JPH0779973A - Method for transmission of ultrasonic waves by dispersion and compression and apparatus for transmission of ultrasonic waves by dispersion and compression - Google Patents

Method for transmission of ultrasonic waves by dispersion and compression and apparatus for transmission of ultrasonic waves by dispersion and compression

Info

Publication number
JPH0779973A
JPH0779973A JP5233509A JP23350993A JPH0779973A JP H0779973 A JPH0779973 A JP H0779973A JP 5233509 A JP5233509 A JP 5233509A JP 23350993 A JP23350993 A JP 23350993A JP H0779973 A JPH0779973 A JP H0779973A
Authority
JP
Japan
Prior art keywords
signal
transmission
waveform
apodization
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5233509A
Other languages
Japanese (ja)
Other versions
JP3222653B2 (en
Inventor
Yasuto Takeuchi
康人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
GE Yokogawa Medical System Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Yokogawa Medical System Ltd filed Critical GE Yokogawa Medical System Ltd
Priority to JP23350993A priority Critical patent/JP3222653B2/en
Publication of JPH0779973A publication Critical patent/JPH0779973A/en
Application granted granted Critical
Publication of JP3222653B2 publication Critical patent/JP3222653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To set better time side lobe by using FM chirp signal. CONSTITUTION:In an apparatus for transmission of ultrasonic waves by dispersion and compression, a measure for creation of wave sending signals 11 which creates double apodization chirp signal charged with apodization of Gaussian distribution against the chirp signal charged with cosine square wave form, as wave sending signal, a measure for sending and receiving waves 21 which irradiates wave sending signals as ultrasonic waves at the target and receives reflected waves and generates them as receiving signals, and cross correlation between the signal wave form of signals received and the signal wave form of signals sent are required as correlated relationship. By this, the apparatus is an apparatus for transmission of ultrasonic waves by dispersion and compression which is also equipped by a means for process of signals received 33 which obtains generation of compression and demodulation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音波分散圧縮送受信方
法及び超音波分散圧縮送受信装置の改良に関し、更に詳
しくはFMチャープ信号を用いた超音波分散圧縮送受信
方法及び超音波分散圧縮送受信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic dispersion compression transmission / reception method and an ultrasonic dispersion compression transmission / reception apparatus, and more particularly to an ultrasonic dispersion compression transmission / reception method and an ultrasonic dispersion compression transmission / reception apparatus using an FM chirp signal. .

【0002】[0002]

【従来の技術】医用超音波装置とは一種の極短距離ソナ
ーであり、ターゲット(観測対象物:この場合被検体の
腹腔内)の損失性分散性の大きな音響学的性質と、診断
上の要求による映像系の空間分解能への要求に従って、
音響信号系の比帯域幅は非常に大きく(すなわち、イン
パルスレスポンスを非常に重視し)、また系のダイナミ
ックレンジへの要求も常に限界値を行っている。
2. Description of the Related Art A medical ultrasonic device is a kind of extremely short-range sonar, and has a large acoustic property of lossy dispersiveness of a target (observation target: in this case, the abdominal cavity of a subject) and diagnostic According to the demand for the spatial resolution of the image system according to the demand,
The specific bandwidth of an acoustic signal system is very large (that is, the impulse response is very important), and the demand for the dynamic range of the system is always the limit value.

【0003】また、ターゲットの生体軟部組織のエコー
源としての性質はポイントターゲットとは裏腹の全てが
クラッタのようなエコー源であり、スペックル性を基本
とし、卓越した硬いエコーは骨などの特例以外には存在
しない。
The characteristic of the target as an echo source of the soft tissue of the living body is that the point source is an echo source such as clutter on the contrary to the point target, and is based on speckle property, and an exceptionally hard echo is a special case such as bone. Except for

【0004】むしろ、組織実質部の砂を撒いたようなス
ペックルエコーの領域の中に僅かに性質の異なる部分が
識別できるとか、液体で満たされた管腔臓器の中身が本
当に透明か、なにかエコーを発する異物があるか、等が
大変重要な課題である。それ故に、一切のゴーストやス
プリアスレスポンスを極度に嫌う。すなわち、本質的に
ハイファイでクリーンであることが必須の条件である。
Rather, it is possible to identify a portion having slightly different properties in the area of speckle echo such as sand sprinkling of parenchymal tissue, whether the contents of the liquid-filled luminal organ are really transparent, or something. It is a very important issue whether there is a foreign object that emits an echo. Therefore, I hate all ghosts and spurious responses. In other words, the essential condition is that it is essentially high-fidelity and clean.

【0005】この様な観測系ないし信号系への要求は、
オーディオシステムや資源探査用の合成開口レーダにお
ける事情にも似ているともいえるが、大きく異なる点も
ある。すなわち、リアルタイム性と安全性が要求される
点である。リアルタイム性とは、動体即時観測、すなわ
ち動いている臓器の遅滞ない観測(ドプラシフト観測な
ども含めて)要求されることである。また生体組織への
安全性の確保は医療器械としては本質的に重要な課題で
ある。
The demand for such an observation system or a signal system is
It can be said that it is similar to the situation in an audio system and a synthetic aperture radar for resource exploration, but there are also major differences. That is, real-time and safety are required. The real-time property means that an immediate observation of a moving body, that is, an observation without delay of a moving organ (including Doppler shift observation) is required. In addition, securing safety for living tissues is an essentially important issue for medical instruments.

【0006】すなわち、安全性と送信電力の両者を確保
しつつ装置の探査能力を向上させるために、大振幅の単
発パルスのパルスエコーシステムや単一周波数のCWシ
ステムに代えて、時間帯域幅積(TB積)が1よりはる
かに大きいスペクトラム拡散方式を用いた分散圧縮送受
信が有効である。
In other words, in order to improve the search capability of the device while ensuring both safety and transmission power, a time-bandwidth product is used instead of a pulse-echo system with a single pulse having a large amplitude or a CW system with a single frequency. Distributed compression transmission / reception using a spread spectrum method in which (TB product) is much larger than 1 is effective.

【0007】[0007]

【発明が解決しようとする課題】医用超音波装置のエコ
ー探査において以上のような事情に即して採用可能な分
散化信号として、FMチャープ信号がある。そして、メ
インローブの鋭さや形状は各々の事情による面があると
しても、一般に、送波信号のそれ自身の方式原理上のタ
イムサイドローブが大略−60dB程度以下であること
は最低限必要である。これは生体組織内のエコー源のレ
ベル分布に由来し、その分布範囲そのものである。
An FM chirp signal is a decentralized signal that can be adopted in the echo search of a medical ultrasonic apparatus in view of the above circumstances. Even if the sharpness and shape of the main lobe depend on the circumstances, it is generally at least necessary that the time side lobe of the transmitted signal in its own system principle is approximately -60 dB or less. . This originates from the level distribution of the echo source in the living tissue, and is the distribution range itself.

【0008】ゴーレイコード等の相補系列を位相変調の
コード信号として時分割的に用いる場合には、タイムサ
イドローブは各コードの受信相関処理の後で結果を一次
結合することで完全に消去され、静止ターゲットに対し
てはほぼ理想的な結果が得られる。しかしこの方式はド
プラシフトのあるターゲットには本質的に脆弱で、応用
可能な場面には制約がある。
When a complementary sequence such as a Golay code is used as a phase-modulated code signal in a time division manner, the time side lobes are completely erased by linearly combining the results after reception correlation processing of each code. , It gives almost ideal results for stationary targets. However, this method is inherently vulnerable to targets with Doppler shift, and there are restrictions on the applicable situations.

【0009】また、ビンのシフト数のある特定の値のみ
に関して相補性を呈する系もあるが、システムが同期シ
ステムではなく、エコー源が至る所に分布しているスペ
ックル性の強いものであるので、メインローブ以外の一
切の不所望レスポンスは字義通りゴースト発生源とな
る。
[0009] Further, there is a system that exhibits complementarity only with respect to a certain specific value of the shift number of the bin, but the system is not a synchronous system, and the echo sources are distributed everywhere and the speckle property is strong. Therefore, any undesired response other than the main lobe literally becomes a ghost source.

【0010】図7は全長が50波長程度のアポダイゼー
ション無しのリニアFMチャープ信号の波形の一例を示
す波形図、図8は図7の波形の受波結果と元の波形とで
相互相関により得られた結果を示す特性図である。な
お、これらの図で横軸はサンプル番号であり、縦軸は信
号レベル[dB]を表している。また、以下の波形図や特性
図でも同様である。
FIG. 7 is a waveform diagram showing an example of a waveform of a linear FM chirp signal without apodization having a total length of about 50 wavelengths, and FIG. 8 is obtained by cross-correlation between the reception result of the waveform of FIG. 7 and the original waveform. It is a characteristic view which shows the result. In these figures, the horizontal axis represents the sample number and the vertical axis represents the signal level [dB]. The same applies to the following waveform diagrams and characteristic diagrams.

【0011】これら図7,図8から分かるように、アポ
ダイゼーション無しのチャープ信号による相互相関のサ
イドローブは高々−30dB程度に留まる。従って、医
用超音波装置では実用に耐えない。
As can be seen from FIGS. 7 and 8, the side lobe of the cross-correlation by the chirp signal without apodization stays at about -30 dB at most. Therefore, the medical ultrasonic device cannot be used practically.

【0012】図9はコサイン自乗修飾のアポダイゼーシ
ョンチャープ信号の波形を示す波形図、図10は図9の
波形の受波結果と元の波形とで相互相関により得られた
結果を示す特性図である。このようにコサイン自乗修飾
のアポダイゼーションチャープ信号を用いることによ
り、サイドローブは−60dB程度になる。
FIG. 9 is a waveform diagram showing a waveform of an apodization chirp signal with cosine square modification, and FIG. 10 is a characteristic diagram showing a result obtained by cross-correlation between the reception result of the waveform of FIG. 9 and the original waveform. . By using the cosine square modified apodization chirp signal as described above, the side lobe becomes about −60 dB.

【0013】しかし、媒質固有の伝播非線形性ないし周
波数依存性の減衰,システムの電子回路の歪み,A/D
変換の量子化の粗さ等の如く、タイムサイドローブを悪
化させる要因は他にも多数存在する。このため、送受信
のための信号設計において要求仕様の−60dBにごく
近いサイドローブにしか抑えられられないとすると、そ
れらの他の要因による悪化に対して配分できる資源がな
く、系全体としては実務上要求仕様を満たすことができ
ない。すなわち、タイムサイドローブはすべからく最小
限であることが強く望まれる。
However, the propagation non-linearity or frequency dependent attenuation inherent to the medium, the distortion of the electronic circuit of the system, the A / D
There are many other factors that worsen the time side lobes, such as the coarseness of the quantization of the transform. For this reason, assuming that the side lobes that are very close to the required specification of -60 dB can be suppressed in the signal design for transmission and reception, there is no resource that can be allocated to the deterioration due to these other factors, and the overall system is practical. Above requirements cannot be met. That is, it is strongly desired that the time side lobes are all minimal.

【0014】本発明は上記の点に鑑みてなされたもの
で、その目的は、FMチャープ信号を用いてタイムサイ
ドローブの良い超音波分散圧縮送受信方法及び超音波分
散圧縮送受信装置を実現することである。
The present invention has been made in view of the above points, and an object thereof is to realize an ultrasonic dispersion compression transmission / reception method and an ultrasonic dispersion compression transmission / reception apparatus having a good time side lobe by using an FM chirp signal. is there.

【0015】[0015]

【課題を解決するための手段】前記の課題は、コサイン
自乗波形のアポダイゼーションを課したチャープ信号に
対してガウシアン分布のアポダイゼーションを課した二
重アポダイゼーションチャープ信号を送波信号として生
成し、送波信号を超音波としてターゲットに照射し、前
記ターゲットの反射波を受信して受信信号として出力
し、受信した信号波形と送波信号の信号波形との相互相
関を相関結果として求めることにより圧縮復調出力を得
ることを特徴とする超音波分散圧縮送受信方法により達
成される。
[Means for Solving the Problems] The above-mentioned problem is to generate a double apodization chirp signal in which apodization of Gaussian distribution is applied to a chirp signal in which apodization of cosine square waveform is applied as a transmission signal, Irradiating the target as an ultrasonic wave, receiving the reflected wave of the target and outputting it as a reception signal, and obtaining the compression demodulation output by obtaining the cross-correlation between the received signal waveform and the signal waveform of the transmitted signal as the correlation result. And an ultrasonic dispersion compression transmission / reception method.

【0016】また、超音波分散圧縮送受信装置におい
て、コサイン自乗波形のアポダイゼーションを課したチ
ャープ信号に対してガウシアン分布のアポダイゼーショ
ンを課した二重アポダイゼーションチャープ信号を送波
信号として生成する送波信号生成手段と、送波信号を超
音波としてターゲットに照射し、反射波を受信して受信
信号として出力する送受波手段と、受信信号の信号波形
と送波信号の信号波形との相互相関を相関結果として求
めることにより圧縮復調出力を得る受信信号処理手段と
を備えたことを特徴とする超音波分散圧縮送受信装置に
よって解決される。
Further, in the ultrasonic dispersion compression transmitting / receiving apparatus, a transmission signal generating means for generating as a transmission signal a double apodization chirp signal in which a Gaussian distribution apodization is applied to a chirp signal in which a cosine square waveform apodization is applied. And a wave transmission / reception means for irradiating a target with a transmission signal as an ultrasonic wave and receiving a reflected wave and outputting it as a reception signal, and a cross-correlation between a signal waveform of the reception signal and a signal waveform of the transmission signal as a correlation result. This is solved by an ultrasonic dispersion compression transmission / reception device, characterized in that it comprises a received signal processing means for obtaining a compressed demodulation output by obtaining.

【0017】[0017]

【作用】この超音波分散圧縮送受信方法及び超音波分散
圧縮送受信装置において、コサイン自乗波形のアポダイ
ゼーションを課したチャープ信号に対してガウシアン分
布のアポダイゼーションを課した二重アポダイゼーショ
ンチャープ信号を送受波し、この受信信号の信号波形と
送波信号の信号波形との相互相関を相関結果として求め
ることにより圧縮復調出力を得るようにすることで、チ
ャープ信号を用いてタイムサイドローブの良い超音波分
散圧縮送受信が実現される。
In this ultrasonic dispersion compression transmission / reception method and ultrasonic dispersion compression transmission / reception device, a double apodization chirp signal in which a Gaussian distribution apodization is applied to a chirp signal in which a cosine square waveform apodization is applied is transmitted and received. By obtaining the compression demodulation output by obtaining the cross-correlation between the signal waveform of the received signal and the signal waveform of the transmitted signal as the correlation result, it is possible to perform ultrasonic dispersion compression transmission / reception with good time side lobes using the chirp signal. Will be realized.

【0018】[0018]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明の一実施例を実現するための
超音波分散圧縮送受信装置の構成を分散圧縮送受信を行
う部分を中心に示す構成図である。図2は図1に示した
超音波分散圧縮送受信装置の主要部分を示す構成図であ
る。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the configuration of an ultrasonic dispersion compression transmission / reception apparatus for realizing an embodiment of the present invention, focusing on the part that performs distributed compression transmission / reception. FIG. 2 is a configuration diagram showing a main part of the ultrasonic dispersion compression transmitting / receiving apparatus shown in FIG.

【0019】まず、チャープ信号を用いた分散圧縮送受
信について図1及び図2を参照して説明を行う。コード
生成部11は図外の制御部等からの指示を受けて所定の
コードを生成する。本実施例では、上下周波数比2:1
程の、全長50波長程度のコサイン自乗振幅修飾したリ
ニアチャープ信号を発生し、更にこれをガウシアン分布
のアポダイゼーションを課した信号のコードを生成す
る。このガウシアン分布のアポダイゼーションとして
は、中心からの距離の自乗に応じたガウシアン分布など
を用いることができる。
First, distributed compression transmission / reception using a chirp signal will be described with reference to FIGS. The code generation unit 11 receives a command from a control unit (not shown) or the like and generates a predetermined code. In this embodiment, the upper and lower frequency ratio is 2: 1.
A linear chirp signal having a cosine squared amplitude modification with a total length of about 50 wavelengths is generated, and a code of the signal to which apodization of Gaussian distribution is applied is generated. As the apodization of this Gaussian distribution, a Gaussian distribution according to the square of the distance from the center can be used.

【0020】そして、このようにして生成された送波信
号はD/A変換器12によりディジタル信号からアナロ
グ信号に変換され、アンプ13で増幅されて送受波器2
1から被検体に向けて送波される。
The transmitted signal thus generated is converted from a digital signal to an analog signal by the D / A converter 12, amplified by the amplifier 13, and then transmitted / received by the transmitter / receiver 2.
The signal is transmitted from 1 to the subject.

【0021】そして、被検体からの反射波を送受波器2
1で受信し、アンプ31で増幅し、A/D変換器32で
ディジタル信号に変換する。そして、受信信号処理部3
3において、送波信号と受信信号との相互相関処理を行
って、それぞれの相関結果を得る。このようにして得ら
れた相関結果を参照して図外の表示装置に表示を行う。
Then, the transmitter / receiver 2 receives the reflected wave from the subject.
The signal is received by 1, amplified by the amplifier 31, and converted into a digital signal by the A / D converter 32. Then, the reception signal processing unit 3
In 3, cross-correlation processing is performed between the transmitted signal and the received signal, and respective correlation results are obtained. Display is performed on a display device (not shown) with reference to the correlation result thus obtained.

【0022】相互相関処理については、更に詳しく説明
する。A/D変換器32でディジタル変換された受信波
形は、受信波形一時記憶部33aに一時的に記憶されて
相関器33cの一方の入力に供給される。また、見本波
形生成部33bにはコード生成部11から波形発生のた
めのコードが通知されており、送波信号と同じ波形の見
本波形(本実施例では、二重アポダイゼーションチャー
プ信号)が生成される。そして、この見本波形が相関器
33cの他方の入力に供給される。相関器33cでは、
受信波形と見本波形との間で相互相関処理が行われる。
また、積分器33dにおいて積分処理が行われる。以上
のように二重アポダイゼーションチャープ信号について
相互相関処理(デチャープ処理)を行い、得られた相関
結果を表示用一時記憶部33eに記憶する。
The cross-correlation processing will be described in more detail. The reception waveform digitally converted by the A / D converter 32 is temporarily stored in the reception waveform temporary storage unit 33a and supplied to one input of the correlator 33c. In addition, the code for generating the waveform is notified from the code generating unit 11 to the sample waveform generating unit 33b, and a sample waveform (double apodization chirp signal in this embodiment) having the same waveform as the transmitted signal is generated. It Then, this sample waveform is supplied to the other input of the correlator 33c. In the correlator 33c,
Cross-correlation processing is performed between the received waveform and the sample waveform.
Further, integration processing is performed in the integrator 33d. As described above, the cross-correlation processing (dechirp processing) is performed on the double apodization chirp signal, and the obtained correlation result is stored in the display temporary storage unit 33e.

【0023】このように構成した結果、本件出願の発明
者が実験を行って得られた結果によれば、図3に示す二
重アポダイゼーションチャープ信号を用いて、図4のよ
うな特性の結果を得ることができた。図3の信号は一例
として試用したものであり、この例においては信号生成
式としてFORTRANで書かれたソースプログラムの
一部を用いて表すと,iを1から1024までとして以
下の式のように定義されたものである。 sin(i/3.0+i*i/3600.0)*(0.5+0.5*cos((i-512)*1.22718
5E-02*0.5))*exp(-((abs(i-512)/320.0)**2) 以上のような信号を用いて得られた図4に示した結果で
は、タイムサイドローブは−120dBをクリアしてい
る。
As a result of the above configuration, according to the result obtained by the inventor of the present application conducting an experiment, the result of the characteristic as shown in FIG. 4 is obtained by using the double apodization chirp signal shown in FIG. I was able to get it. The signals in FIG. 3 are used as an example, and in this example, when a part of the source program written in FORTRAN is used as a signal generation expression, i is set to 1 to 1024 as shown in the following expression. It is defined. sin (i / 3.0 + i * i / 3600.0) * (0.5 + 0.5 * cos ((i-512) * 1.22718
5E-02 * 0.5)) * exp (-((abs (i-512) /320.0) ** 2) In the results shown in Fig. 4 obtained using the above signals, the time side lobe is − It has cleared 120 dB.

【0024】図5は受信信号側にのみ、やや急峻な双峰
性のバンドパス特性を課した場合の信号波形を示す波形
図である。また、図6は図5の受信波形を用いて相互相
関により得られた特性を示す特性図である。この場合の
特性は、ペデスタルレベルの上昇は見られないが、メイ
ンローブの裾野が広がり出していることが観測された。
FIG. 5 is a waveform diagram showing a signal waveform when a slightly steep bimodal bandpass characteristic is imposed only on the reception signal side. Further, FIG. 6 is a characteristic diagram showing characteristics obtained by cross-correlation using the reception waveform of FIG. In this case, the pedestal level did not increase, but it was observed that the skirt of the main lobe was widening.

【0025】尚、以上の実施例では医用超音波装置を例
にして説明を行ったが、これ以外にも、衛星搭載降雨量
観測用レーダのようにタイムサイドローブの影響を嫌う
装置に応用することも可能である。
In the above embodiment, the medical ultrasonic device has been described as an example, but in addition to this, the invention is applied to a device such as a radar for observing rainfall on a satellite, which does not like the influence of the time side lobe. It is also possible.

【0026】[0026]

【発明の効果】以上詳細に説明したように、コサイン自
乗波形のアポダイゼーションを課したチャープ信号に対
してガウシアン分布のアポダイゼーションを課した二重
アポダイゼーションチャープ信号を送受波し、この受信
信号の信号波形と送波信号の信号波形との相互相関を相
関結果として求めることにより圧縮復調出力を得るよう
にすることで、チャープ信号を用いてタイムサイドロー
ブの良い超音波分散圧縮送受信が実現される。従って、
FMチャープ信号を用いてタイムサイドローブの良い超
音波分散圧縮送受信方法及び超音波分散圧縮送受信装置
を実現することができる。
As described in detail above, a double apodization chirp signal in which a Gaussian distribution apodization is applied to a chirp signal in which a cosine square waveform apodization is applied is transmitted and received. By obtaining the compression demodulation output by obtaining the cross-correlation with the signal waveform of the transmission signal as the correlation result, ultrasonic dispersion compression transmission / reception with good time side lobe is realized using the chirp signal. Therefore,
An ultrasonic dispersion compression transmission / reception method and an ultrasonic dispersion compression transmission / reception apparatus with good time side lobes can be realized using FM chirp signals.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の超音波分散圧縮送受信装置
の送受信に関する構成の概略を示す構成図である。
FIG. 1 is a configuration diagram showing an outline of a configuration related to transmission / reception of an ultrasonic dispersion compression transmission / reception device according to an embodiment of the present invention.

【図2】本発明の一実施例の超音波分散圧縮送受信装置
の受信信号処理に関する主要部の構成を示す構成図であ
る。
FIG. 2 is a configuration diagram showing a configuration of a main part relating to received signal processing of the ultrasonic dispersion compression transmission / reception device of one embodiment of the present invention.

【図3】本発明の一実施例の分散圧縮送受信による信号
波形を示す波形図である。
FIG. 3 is a waveform diagram showing a signal waveform by distributed compression transmission / reception according to an embodiment of the present invention.

【図4】本発明の一実施例の分散圧縮送受信による相互
相関による特性を示す特性図である。
FIG. 4 is a characteristic diagram showing characteristics due to cross-correlation by distributed compression transmission / reception according to an embodiment of the present invention.

【図5】本発明の一実施例の分散圧縮送受信による波形
の一例を示す波形図である。
FIG. 5 is a waveform diagram showing an example of a waveform by distributed compression transmission / reception according to an embodiment of the present invention.

【図6】本発明の一実施例の分散圧縮送受信による相互
相関による特性の一例を示す特性図である。
FIG. 6 is a characteristic diagram showing an example of characteristics due to cross-correlation by distributed compression transmission / reception according to an embodiment of the present invention.

【図7】従来の分散圧縮送受信の送受波信号の波形を示
す波形図である。
FIG. 7 is a waveform diagram showing a waveform of a transmission / reception signal of conventional distributed compression transmission / reception.

【図8】従来の分散圧縮送受信の処理結果の特性を示す
特性図である。
FIG. 8 is a characteristic diagram showing characteristics of processing results of conventional distributed compression transmission / reception.

【図9】従来の分散圧縮送受信の送受波信号の波形を示
す波形図である。
FIG. 9 is a waveform diagram showing a waveform of a transmission / reception signal of conventional distributed compression transmission / reception.

【図10】従来の分散圧縮送受信の処理結果の特性を示
す特性図である。
FIG. 10 is a characteristic diagram showing characteristics of processing results of conventional distributed compression transmission / reception.

【符号の説明】[Explanation of symbols]

11 コード生成部 12 D/A変換器 13 アンプ 21 送受波器 31 アンプ 32 A/D変換器 33 受信信号処理部 11 Code Generator 12 D / A Converter 13 Amplifier 21 Transducer 31 Amplifier 32 A / D Converter 33 Received Signal Processor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コサイン自乗波形のアポダイゼーション
を課したチャープ信号に対してガウシアン分布のアポダ
イゼーションを課した二重アポダイゼーションチャープ
信号を送波信号として生成し、 送波信号を超音波としてターゲットに照射し、前記ター
ゲットの反射波を受信して受信信号として出力し、 受信した信号波形と送波信号の信号波形との相互相関を
相関結果として求めることにより圧縮復調出力を得るこ
とを特徴とする超音波分散圧縮送受信方法。
1. A double apodization chirp signal obtained by applying a Gaussian distribution apodization to a chirp signal subjected to apodization of a cosine square waveform is generated as a transmission signal, and the transmission signal is irradiated to a target as ultrasonic waves, An ultrasonic dispersion characterized in that a compressed demodulated output is obtained by receiving the reflected wave of the target and outputting it as a received signal, and obtaining the cross-correlation between the received signal waveform and the signal waveform of the transmitted signal as the correlation result. Compressed transmission / reception method.
【請求項2】 超音波分散圧縮送受信装置において、 コサイン自乗波形のアポダイゼーションを課したチャー
プ信号に対してガウシアン分布のアポダイゼーションを
課した二重アポダイゼーションチャープ信号を送波信号
として生成する送波信号生成手段(11)と、 送波信号を超音波としてターゲットに照射し、前記ター
ゲットの反射波を受信して受信信号として出力する送受
波手段(21)と、 受信信号の信号波形と送波信号の信号波形との相互相関
を相関結果として求めることにより圧縮復調出力を得る
受信信号処理手段(33)とを備えたことを特徴とする
超音波分散圧縮送受信装置。
2. An ultrasonic dispersion compression transmitting / receiving apparatus, wherein a transmission signal generating means generates a double apodization chirp signal in which apodization of Gaussian distribution is applied to a chirp signal in which apodization of cosine square waveform is applied, as a transmission signal. (11), a wave transmitting / receiving means (21) for irradiating a target with a transmission signal as an ultrasonic wave, receiving a reflected wave of the target and outputting as a reception signal, a signal waveform of the reception signal and a signal of the transmission signal An ultrasonic dispersion compression transmitting / receiving apparatus, comprising: a reception signal processing means (33) for obtaining a compression demodulation output by obtaining a cross correlation with a waveform as a correlation result.
JP23350993A 1993-09-20 1993-09-20 Ultrasonic dispersion compression transmission / reception method and ultrasonic dispersion compression transmission / reception device Expired - Fee Related JP3222653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23350993A JP3222653B2 (en) 1993-09-20 1993-09-20 Ultrasonic dispersion compression transmission / reception method and ultrasonic dispersion compression transmission / reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23350993A JP3222653B2 (en) 1993-09-20 1993-09-20 Ultrasonic dispersion compression transmission / reception method and ultrasonic dispersion compression transmission / reception device

Publications (2)

Publication Number Publication Date
JPH0779973A true JPH0779973A (en) 1995-03-28
JP3222653B2 JP3222653B2 (en) 2001-10-29

Family

ID=16956148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23350993A Expired - Fee Related JP3222653B2 (en) 1993-09-20 1993-09-20 Ultrasonic dispersion compression transmission / reception method and ultrasonic dispersion compression transmission / reception device

Country Status (1)

Country Link
JP (1) JP3222653B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539881A (en) * 1999-03-31 2002-11-26 アキューソン コーポレイション Ultrasound imaging using pulse compression
CN106525969A (en) * 2016-10-27 2017-03-22 中国电建集团贵阳勘测设计研究院有限公司 Device and method for carrying out nondestructive bolt testing by adopting cosine linear scanning signal
JP2018061293A (en) * 2013-09-20 2018-04-12 プロテウス デジタル ヘルス, インコーポレイテッド Methods, devices and systems for receiving and decoding signal in presence of noise using slices and warping

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539881A (en) * 1999-03-31 2002-11-26 アキューソン コーポレイション Ultrasound imaging using pulse compression
JP2018061293A (en) * 2013-09-20 2018-04-12 プロテウス デジタル ヘルス, インコーポレイテッド Methods, devices and systems for receiving and decoding signal in presence of noise using slices and warping
CN106525969A (en) * 2016-10-27 2017-03-22 中国电建集团贵阳勘测设计研究院有限公司 Device and method for carrying out nondestructive bolt testing by adopting cosine linear scanning signal

Also Published As

Publication number Publication date
JP3222653B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
US8672846B2 (en) Continuous transmit focusing method and apparatus for ultrasound imaging system
KR100362000B1 (en) Ultrasound imaging method and apparatus based on pulse compression technique using modified golay code
JP3408284B2 (en) Acoustic imaging apparatus and method
KR100406098B1 (en) Ultrasound imaging system and method based on simultaneous multiple transmit-focusing using the weighted orthogonal chirp signals
US6663565B2 (en) Ultrasound diagnostic apparatus
JP4430997B2 (en) Ultrasonic transceiver
JPH10506800A (en) Adjustable frequency scanning method and apparatus in ultrasound images
JP2002045359A (en) Filter coefficient decision method, ultrasonic photographing system and its method
JP2000157548A (en) Method and system for imaging ultrasonic wave scattered body
WO2000057769A2 (en) Ultrasonic imaging system using coded transmit pulses
EP1657563A2 (en) Aberration correction beam patterns in ultrasonic imaging systems
KR100419806B1 (en) Synthetic aperture focusing method for ultrasound imaging based on planar waves
KR100406097B1 (en) Ultrasound imaging system and method using the weighted chirp signals
US5706818A (en) Ultrasonic diagnosing apparatus
KR101552427B1 (en) Speckle Reduction Apparatus In Ultrasound Imaging
Nomura et al. Feasibility of low-frequency ultrasound imaging using pulse compressed parametric ultrasound
US7074186B2 (en) Transmit based axial whitening
JP3222648B2 (en) Medical ultrasonic dispersion compression transmission / reception method and medical ultrasonic dispersion compression transmission / reception device
JP3222653B2 (en) Ultrasonic dispersion compression transmission / reception method and ultrasonic dispersion compression transmission / reception device
Bae et al. Experimental study of transmit synthetic focusing combined with receive dynamic focusing in B-mode ultrasound imaging systems
JP3502700B2 (en) Ultrasound diagnostic imaging equipment
JPH0399651A (en) Ultrasonic diagnosis apparatus
EP4155767A1 (en) Method and system for processing a set of signals received by a transducer element
Zheng et al. Adaptive realization based on one transmission and reception of simultaneous subband compound of harmonics
JP3515630B2 (en) Ultrasound diagnostic equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees