JPH0779953A - Mr imaging apparatus - Google Patents

Mr imaging apparatus

Info

Publication number
JPH0779953A
JPH0779953A JP5253635A JP25363593A JPH0779953A JP H0779953 A JPH0779953 A JP H0779953A JP 5253635 A JP5253635 A JP 5253635A JP 25363593 A JP25363593 A JP 25363593A JP H0779953 A JPH0779953 A JP H0779953A
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting magnet
self
vibration
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5253635A
Other languages
Japanese (ja)
Inventor
Shoji Kondo
昭二 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP5253635A priority Critical patent/JPH0779953A/en
Publication of JPH0779953A publication Critical patent/JPH0779953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To prevent the fluctuation of a magnetostatic field and restrain the vibration of a magnet main body due to a phase deviation from a self-shield (iron) even when a superconducting magnet main body (magnetostatic field) is vibrated by a vibration of a gradient magnetic field coil or a helium freezer at the time of measurement of a subject by an MR imaging apparatus. CONSTITUTION:A plurality of fixed bolts 11 are arranged at any places of a self-shield 4 to clamp and integratedly fix the self-shield 4 and a superconducting magnet main body 2 and each of the fixed bolts 11 is completely fixed by a locking nut 12 so that the superconducting magnet main body is directly and rigidly fixed to the self-shield 4 and is also locked and integratedly supported. Thus, a vibration of the superconducting magnet 2 is restrained and the superconducting magnet operates with the self-shield integratedly and synchronously so as to eliminate a phase deviation with the self-shield 4 due to such a vibration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MRイメージング装置
のヨーク付磁石(自己シールド付磁石)に係り、特に超
電導磁石に付加するヘリウム冷凍機や傾斜磁場コイルに
よって発生する超電導磁石本体の振動を低下させると共
に、その動きを自己シールド材と一体同期させる構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a yoke magnet (self-shielding magnet) of an MR imaging apparatus, and particularly, to reduce vibration of a superconducting magnet body generated by a helium refrigerator or a gradient magnetic field coil added to the superconducting magnet. The present invention also relates to a structure for synchronizing the movement of the self-shielding material with the movement of the self-shielding material.

【0002】[0002]

【従来の技術】一般に、核磁気共鳴(NMR)現象を利
用した装置は、有機化合物の構造解析や物性の研究に用
いられ、物質の原子配列や電子構造等についての重要な
分析手段のひとつとなっている。近年この技術の医療分
野への応用が進められ、人体内の水素原子分布や、スピ
ン緩和時間等の情報を、任意断面の断層像として得る磁
気共鳴(MR)イメージング装置としての利用が進めら
れている。
2. Description of the Related Art Generally, an apparatus utilizing a nuclear magnetic resonance (NMR) phenomenon is used for structural analysis and research of physical properties of organic compounds, and is one of important analysis means for atomic arrangement and electronic structure of substances. Has become. In recent years, the application of this technology to the medical field has been advanced, and its use as a magnetic resonance (MR) imaging device for obtaining information such as hydrogen atom distribution in the human body and spin relaxation time as a tomographic image of an arbitrary cross section has been promoted. There is.

【0003】このようなMRイメージング装置では、被
検者の照射観察面の決定のため、一様な静磁場内に傾斜
磁場を作用させる必要がある。そして、この静磁場およ
び傾斜磁場は、例えば図3に示すような超電導磁石2、
自己シールド4、および傾斜磁場コイル6により与えら
れる。
In such an MR imaging apparatus, it is necessary to apply a gradient magnetic field within a uniform static magnetic field in order to determine the irradiation observation surface of the subject. The static magnetic field and the gradient magnetic field are applied to the superconducting magnet 2 as shown in FIG.
It is provided by the self-shield 4 and the gradient coil 6.

【0004】一様な静磁場(例えば5000ガウス)を
発生する超電導磁石2内には傾斜磁場コイル6が設けら
れており、図示を省略したがこの傾斜磁場コイル6は合
成樹脂製、一例として特にFRP製の巻芯に、X,Y,
Zコイル巻線を重ねて巻き、それを樹脂モールドするこ
とにより構成されている。そしてコイル巻線は測定時に
例えばパルス電流を通電することにより各々に励磁され
るのである。このような傾斜磁場コイル6は、その両端
部の支持部材のボルト6aにより超電導磁石2へ締付固
定されている。
A gradient magnetic field coil 6 is provided in the superconducting magnet 2 for generating a uniform static magnetic field (for example, 5000 gauss). Although not shown, the gradient magnetic field coil 6 is made of synthetic resin, and as an example, FRP core, X, Y,
It is configured by stacking and winding Z coil windings and molding them with resin. Then, the coil windings are excited in each by applying a pulse current, for example, at the time of measurement. Such a gradient magnetic field coil 6 is fastened and fixed to the superconducting magnet 2 by bolts 6a of support members at both ends thereof.

【0005】ところで、上記傾斜磁場コイル6は、非常
に大きな静磁場(0.5T〜1.5T)内におかれるた
め、静磁場と測定時のパルス電流とによりコイル巻線に
大きな電磁気力が作用して大きな振動を発生し、それに
伴って超電導磁石2も振動する。また、超電導磁石2は
内部の超電導コイルを超電導状態にするため液体ヘリウ
ムが充填されており、その液体ヘリウムが蒸発気化する
のを極力減少させるためにヘリウム冷凍機3が超電導磁
石の外周部に直接組付けられている。これを常時運転す
る必要があるが、このヘリウム冷凍機3の振動も受けて
超電導磁石2が振動していた。
Since the gradient magnetic field coil 6 is placed in a very large static magnetic field (0.5T to 1.5T), a large electromagnetic force is exerted on the coil winding due to the static magnetic field and the pulse current during measurement. It acts to generate a large vibration, and the superconducting magnet 2 also vibrates accordingly. Further, the superconducting magnet 2 is filled with liquid helium in order to bring the internal superconducting coil into a superconducting state, and the helium refrigerator 3 is directly attached to the outer peripheral portion of the superconducting magnet in order to reduce evaporation and vaporization of the liquid helium as much as possible. It is assembled. Although it is necessary to operate this constantly, the superconducting magnet 2 was vibrated due to the vibration of the helium refrigerator 3.

【0006】ところが、この超電導磁石2は自己シール
ド材4のベース板4aの上に設置され磁場均一度調整の
ため移動調整可能に設置されているのみのため、その振
動は何ら自己シールド材4に伝わることがなく、超電導
磁石2の振動に対して自己シールド材4は振動抑止効果
を果たしていなかった。
However, since the superconducting magnet 2 is installed only on the base plate 4a of the self-shielding member 4 and is movable and adjustable for adjusting the magnetic field homogeneity, its vibration does not occur in the self-shielding member 4. Therefore, the self-shielding material 4 did not transmit the vibration, and did not exert the vibration suppressing effect on the vibration of the superconducting magnet 2.

【0007】このため超電導磁石によって発生された一
様な静磁場は磁石の振動によって動いているが、磁石自
身の振動に相対する自己シールド材は静止固定のため、
その振動サイクルで自己シールド材が動いている事と同
等となり、外部磁場変動を受けている事となり、結局は
磁場がゆれているのと同じ状態となっていた。このため
このような状態で被検者を撮影した場合は静磁場の変動
によりその画像が位相エンコード方向に流れる等、悪影
響を与え画像劣化の大きな不良要因となっていた。
For this reason, the uniform static magnetic field generated by the superconducting magnet is moved by the vibration of the magnet, but the self-shield material facing the vibration of the magnet itself is stationary and fixed.
It became equivalent to the self-shielding material moving in that vibration cycle, and it was subject to external magnetic field fluctuations, and in the end it was in the same state as the magnetic field was fluctuating. Therefore, when a subject is imaged in such a state, the image is caused to flow in the phase encoding direction due to fluctuations in the static magnetic field, which adversely affects the image and is a major cause of image deterioration.

【0008】[0008]

【発明が解決しようとする課題】上記のように従来のM
Rイメージング装置は、静磁場内にある傾斜磁場コイル
が、超電導磁石に対してその本体(真空容器)に直接支
持されているため、測定時のコイル巻線の振動が直接超
電導磁石を振動させていた。また一方液体ヘリウムの蒸
発を防止するためのヘリウム冷凍機も磁石本体に直接組
付けられ常時運転しているため常時超電導磁石を振動さ
せていた。ところが、この超電導磁石の振動は自己シー
ルドには伝わらず振動抑止を受けていないため、超電導
磁石の振動(静磁場の振動)に対して自己シールド材が
固定(同期して動いていない)のため、外部磁場変動を
受けることとなり、結局は超電導磁石の静磁場が外部磁
場影響により変動を受けている状態となり、測定画像が
その影響で画像流れ現象を起すなど悪影響を与えてい
た。
As described above, the conventional M
In the R imaging apparatus, since the gradient magnetic field coil in the static magnetic field is directly supported by the main body (vacuum container) with respect to the superconducting magnet, the vibration of the coil winding at the time of measurement directly vibrates the superconducting magnet. It was On the other hand, a helium refrigerator for preventing the evaporation of liquid helium is directly attached to the magnet body and is always in operation, so that the superconducting magnet is constantly vibrated. However, since the vibration of this superconducting magnet is not transmitted to the self-shield and is not subject to vibration suppression, the self-shielding material is fixed (does not move in synchronization) against the vibration of the superconducting magnet (vibration of the static magnetic field). However, the external magnetic field is changed, and the static magnetic field of the superconducting magnet is eventually changed due to the effect of the external magnetic field, and the measured image has an adverse effect such as causing an image deletion phenomenon.

【0009】本発明は、上記問題に着目してなされたも
ので、測定時に傾斜磁場コイルや、ヘリウム冷凍機の振
動によって超電導磁石本体が振動しても静磁場が変動を
受けることのない、かつ磁石の振動を抑制することので
きるMRイメージング装置の提供を目的とする。
The present invention has been made in view of the above problems, and the static magnetic field is not changed even when the superconducting magnet body vibrates due to the vibration of the gradient magnetic field coil or the helium refrigerator during measurement. An object of the present invention is to provide an MR imaging apparatus capable of suppressing vibration of a magnet.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、一様静磁場を発生する超電導磁石の漏洩磁
場を磁気遮蔽するため、超電導磁石の外側周囲に設置さ
れた鉄製の自己シールド材と超電導磁石の本体(真空容
器)とを剛性部材で拘束一体支持する構成としたもので
ある。
To achieve the above object, the present invention magnetically shields a leakage magnetic field of a superconducting magnet which generates a uniform static magnetic field, and therefore, an iron self-installed device is provided around the outside of the superconducting magnet. The shield member and the main body (vacuum container) of the superconducting magnet are constrained and integrally supported by a rigid member.

【0011】[0011]

【作用】本発明によれば、測定時傾斜磁場コイルや、ヘ
リウム冷凍機より振動を受ける超電導磁石は、質量の大
きな自己シールド材に直接剛性部材にて拘束一体支持さ
れているので、超電導磁石本体と自己シールド材との振
動によるずれがなく同期して振動を受けると共に、自己
シールド材が制振用ウェイトとなって振動を抑制する。
According to the present invention, since the gradient magnetic field coil during measurement and the superconducting magnet that is vibrated by the helium refrigerator are restrained and integrally supported by the rigid member directly on the self-shielding material having a large mass, the superconducting magnet main body is provided. The vibration is synchronized with the self-shielding material without vibration, and the self-shielding material serves as a damping weight to suppress the vibration.

【0012】この結果測定時に傾斜磁場コイルのコイル
巻線が振動したり、ヘリウム冷凍機を運転することによ
り振動しても、この振動による超電導磁石の振動は自己
シールド材と一体同期して動くため、自己シールド材の
磁石との振動によるずれによる外部磁場変動影響がなく
なる。また、超電導磁石本体の振動も、自己シールド材
が制振用ウェイトとなりかなり抑制され、超電導磁石に
対して悪影響を与えていた振動も減少することができ、
簡単な構造で安定性の高い測定精度の高いMRイメージ
ング装置を得ることができる。
As a result, even if the coil winding of the gradient magnetic field coil vibrates at the time of measurement or vibrates by operating the helium refrigerator, the vibration of the superconducting magnet due to this vibration moves in synchronization with the self-shielding material. , The influence of the external magnetic field fluctuation due to the deviation of the self-shielding material from the magnet is eliminated. In addition, the vibration of the superconducting magnet body is also considerably suppressed by the self-shielding material serving as a damping weight, and the vibration that had a bad effect on the superconducting magnet can be reduced.
It is possible to obtain an MR imaging device with a simple structure and high stability and high measurement accuracy.

【0013】[0013]

【実施例】以下図面に基づき、本発明の一実施例を図
1,図2により説明する。図1は本発明によるMRイメ
ージング装置の外観図、図2は図1の主要構造を示す部
分断面図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an external view of an MR imaging apparatus according to the present invention, and FIG. 2 is a partial sectional view showing the main structure of FIG.

【0014】MRイメージング装置1は、図3に示すよ
うに、超電導磁石2、ヘリウム冷凍機3、自己シールド
材4、シムチューブ5、傾斜磁場コイル6、送受信コイ
ル7、制御手段8及び表示手段9から主に構成されてい
る。
As shown in FIG. 3, the MR imaging apparatus 1 includes a superconducting magnet 2, a helium refrigerator 3, a self-shielding material 4, a shim tube 5, a gradient magnetic field coil 6, a transmission / reception coil 7, a control means 8 and a display means 9. It is mainly composed of.

【0015】超電導磁石2は内部の所定の大きさの空間
に一様な静磁場を発生し、ヘリウム冷凍機3は超電導磁
石2内の超電導コイルを冷却する冷媒の液体ヘリウムの
蒸発を抑制し、自己シールド材4は超電導磁石2より漏
洩する磁場を磁気遮蔽し、傾斜磁場コイル6は前記一様
な静磁場に傾斜磁場を重畳して作用させるものである。
また、静磁場内にあって傾斜磁場が作用する位置には被
検体20が配せられ、被検体20の外周近傍には送受信
コイル7が配設されている。この送受信コイル7は送信
用と受信用とが別々に設けられることもある。傾斜磁場
コイル6および送受信コイル7は制御装置8に接続さ
れ、制御装置8にはCRT等の表示手段9を備えた操作
用コンソール10が接続されている。このようなMRイ
メージング装置1は、まず超電導磁石2によって発生さ
れた一様な静磁場内に被検体20の検査部位を位置さ
せ、傾斜磁場コイル6に例えばパルス状の電流を通電
し、これによりスライス選択用傾斜磁場を発生させると
共に送受信コイル7に照射信号(RFパルス)を印加す
ることにより被検体20に磁気共鳴作用を起させる。そ
して、二方向にエンコードされた磁気共鳴作用に基づく
出力信号を送受信コイル7により検出し、この出力信号
を制御装置9で処理して被検体20の特定部位における
画像を得て、この画像を表示手段9へ表示するようにな
っている。。
The superconducting magnet 2 generates a uniform static magnetic field in a space having a predetermined size, and the helium refrigerator 3 suppresses evaporation of liquid helium as a refrigerant for cooling the superconducting coil in the superconducting magnet 2. The self-shielding material 4 magnetically shields the magnetic field leaking from the superconducting magnet 2, and the gradient magnetic field coil 6 superimposes the gradient magnetic field on the uniform static magnetic field to act.
Further, the subject 20 is arranged at a position where the gradient magnetic field acts within the static magnetic field, and the transmission / reception coil 7 is arranged near the outer periphery of the subject 20. The transmission / reception coil 7 may be provided separately for transmission and reception. The gradient magnetic field coil 6 and the transmission / reception coil 7 are connected to a control device 8, and the control device 8 is connected to an operation console 10 having a display means 9 such as a CRT. In such an MR imaging apparatus 1, first, the examination site of the subject 20 is positioned within a uniform static magnetic field generated by the superconducting magnet 2, and a gradient current, for example, is applied to the gradient magnetic field coil 6, whereby By generating a gradient magnetic field for slice selection and applying an irradiation signal (RF pulse) to the transmission / reception coil 7, a magnetic resonance action is caused in the subject 20. Then, the output signal based on the magnetic resonance action encoded in two directions is detected by the transmission / reception coil 7, this output signal is processed by the control device 9 to obtain an image of a specific portion of the subject 20, and this image is displayed. It is designed to be displayed on the means 9. .

【0016】超電導磁石2は真空断熱容器となってお
り、中空の円柱体2aの軸方向に貫通穴2bが形成され
て構成されている。一方シムチューブ5、及び傾斜磁場
コイル6は円筒状となっており、超電導磁石2の貫通孔
2b内に設けられている。
The superconducting magnet 2 is a vacuum heat insulating container, and is formed by forming a through hole 2b in the axial direction of a hollow columnar body 2a. On the other hand, the shim tube 5 and the gradient magnetic field coil 6 have a cylindrical shape and are provided in the through hole 2b of the superconducting magnet 2.

【0017】ヘリウム冷凍機3は、ヘリウム圧縮機3b
とコールドヘッド3aとの2つがセットになっており、
そのうちコールドヘッド3aが超電導磁石2の中空の円
柱体2aに直接取付けられ、超電導磁石2の内部に入っ
ている冷媒機(液体ヘリウム)の蒸発を抑制するために
ヘリウム冷凍機3は常時冷却運転される構成になってお
り、運転時にはヘリウム冷凍機3の振動が直接、超電導
磁石2に伝わる状態になっている。
The helium refrigerator 3 is a helium compressor 3b.
And the cold head 3a are a set,
Among them, the cold head 3a is directly attached to the hollow cylindrical body 2a of the superconducting magnet 2, and the helium refrigerator 3 is constantly cooled to suppress evaporation of the refrigerant (liquid helium) contained in the superconducting magnet 2. The vibration of the helium refrigerator 3 is directly transmitted to the superconducting magnet 2 during operation.

【0018】自己シールド4は、一定の厚さの鉄材によ
って超電導磁石2の外側に一定の間隔をもって包囲する
ように、超電導磁石2とは非接触に配設されている。
The self-shield 4 is arranged in a non-contact manner with the superconducting magnet 2 so as to surround the superconducting magnet 2 at a constant interval with an iron material having a constant thickness.

【0019】傾斜磁場コイル6は、互いに直交する3軸
方向に体してそれぞれ任意の傾斜磁場を発生するX,
Y,Zコイル巻線を重ねて巻きそれを樹脂モールドで固
定することにより構成され、超電導磁石2の貫通穴2b
内にそれぞれ支持固定されている。この傾斜磁場はコイ
ル6に測定時にパルス電流を通電することにより各々励
磁されるが、電流を通すと振動が発生する。この振動は
超電導磁石2へ伝達され、超電導磁石2をも振動させ
る。
The gradient magnetic field coils 6 are arranged in the directions of three axes orthogonal to each other and generate X and X, respectively.
The Y and Z coil windings are superposed, wound, and fixed by resin molding. The through hole 2b of the superconducting magnet 2 is formed.
It is supported and fixed inside. The gradient magnetic field is excited by passing a pulse current through the coil 6 at the time of measurement, but oscillation occurs when the current is passed. This vibration is transmitted to the superconducting magnet 2 and also vibrates the superconducting magnet 2.

【0020】このため、この超電導磁石2が振動すると
いう問題点を解決するための本発明の一実施例を図1,
図2により説明する。まず図1に示すように、自己シー
ルド4の任意の場所に複数個の固定ボルト11及び、前
記固定ボルト11を固定するロックナット12を取付
け、超電導磁石2と自己シールド4をそれぞれ任意の位
置で拘束一体支持し、剛性支持するように構成する。
Therefore, an embodiment of the present invention for solving the problem that the superconducting magnet 2 vibrates is shown in FIG.
This will be described with reference to FIG. First, as shown in FIG. 1, a plurality of fixing bolts 11 and a lock nut 12 for fixing the fixing bolts 11 are attached to arbitrary positions of the self-shield 4, and the superconducting magnet 2 and the self-shield 4 are respectively arranged at arbitrary positions. It is configured to be supported integrally with restraint and rigidly supported.

【0021】図2はその固定ボルト部の部分断面図であ
る。複数個の固定ボルト11は自己シールド4の任意の
位置の外面より調整可能に超電導磁石2の外面を締め付
け固定するようになっており、更にその固定ボルト11
は固定のためにロックナット12により完全に剛性固定
されるようになっている。これにより超電導磁石2は自
己シールド4に対して任意の位置に直接剛性固定される
と共に拘束一体支持されることになり、ヘリウム冷凍機
3aの運転による超電導磁石2の振動も低減され傾斜磁
場コイル6の測定時のパルス電流通電時における超電導
磁石2の振動も低減される。なおかつ、自己シールド4
が超電導磁石2と一体同期して動くため、自己シールド
材(鉄)と磁石(静磁場)との振動によるずれに伴う外
部磁場変動影響がなくなり、静磁場の振動(ゆれ)等の
悪影響もなくなる。
FIG. 2 is a partial sectional view of the fixing bolt portion. The plurality of fixing bolts 11 are adapted to tighten and fix the outer surface of the superconducting magnet 2 from the outer surface of the self-shield 4 at an arbitrary position, and further, the fixing bolts 11
Is fixed by a lock nut 12 so as to be completely rigid. As a result, the superconducting magnet 2 is rigidly fixed at an arbitrary position with respect to the self-shield 4 and restrained and integrally supported, and the vibration of the superconducting magnet 2 due to the operation of the helium refrigerator 3a is also reduced and the gradient magnetic field coil 6 is provided. Vibration of the superconducting magnet 2 at the time of energizing the pulse current at the time of measurement is also reduced. Moreover, self-shield 4
Moves in synchronism with the superconducting magnet 2, eliminating the influence of fluctuations in the external magnetic field due to the deviation between the self-shielding material (iron) and the magnet (static magnetic field), and eliminating the adverse effects of static magnetic field vibration (fluctuation). .

【0022】[0022]

【発明の効果】本発明によれば、超電導磁石(静磁場)
は、自己シールド材に直接剛性部材にて一体拘束支持さ
れているので、位相のずれがなくなると共に、変位の自
由度も小さくなる。この結果、ヘリウム冷凍機運転時及
び、傾斜磁場コイル通電時にコイル巻線が振動しても、
超電導磁石(静磁場)の振動は抑制されると共に、自己
シールド材(鉄)と磁石(静磁場)とが一体同期してい
るため、振動による相互のずれがなくなり、結果として
外部磁場変動影響がなくなり、静磁場の振動(ゆれ)等
の影響がなくなり磁場の均一性、安定性も低下すること
なく測定精度も向上する。
According to the present invention, a superconducting magnet (static magnetic field)
Is integrally constrained and supported by the self-shielding material directly by the rigid member, the phase shift is eliminated and the degree of freedom of displacement is also reduced. As a result, even when the coil winding vibrates when the helium refrigerator is operating and when the gradient magnetic field coil is energized,
Vibration of the superconducting magnet (static magnetic field) is suppressed, and since the self-shielding material (iron) and the magnet (static magnetic field) are integrally synchronized, mutual deviation due to vibration is eliminated, and as a result, external magnetic field fluctuation effects Since the influence of the static magnetic field vibration (fluctuation) is eliminated, the uniformity and stability of the magnetic field are not lowered, and the measurement accuracy is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明によるMRイメージング装置の外観図FIG. 1 is an external view of an MR imaging apparatus according to the present invention.

【図2】 図1の主要構造を示す部分断面図FIG. 2 is a partial cross-sectional view showing the main structure of FIG.

【図3】 従来のMRイメージング装置の一例の概略的
全体構成図
FIG. 3 is a schematic overall configuration diagram of an example of a conventional MR imaging apparatus.

【符号の説明】 1 MRイメージング装置 2 超電導磁石 3 ヘリウム冷凍機 4 自己シールド 5 シムチューブ 6 傾斜磁場コイル 7 送受信コイル 8 制御手段 9 表示手段 10 コンソール 11 固定ボルト 12 ロックナット 20 被検体[Explanation of Codes] 1 MR imaging device 2 Superconducting magnet 3 Helium refrigerator 4 Self-shield 5 Shim tube 6 Gradient field coil 7 Transmitting / receiving coil 8 Control means 9 Display means 10 Console 11 Fixing bolt 12 Lock nut 20 Subject

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 8105−2J G01N 24/06 530 Z Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location 8105-2J G01N 24/06 530 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一様な静磁場を発生する超電導磁石と、こ
の超電導磁石より発生する漏洩磁場を磁気遮蔽する鉄製
の自己シールド材と、前記静磁場内に傾斜磁場を発生さ
せる傾斜磁場コイルと、前記静磁場および傾斜磁場内に
ある被検体の磁気共鳴作用に基づく出力信号を検出する
ための送受信コイルを備え、前記出力信号を処理して前
記被検体の特定部位における画像情報を得るMRイメー
ジング装置において、前記超電導磁石は前記自己シール
ド材に、拘束一体支持されていることを特徴とするMR
イメージング装置。
1. A superconducting magnet that generates a uniform static magnetic field, an iron self-shielding material that magnetically shields a leakage magnetic field generated by the superconducting magnet, and a gradient magnetic field coil that generates a gradient magnetic field in the static magnetic field. MR imaging including a transmission / reception coil for detecting an output signal based on the magnetic resonance action of the subject in the static magnetic field and the gradient magnetic field, and processing the output signal to obtain image information at a specific portion of the subject In the apparatus, the superconducting magnet is restrained and integrally supported by the self-shielding material.
Imaging equipment.
JP5253635A 1993-09-17 1993-09-17 Mr imaging apparatus Pending JPH0779953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5253635A JPH0779953A (en) 1993-09-17 1993-09-17 Mr imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5253635A JPH0779953A (en) 1993-09-17 1993-09-17 Mr imaging apparatus

Publications (1)

Publication Number Publication Date
JPH0779953A true JPH0779953A (en) 1995-03-28

Family

ID=17254086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5253635A Pending JPH0779953A (en) 1993-09-17 1993-09-17 Mr imaging apparatus

Country Status (1)

Country Link
JP (1) JPH0779953A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1162671A3 (en) * 2000-06-06 2005-09-21 Denso Corporation Piezoelectric device for injector
JP2009061010A (en) * 2007-09-05 2009-03-26 Hitachi Ltd Superconductive magnet apparatus and magnetic resonance imaging apparatus
JP2009090101A (en) * 2007-09-21 2009-04-30 Toshiba Corp Magnetic resonance apparatus gantry and magnetic resonance apparatus
KR20160102201A (en) 2013-12-27 2016-08-29 도레이 카부시키가이샤 Hollow-fiber membrane module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1162671A3 (en) * 2000-06-06 2005-09-21 Denso Corporation Piezoelectric device for injector
JP2009061010A (en) * 2007-09-05 2009-03-26 Hitachi Ltd Superconductive magnet apparatus and magnetic resonance imaging apparatus
JP2009090101A (en) * 2007-09-21 2009-04-30 Toshiba Corp Magnetic resonance apparatus gantry and magnetic resonance apparatus
KR20160102201A (en) 2013-12-27 2016-08-29 도레이 카부시키가이샤 Hollow-fiber membrane module

Similar Documents

Publication Publication Date Title
US7034537B2 (en) MRI apparatus correcting vibratory static magnetic field fluctuations, by utilizing the static magnetic fluctuation itself
US5132618A (en) Magnetic resonance imaging system including active shield gradient coils for magnetically canceling leakage gradient field
US6157276A (en) MRI magnet assembly with non-conductive inner wall
US4652824A (en) System for generating images and spacially resolved spectra of an examination subject with nuclear magnetic resonance
US6556012B2 (en) Magnetic resonance imaging apparatus
EP0817211B1 (en) Superconducting magnet device and magnetic resonance imaging device using the same
US6831461B2 (en) Magnetic resonance tomography apparatus having damping laminated sheets for reducing vibrations
JPH0576592B2 (en)
US4924185A (en) Magnet apparatus for use in magnetic resonance imaging system
EP0819948B1 (en) Superconducting MR yoke magnet and method of energizing same
US5307014A (en) Inflow MR angiography with spatially variable flip angles
JP2016168265A (en) Magnetic resonance imaging apparatus and operation method thereof
JPH0779953A (en) Mr imaging apparatus
EP0895093B1 (en) Movable pre-polarisation unit for a magnetic resonance imaging apparatus
US6812702B2 (en) Magnetic resonance imaging apparatus
Wang Hardware of MRI System
JP2000037366A (en) Superconductive magnet device
JP2592920B2 (en) Superconducting magnet for magnetic resonance imaging
JP2002017705A (en) Magnetic resonance imaging device
US5185575A (en) Magnetic resonance imaging apparatus with artefact reduction
JPH10165388A (en) Method of generating magnetic field for mri, and mri device
JP3372098B2 (en) Static magnetic field generator for magnetic resonance imaging
WO2015072301A1 (en) Magnetic resonance imaging apparatus
JPH08187234A (en) Magnetic field generating coil for mri apparatus and its manufacture
JPH07171123A (en) Magnetic resonance imaging device