ヘルツの正弦波のみを聴かせる系
(以下、「対照2」と言う。)などを設け、これら対照
についても前述と同様に試験した。
As a control, a system in which no audible stimulus is heard (hereinafter referred to as "control 1") and a system in which only a non-modulated wave, that is, a sine wave having a frequency of about 150 Hz (hereinafter, referred to as "control") are used. 2)) and the like, and these controls were tested in the same manner as described above.

【0028】[0028]

【表1】 [Table 1]

【0029】表1の結果から明らかなように、全ての可
聴刺激が共通して周波数150ヘルツの正弦波を含んで
いながら、そのFmθ増加率には顕著な違いが認められ
た。すなわち、超低周波の周波数が約20ヘルツ以下の
範囲にあると、F3、Fz及びF4の全ての部位におい
てFmθ増加率が顕著に上昇し、導出部位に依っては対
照1の約130%にも達することがあった。図4、図5
のトポグラフも、この発明による変調波で可聴刺激しな
がら精神作業すると、Fmθが被検者の前頭正中部を中
心に強く、広範囲に出現するようになったことを裏付け
ている。表1における対照3、対照4の結果に見られる
ように、超低周波の周波数が20ヘルツを上回ると、F
mθ増加率において対照1や対照2との有意差が認めら
れなくなり、被検者に依っては軽微な不快感や集中力の
低下を訴えたり、クレペリン試験の進捗に明らかな遅延
が認められるケースあった。
As is clear from the results shown in Table 1, although all the audible stimuli contained a sine wave with a frequency of 150 Hz in common, a significant difference was observed in the Fmθ increase rate. That is, when the frequency of the ultra-low frequency is in the range of about 20 hertz or less, the Fmθ increase rate is remarkably increased in all the parts of F3, Fz, and F4, and is about 130% of the control 1 depending on the derived part. Sometimes reached. 4 and 5
The topograph of No. 2 also confirms that when mental work is performed while audibly stimulating with the modulated wave according to the present invention, Fmθ appears to be strong and widely appears around the front midline of the subject. As can be seen from the results of Control 3 and Control 4 in Table 1, when the frequency of the infra low frequency exceeds 20 Hz, F
Cases where there is no significant difference in mθ increase rate from Control 1 or Control 2, slight discomfort or a decrease in concentration depending on the subject, or a clear delay in the progress of the Kraepelin test there were.

【0030】以上の実験事実から、超低周波の周波数と
しては約20ヘルツ以下、とりわけ、約2乃至10ヘル
ツの範囲の適していることが理解される。データは示し
ていないものの、超低周波の周波数を8ヘルツ付近に固
定する一方、低周波の周波数を50乃至6,000ヘル
ツの範囲で適宜変更しながら前記と同様に試験したとこ
ろ、低周波の周波数が約100乃至500ヘルツのとき
にFmθ増加率が有意に上昇し、約120乃至200ヘ
ルツのときにピークに達した。また、周波数約150ヘ
ルツの正弦波に周波数約8ヘルツの正弦波が重畳してな
る変調波につき、その変調度を適宜変更しながら前記と
同様に試験したところ、変調度が約30乃至100%の
ときに、Fmθ増加率がピークに達した。正弦波以外
に、鋸状波、方形波、三角波、矩形波などのパルス波に
ついても試験したところ、持続時間が比較的長いパルス
は、正弦波と比べとやや劣るものの、ほぼ同等の結果が
得られた。
From the above experimental facts, it is understood that the frequency of the ultra-low frequency is suitable to be about 20 hertz or less, and more preferably in the range of about 2 to 10 hertz. Although not shown in the data, the frequency of the low frequency was fixed at around 8 hertz, and the same test as above was performed while appropriately changing the frequency of the low frequency within the range of 50 to 6,000 hertz. The Fmθ increase rate increased significantly when the frequency was about 100 to 500 Hertz, and reached a peak when the frequency was about 120 to 200 Hertz. Further, a modulated wave in which a sine wave having a frequency of about 150 hertz is superimposed on a sine wave having a frequency of about 8 hertz was tested in the same manner as described above while appropriately changing the modulation degree, and the modulation degree was about 30 to 100%. At that time, the increase rate of Fmθ reached a peak. In addition to sine waves, we also tested sawtooth waves, square waves, triangle waves, rectangular waves, and other pulse waves, and found that pulses with a relatively long duration were slightly inferior to sine waves, but almost the same results were obtained. Was given.

【0031】別途、前記の被検者10名を対象に、この
発明による可聴刺激がα波の出現に及ぼす影響について
試験した。すなわち、被検者の頭部に脳波測定用生体電
極とステレオヘッドホンを装着させ、できるだけリラッ
クスして閉眼座位した状態で60分間に亙り、周波数約
150ヘルツの正弦波に周波数8ヘルツの正弦波が重畳
してなる変調波により可聴刺激した。そして、その間、
常法により脳波を検出し、増幅した後、データレコーダ
に記録した。試験終了後、記録したデータを周波数解析
し、周期8乃至10ヘルツのα波につき、測定開始直後
から20分間に亙り、5分間隔で1分間当たりのトポグ
ラフとして表示した。3日後、同じ被検者を対象に、変
調波による可聴刺激を省略した点を除き、全く同じ実験
を行った。その結果、この発明による変調波で可聴刺激
すると、被検者のα波に顕著な変化が現われ、可聴刺激
しないときのα波が図7に見られるとおりであったとこ
ろ、この発明による変調波により可聴刺激すると図8に
見られるように、可聴刺激を始めてから15分間の時点
で被検者の頭頂部を中心にα波が強く、極めて広範囲に
出現しているのが認められた。それと同時に、β波の出
現も顕著に抑制されていた。この傾向は、超低周波の周
波数を約2乃至10ヘルツの範囲で変えても概ね変わら
なかった。
Separately, the effects of the audible stimulus according to the present invention on the appearance of α-waves were tested on the 10 subjects. That is, a brain electrode measuring bioelectrode and stereo headphones are attached to the head of the subject, and the sine wave having a frequency of about 150 hertz and the sine wave having a frequency of 8 hertz are maintained for 60 minutes in a state where the subject is relaxed and seated in the closed position. An audible stimulus was given by the superimposed modulated waves. And in the meantime,
EEG was detected by a conventional method, amplified, and then recorded in a data recorder. After the completion of the test, the recorded data was subjected to frequency analysis, and the α wave having a period of 8 to 10 hertz was displayed as a topographic graph per minute at intervals of 5 minutes for 20 minutes immediately after the start of measurement. Three days later, exactly the same experiment was performed on the same subject, except that the audible stimulation by the modulated wave was omitted. As a result, when an audible stimulus with the modulated wave according to the present invention, a significant change appears in the α wave of the subject, and the α wave without audible stimulation is as shown in FIG. As can be seen from FIG. 8, when the audible stimulus was performed, the α wave was strong around the parietal region of the subject and appeared in an extremely wide range 15 minutes after the audible stimulus was started. At the same time, the appearance of β waves was also significantly suppressed. This tendency was almost unchanged when the frequency of the ultra-low frequency was changed in the range of about 2 to 10 hertz.

【0032】これらのことは、この発明による可聴刺激
がFmθの出現を促すのみならず、α波の出現を促すと
同時に、β波の出現を抑制する作用のあることを示唆し
ている。前述のとおり、α波とβ波は、それぞれ心身の
弛緩又は緊張に対応する脳波であることから、この発明
の装置は、開眼して使用するとFmθを誘導して注意・
集中力を高め、閉眼して使用すると心身を弛緩・安静化
させるということになる。
These facts suggest that the audible stimulus according to the present invention not only promotes the appearance of Fmθ, but also promotes the appearance of α-wave and at the same time suppresses the appearance of β-wave. As described above, the α-wave and the β-wave are brain waves corresponding to relaxation or tension of the mind and body, respectively. Therefore, the device of the present invention induces Fmθ when the eye is opened and used.
If you increase your concentration and use it with your eyes closed, you will relax and rest your mind and body.

【0033】前述のとおり、Fmθは注意・集中力のよ
い指標であることから、本実験例の結果は、この発明の
装置が、精神作業一般に使用して、使用者の注意・集中
力を高め、精神作業の効率・精度を高水準に保つことを
示唆しているものと言える。そして、このことは、クレ
ペリン試験の進捗率(%)からも窺われ、表1に示すよ
うに、この発明による変調波で可聴刺激した場合には、
作業の進捗率(%)が有意に高まっていた。
As described above, since Fmθ is an index of good attention and concentration, the results of this experimental example show that the device of the present invention is used for mental work in general and enhances the attention and concentration of the user. It can be said that this suggests that the efficiency and accuracy of mental work be maintained at a high level. This is also confirmed from the progress rate (%) of the Kraepelin test, and as shown in Table 1, when audibly stimulated by the modulated wave according to the present invention,
The work progress rate (%) was significantly increased.

【0034】[0034]

【発明の効果】この発明の装置は斯く構成されているの
で、その変調波は、聴覚を通じてヒトを可聴刺激する
と、その脳波におけるFmθの出現を促す。とりわけ、
超低周波の周波数が約2乃至10ヘルツの範囲にあると
きには、Fmθだけではなく、α波の出現をも促す。し
たがって、この発明による変調波は、聴覚を通じてヒト
を可聴刺激すると、Fmθやα波が係わる心身の望まし
い状態、すなわち、注意力や集中力の向上、さらには、
心身の弛緩・安静化を促す。
Since the device of the present invention is constructed as described above, the modulated wave promotes the appearance of Fmθ in the brain wave when the human is audibly stimulated through hearing. Above all,
When the frequency of the extremely low frequency is in the range of about 2 to 10 hertz, not only Fmθ but also the appearance of α wave is promoted. Therefore, when the human being is audibly stimulated through hearing, the modulated wave according to the present invention has a desirable state of mind and body related to Fmθ and α waves, that is, improvement of attention and concentration, and further,
Promotes relaxation and rest of mind and body.

【0035】このようなことから、この発明の装置は、
注意力や集中力の向上に止どまらず、心身の弛緩・安静
化や学習力、創作力の向上、さらには、例えば、ノイロ
ーゼ、精神衰弱症、心身症、躁欝症、慢性アルコール依
存症などの精神疾患や、例えば、テレビ受像機、ビデオ
ディスプレー、OA機器、自動車点火プラグなどから輻
射される電磁波による、いわゆる、テクノストレスを含
むストレス症一般による思考力、集中力、労働意欲の低
下、不眠、倦怠感、脅迫観念、恐怖症、不充実感などの
軽減や緩解に効果を発揮する。したがって、この発明の
装置は、一般家庭、職場、競技場、学校、学習塾、教習
所、訓練所、研究所、アトリエなどにおいては精神作業
の効率・精度、学習力、学術研究力、創作力、あるい
は、競技中の集中力を高める手段として、また、職場、
診療所、病院、療養所などにおいてはストレスを始めと
する各種精神疾患を予防・治療するための手段として有
用である。対象者に依っては、この発明による可聴刺激
を長期間聴き続けると、その後はごく短時間聴くか、全
く聴かなくてもFmθの出現が促進されることがある。
斯かる対象者にとって、この発明の装置は、いわゆる
「メンタルトレーニング」の手段としても有用である。
From the above, the device of the present invention is
Not only improving attention and concentration, but also relaxing and resting the mind and body, improving learning ability, creative ability, and further, for example, neurosis, mental dementia, psychosomatic disorder, manic depression, chronic alcohol dependence. Of mental illness such as illness, and electromagnetic waves emitted from television receivers, video displays, office automation equipment, automobile spark plugs, etc. , It is effective in reducing or relieving insomnia, malaise, intimidation, phobia, incompleteness, etc. Therefore, the device of the present invention is used in general households, workplaces, stadiums, stadiums, schools, cram schools, training schools, training centers, research laboratories, ateliers, etc., for efficiency and accuracy of mental work, learning ability, academic research ability, creative ability, Or as a way to increase concentration during competition, at work,
It is useful as a means for preventing and treating various mental illnesses such as stress in clinics, hospitals, sanatoriums and the like. Depending on the subject, if the audible stimulus according to the present invention is continuously listened to for a long period of time, thereafter, the appearance of Fmθ may be promoted even if it is listened to for a very short period of time or not at all.
For such a subject, the device of the present invention is also useful as a means of so-called "mental training".

【0036】このように、この発明は斯界に貢献するこ
と誠に多大な、意義のある発明であると言える。
As described above, it can be said that the present invention is a significantly significant invention that contributes to the field.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による一実施例における電気的構成部
分のブロックダイアグラムである。
FIG. 1 is a block diagram of electrical components in an embodiment according to the present invention.

【図2】図1に示す実施例における変調波の波形図であ
る。
FIG. 2 is a waveform diagram of a modulated wave in the embodiment shown in FIG.

【図3】この発明による別の実施例における電気的構成
部分のブロックダイアグラムである。
FIG. 3 is a block diagram of electrical components in another embodiment according to the present invention.

【図4】可聴刺激することなく被検者に精神作業を負荷
したときのFmθを示すトポグラフである。
FIG. 4 is a topograph showing Fmθ when a subject is subjected to mental work without audible stimulation.

【図5】この発明による変調波で可聴刺激しながら被検
者に精神作業を負荷したときのFmθを示すトポグラフ
である。
FIG. 5 is a topograph showing Fmθ when a subject is subjected to mental work while audibly stimulating with a modulated wave according to the present invention.

【図6】可聴刺激することなく被検者を閉眼座位させた
ときのα波を示すトポグラフである。
FIG. 6 is a topograph showing α-waves when a subject is in a sitting position with his eyes closed without audible stimulation.

【図7】この発明による変調波で聴覚刺激しながら被検
者を閉眼座位させたときのα波を示すトポグラフであ
る。
FIG. 7 is a topograph showing α-waves when a subject is placed in a sitting position with his eyes closed while auditorily stimulating with a modulated wave according to the present invention.

【符号の説明】[Explanation of symbols]

O1、O2 発振回路 A1、A2 増幅回路 M 変調回路 V1〜V4 可変抵抗 S 切換スイッチ C コネクタ P ヘッドホン FSM 周波数変調回路 RFP 高周波電力増幅回路 FSR 受信回路 ANT1、ANT2 空中線 O1, O2 Oscillation circuit A1, A2 Amplification circuit M Modulation circuit V1-V4 Variable resistance S Change switch C Connector P Headphones FSM Frequency modulation circuit RFP High frequency power amplification circuit FSR Receiver circuit ANT1, ANT2 Antenna

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年4月6日[Submission date] April 6, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】表1の結果から明らかなように、全ての可
聴刺激が共通して周波数150ヘルツの正弦波を含んで
いながら、そのFmθ増加率には顕著な違いが認められ
た。すなわち、超低周波の周波数が約20ヘルツ以下の
範囲にあると、F3、Fz及びF4の全ての部位におい
てFmθ増加率が顕著に上昇し、導出部位に依っては対
照1の約130%にも達することがあった。図4、図5
のトポグラフも、この発明による変調波で可聴刺激しな
がら精神作業すると、Fmθが被検者の前頭正中部を中
心に強く、広範囲に出現するようになったことを裏付け
ている。表1における対照3、対照4の結果に見られる
ように、超低周波の周波数が20ヘルツを上回ると、F
mθ増加率において対照1や対照2との有意差が認めら
れなくなり、被検者に依っては軽微な不快感や集中力の
低下を訴えたり、クレペリン試験の進捗に明らかな遅延
の認められるケースがあった。
As is clear from the results shown in Table 1, although all the audible stimuli contained a sine wave with a frequency of 150 Hz in common, a significant difference was observed in the Fmθ increase rate. That is, when the frequency of the ultra-low frequency is in the range of about 20 hertz or less, the Fmθ increase rate is remarkably increased in all the parts of F3, Fz, and F4, and is about 130% of the control 1 depending on the derived part. Sometimes reached. 4 and 5
The topograph of No. 2 also confirms that when mental work is performed while audibly stimulating with the modulated wave according to the present invention, Fmθ appears to be strong and widely appears around the front midline of the subject. As can be seen from the results of Control 3 and Control 4 in Table 1, when the frequency of the infra low frequency exceeds 20 Hz, F
Cases where there is no significant difference in mθ increase rate from Control 1 or Control 2, slight complaints of discomfort or decreased concentration, or a clear delay in the progress of the Kraepelin test depending on the subject was there.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Name of item to be corrected] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0032】これらのことは、この発明による可聴刺激
がFmθの出現を促すのみならず、α波の出現を促すと
同時に、β波の出現を抑制する作用のあることを示唆し
ている。前述のとおり、α波とβ波は、それぞれ心身の
弛緩又は緊張に対応する脳波であることから、この発明
の装置は、開眼して使用するとFmθを誘導して注意・
集中力を高め、閉眼して使用するとα波を誘導するとと
もにβ波を抑制して心身を弛緩・安静化させるというこ
とになる。
These facts suggest that the audible stimulus according to the present invention not only promotes the appearance of Fmθ, but also promotes the appearance of α-wave and at the same time suppresses the appearance of β-wave. As described above, the α-wave and the β-wave are brain waves corresponding to relaxation or tension of the mind and body, respectively. Therefore, the device of the present invention induces Fmθ when the eye is opened and used.
If you use it with increased concentration and closing your eyes, you will induce α waves and suppress β waves to relax and rest your mind and body.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】[0034]

【発明の効果】この発明の装置は斯く構成されているの
で、その変調波は、聴覚を通じてヒトを刺激すると、そ
の脳波におけるFmθの出現を促す。とりわけ、超低周
波の周波数が約2乃至10ヘルツの範囲にあるときに
は、Fmθだけではなく、α波の出現をも促す。したが
って、この発明による変調波は、聴覚を通じてヒトを刺
激すると、Fmθやα波が係わる心身の望ましい状態、
すなわち、注意力や集中力の向上、さらには、心身の弛
緩・安静化を促す。 ─────────────────────────────────────────────────────
EFFECTS OF THE INVENTION Since the device of the present invention is constructed as described above, the modulated wave promotes the appearance of Fmθ in the brain wave when the human being is stimulated through hearing. In particular, when the frequency of the ultra-low frequency is in the range of about 2 to 10 hertz, not only Fmθ but also the appearance of α-wave is promoted. Therefore, the modulated wave according to the present invention, when stimulating a human through hearing, has a desired state of mind and body related to Fmθ and α waves,
That is, it promotes attention and concentration, and further relaxation and rest of mind and body. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年7月8日[Submission date] July 8, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】変調波発生回路で発生させた変調波を電気
音響変換器に供給する方法であるが、斯かる方法は二種
類に大別され、その一つは、変調波発生回路と電気音響
変換器をケーブル等により直接接続する有線方式であ
る。この方式においては、通常、対象者又はその補助者
が、対象者が実際に聴く場所で変調波発生回路を含む電
気的構成部分を操作する。いま一つの方式は、変調波発
生回路を含む電気的構成部分と電気音響変換器を含む電
気的構成部分とを別個に構成し、変調波発生回路の出力
を無線通信や光通信などにより後者の電気的構成部分に
供給する無線方式である。無線方式においては、通常、
補助者が、対象者が実際に聴く場所とはやや離れた場所
で前者の電気的構成部分を操作することとなる。Fmθ
を誘導するということにおいては、何れの方式を採用し
ても実質的な違いは無いけれども、後者の方式の場合に
は、複数の対象者を同時に可聴刺激するのが容易とな
り、しかも、無線の到達範囲内であれば、対象者が自由
に移動できるという利点がある。
The method of supplying the modulated wave generated by the modulated wave generating circuit to the electroacoustic transducer is roughly classified into two types, one of which is the modulated wave generating circuit and the electroacoustic transducer. It is a wired system in which the devices are directly connected by a cable or the like. In this method, a subject or his / her assistant usually operates an electric component including a modulated wave generating circuit at a place where the subject actually listens. Another method is to separately configure an electrical component part including a modulated wave generation circuit and an electrical component part including an electroacoustic transducer, and to output the output of the modulated wave generation circuit by wireless communication or optical communication. It is a wireless system that supplies electrical components. In wireless systems,
The assistant will operate the former electrical components at a location somewhat remote from where the subject actually listens. Fmθ
Although there is no substantial difference in the method of inducing the stimulus, whichever method is used, the latter method makes it easy to simultaneously audibly stimulate a plurality of subjects, and moreover Within the reach, there is an advantage that the subject can move freely.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】図3に示すように、本例は送信系統と受信
系統からなる。送信系統においては、第一の発振回路O
1、第二の発振回路O2及び変調回路Mで発生した変調
波又は正弦波は、前の実施例と同様、切換スイッチSを
介してステレオ方式の周波数変調回路FSMの入力端に
供給される。周波数変調回路FSMは、通常、前記入力
端に印加される変調波乃至正弦波を増幅するための低周
波増幅回路と、その低周波増幅回路の出力端に接続され
た入力端を有し、前記変調波乃至正弦波に基づいて周波
数変調された高周波に変換する周波数変調回路などによ
り構成される。周波数変調回路FSMの出力端には、前
記高周波を適宜増幅するための高周波電力増幅回路RF
Pの入力端が接続され、高周波電力増幅回路RFPの出
力端には、高周波を輻射するための空中線ANT1が接
続されている。受信系統は、高周波を受信するための空
中線ANT2と、空中線ANT2からの高周波電圧を元
の変調波乃至正弦波を含む電気信号に復調するためのス
テレオ方式の受信回路FSRと、受信回路FSRの出力
を可聴刺激に変換する電気音響変換器としてのヘッドホ
ンPを含んでなるものである。
As shown in FIG. 3, this example comprises a transmission system and a reception system. In the transmission system, the first oscillator circuit O
The modulated wave or the sine wave generated in the first and second oscillator circuits O2 and M is supplied to the input end of the stereo frequency modulation circuit FSM via the changeover switch S as in the previous embodiment. The frequency modulation circuit FSM usually has a low frequency amplification circuit for amplifying a modulation wave or a sine wave applied to the input end, and an input end connected to the output end of the low frequency amplification circuit. It is composed of a frequency modulation circuit for converting into a high frequency frequency-modulated based on a modulated wave or a sine wave. The output terminal of the frequency modulation circuit FSM has a high frequency power amplifier circuit RF for appropriately amplifying the high frequency waves.
An input terminal of P is connected, and an antenna ANT1 for radiating a high frequency is connected to an output terminal of the high frequency power amplifier circuit RFP. The reception system includes an antenna ANT2 for receiving high frequencies, a stereo type reception circuit FSR for demodulating the high frequency voltage from the antenna ANT2 into an electric signal including the original modulation wave or sine wave, and the output of the reception circuit FSR. The headphone P is included as an electroacoustic transducer that converts the sound into an audible stimulus.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】別途、前記の被検者10名を対象に、この
発明による可聴刺激がα波の出現に及ぼす影響について
試験した。すなわち、被検者の頭部に脳波測定用生体電
極とステレオヘッドホンを装着させ、できるだけリラッ
クスして閉眼座位した状態で60分間に亙り、周波数約
150ヘルツの正弦波に周波数8ヘルツの正弦波が重畳
してなる変調波により可聴刺激した。そして、その間、
常法により脳波を検出し、増幅した後、データレコーダ
に記録した。試験終了後、記録したデータを周波数解析
し、周期8乃至10ヘルツのα波につき、測定開始直後
から20分間に亙り、5分間隔で1分間当たりのトポグ
ラフとして表示した。3日後、同じ被検者を対象に、変
調波による可聴刺激を省略した点を除き、全く同じ実験
を行った。その結果、この発明による変調波で可聴刺激
すると、被検者のα波に顕著な変化が現われ、可聴刺激
しないときのα波が図6に見られるとおりであったとこ
ろ、この発明による変調波により可聴刺激すると図7に
見られるように、可聴刺激を始めてから15分間の時点
で被検者の頭頂部を中心にα波が強く、極めて広範囲に
出現しているのが認められた。それと同時に、β波の出
現も顕著に抑制されていた。この傾向は、超低周波の周
波数を約2乃至10ヘルツの範囲で変えても概ね変わら
なかった。
Separately, the effects of the audible stimulus according to the present invention on the appearance of α-waves were tested on the 10 subjects. That is, a brain electrode measuring bioelectrode and stereo headphones are attached to the head of the subject, and the sine wave having a frequency of about 150 hertz and the sine wave having a frequency of 8 hertz are maintained for 60 minutes in a state where the subject is relaxed and seated in the closed position. An audible stimulus was given by the superimposed modulated waves. And in the meantime,
EEG was detected by a conventional method, amplified, and then recorded in a data recorder. After the completion of the test, the recorded data was subjected to frequency analysis, and the α wave having a period of 8 to 10 hertz was displayed as a topographic graph per minute at intervals of 5 minutes for 20 minutes immediately after the start of measurement. Three days later, exactly the same experiment was performed on the same subject, except that the audible stimulation by the modulated wave was omitted. As a result, when an audible stimulus with the modulated wave according to the present invention, a significant change appears in the α-wave of the subject, and the α-wave without the audible stimulus is as shown in FIG. As shown in FIG. 7, when the audible stimulus was performed by, the α wave was strong around the parietal region of the subject and appeared in an extremely wide range 15 minutes after the audible stimulus was started. At the same time, the appearance of β waves was also significantly suppressed. This tendency was almost unchanged when the frequency of the ultra-low frequency was changed in the range of about 2 to 10 hertz.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 可聴域の低周波に、周波数約20ヘルツ
以下の超低周波が重畳してなる変調波を発生する変調波
発生回路と、その変調波発生回路の出力端に接続され、
前記変調波を可聴刺激に変換する電気音響変換器とを含
んでなるFmθ誘導装置。
1. A modulated wave generating circuit for generating a modulated wave in which an ultralow frequency having a frequency of about 20 hertz or less is superimposed on a low frequency in the audible range, and is connected to an output end of the modulated wave generating circuit,
An Fmθ induction device including an electroacoustic transducer that converts the modulated wave into an audible stimulus.
【請求項2】 変調波発生回路が、可聴域の低周波を発
生する第一の発振回路と、周波数約20ヘルツ以下の超
低周波を発生する第二の発振回路と、それら第一及び第
二の発振回路の出力端に接続された入力端を有し、可聴
域の低周波を周波数約20ヘルツ以下の超低周波で変調
する変調回路とを含んでなる請求項1に記載のFmθ誘
導装置。
2. A modulated wave generating circuit, a first oscillating circuit for generating a low frequency in the audible range, a second oscillating circuit for generating an ultra low frequency of about 20 hertz or less, and the first and the second oscillating circuits. The Fmθ induction according to claim 1, further comprising: a modulation circuit that has an input end connected to an output end of the second oscillation circuit and that modulates a low frequency in the audible range with an ultralow frequency of about 20 hertz or less. apparatus.
【請求項3】 可聴域の低周波が周波数約120乃至2
00ヘルツである請求項1又は2に記載のFmθ誘導装
置。
3. A low frequency in the audible range has a frequency of about 120 to 2.
The Fmθ induction device according to claim 1 or 2, which has a frequency of 00 hertz.
【請求項4】 超低周波の周波数が約2乃至10ヘルツ
である請求項1、2又は3に記載のFmθ誘導装置。
4. The Fmθ induction device according to claim 1, 2 or 3, wherein the frequency of the ultra-low frequency is about 2 to 10 hertz.
【請求項5】 変調波の変調度が約30乃至100%の
範囲にある請求項1、2、3又は4に記載のFmθ誘導
装置。
5. The Fmθ induction device according to claim 1, wherein the modulation degree of the modulated wave is in the range of about 30 to 100%.
【請求項6】 可聴刺激が1/fゆらぎ則にしたがって
変動する請求項1、2、3、4又は5に記載のFmθ誘
導装置。
6. The Fmθ induction device according to claim 1, wherein the audible stimulus varies according to the 1 / f fluctuation rule.
JP5252124A 1993-09-16 1993-09-16 Fmθ guidance device Expired - Fee Related JP2814419B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5252124A JP2814419B2 (en) 1993-09-16 1993-09-16 Fmθ guidance device
CA002131950A CA2131950A1 (en) 1993-09-16 1994-09-13 Fm theta-inducing audible sound, and method, device and recorded medium to generate the same
US08/305,834 US5954630A (en) 1993-09-16 1994-09-14 FM theta-inducing audible sound, and method, device and recorded medium to generate the same
NO943442A NO943442L (en) 1993-09-16 1994-09-15 FM theta-inducing audible sound as well as method, device and recording medium to generate the sound
EP94306755A EP0644525A3 (en) 1993-09-16 1994-09-15 Fm theta-inducing audible sound, and method, device and recorded medium to generate the same.
KR1019940023630A KR950009526A (en) 1993-09-16 1994-09-16 Method and apparatus for generating an audible sound for inducing Fm theta (Fm θ)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5252124A JP2814419B2 (en) 1993-09-16 1993-09-16 Fmθ guidance device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP04634098A Division JP3194187B2 (en) 1998-02-13 1998-02-13 Fmθ guidance device

Publications (2)

Publication Number Publication Date
JPH0780070A true JPH0780070A (en) 1995-03-28
JP2814419B2 JP2814419B2 (en) 1998-10-22

Family

ID=17232811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5252124A Expired - Fee Related JP2814419B2 (en) 1993-09-16 1993-09-16 Fmθ guidance device

Country Status (1)

Country Link
JP (1) JP2814419B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159970A (en) * 1984-12-29 1986-07-19 林原 健 Apparatus for lowering and inducing brain wave frequency

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159970A (en) * 1984-12-29 1986-07-19 林原 健 Apparatus for lowering and inducing brain wave frequency

Also Published As

Publication number Publication date
JP2814419B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
US5954630A (en) FM theta-inducing audible sound, and method, device and recorded medium to generate the same
Goverdovsky et al. In-ear EEG from viscoelastic generic earpieces: Robust and unobtrusive 24/7 monitoring
Nakagawa et al. Development of a bone-conducted ultrasonic hearing aid for the profoundly sensorineural deaf
Cazals et al. Electrical stimulation of the cochlea in man: hearing induction and tinnitus suppression
CN104905909B (en) Bilateral hearing assistance system and test the method with bilateral hearing assistance system
Kileny et al. Cognitive evoked potentials to speech and tonal stimuli in children with implants
Stelmack et al. Extraversion and the effects of frequency and intensity on the auditory brainstem evoked response
EP1463444B1 (en) Apparatus for treatment of mono-frequency tinnitus
JPS61159967A (en) Method for transmitting sonic wave information to deaf person and audio nerve transmitting system for stimulating tactile sensation of deaf person
US20210046276A1 (en) Mood and mind balancing audio systems and methods
Nakagawa et al. Development of bone-conducted ultrasonic hearing aid for the profoundly deaf: Assessments of the modulation type with regard to intelligibility and sound quality
Håkansson et al. VEMP using a new low-frequency bone conduction transducer
US11115758B2 (en) System and method for multiplexed ultrasound hearing
Purdy et al. The post-auricular muscle response: an objective electrophysiological method for evaluating hearing sensitivity: La respuesta del músculo post auricular: un método objetivo electrofisiológico para evaluar la sensibilidad auditiva
Zeng et al. Tinnitus treatment using noninvasive and minimally invasive electric stimulation: experimental design and feasibility
KR20200021267A (en) Bone conduction apparatus with TENS therapy function
Fredén Jansson et al. Bone conduction stimulated VEMP using the B250 transducer
Park et al. The effect of binaural beat-based audiovisual stimulation on brain waves and concentration
JP3444632B2 (en) Audible sound that induces Fmθ and method of generating the sound
JP3194187B2 (en) Fmθ guidance device
JP2814419B2 (en) Fmθ guidance device
McBride et al. Bone conduction communication: Research progress and directions
JP3705525B2 (en) Audible sound for inducing Fmθ and generation method thereof
Weisenberger et al. Development and preliminary evaluation of an earmold sound-to-tactile aid for the hearing-impaired
Nakagawa et al. Development of a novel hearing-aid for the profoundly deaf using bone-conducted ultrasonic perception: Evaluation of transposed modulation

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees