JPH077958A - Power converter - Google Patents

Power converter

Info

Publication number
JPH077958A
JPH077958A JP5143286A JP14328693A JPH077958A JP H077958 A JPH077958 A JP H077958A JP 5143286 A JP5143286 A JP 5143286A JP 14328693 A JP14328693 A JP 14328693A JP H077958 A JPH077958 A JP H077958A
Authority
JP
Japan
Prior art keywords
power conversion
semiconductor element
power
parallel
switching semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5143286A
Other languages
Japanese (ja)
Inventor
Narihisa Mizutani
成久 水谷
Hitoshi Seki
斉 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP5143286A priority Critical patent/JPH077958A/en
Publication of JPH077958A publication Critical patent/JPH077958A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To make shared currents of semiconductor elements uniform by making wiring inductances uniform in the case of unbalance in the shared currents of the elements due to a difference of the wiring inductances in many parallel connection circuits of the elements for constituting an output circuit of an inverter. CONSTITUTION:An inverter has power converting switching semiconductor elements 3-12 connected in parallel by conductors with a DC power source 1 and an electrolytic capacitor 2 as inputs. Parallel connecting conductors 17-19 are used to make wiring inductances uniform to make shared currents of the elements 3-12 uniform. Thus, a difference of current loads of the elements is eliminated, many parallel connections can be performed, a capacity of an inverter output circuit using the elements can be easily increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力変換装置に係り、
電力変換用スイッチング半導体素子を任意の導体により
多数並列接続して構成した半導体素子群に任意の直流電
源を接続し、PWM制御により交流電力または直流電力
を出力する電力変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power conversion device,
The present invention relates to a power conversion device that outputs an AC power or a DC power by PWM control by connecting an arbitrary DC power supply to a semiconductor element group configured by connecting a large number of switching semiconductor elements for power conversion in parallel with an arbitrary conductor.

【0002】[0002]

【従来の技術】一般に、電力変換用スイッチング半導体
素子を任意の導体により多数並列接続して構成した半導
体素子群に任意の直流電源を接続し、PWM制御により
交流電力または直流電力を出力する電力変換装置におい
ては、各半導体素子の配線インダクタンスや配線抵抗の
ばらつきについて配慮がされておらず、電流経路に対し
最小の配線インピーダンスを有する素子に電流が集中し
半導体素子間で電流不平衡が発生していた。
2. Description of the Related Art In general, a power conversion system in which a large number of switching semiconductor devices for power conversion are connected in parallel by arbitrary conductors to connect a direct current power supply to a semiconductor device group and output alternating current power or direct current power by PWM control. In the device, no consideration was given to variations in the wiring inductance and wiring resistance of each semiconductor element, and the current was concentrated in the element having the smallest wiring impedance with respect to the current path, resulting in current imbalance between the semiconductor elements. It was

【0003】特開平1−85570号公報には、電力変換用ス
イッチング半導体素子と直列に可飽和リアクトルを接続
し、スイッチ動作時の電流不平衡を防止する方法が提案
されている。
Japanese Laid-Open Patent Publication No. 1-85570 proposes a method of connecting a saturable reactor in series with a power conversion switching semiconductor element to prevent current imbalance during switch operation.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術は、電力
変換用スイッチング半導体素子と直列に可飽和リアクト
ルを接続して電流不平衡を防止しているが、最近広まり
つつあるPWMインバータのように、半導体素子の高周
波スイッチ動作を要する場合、電力損失が大きくなり安
定な良質の電力を与えられない課題があり、また装置が
大型化してしまう問題があった。
In the above-mentioned prior art, a saturable reactor is connected in series with a switching semiconductor element for power conversion to prevent current imbalance. However, like the PWM inverter which has been spreading recently, When the high frequency switching operation of the semiconductor element is required, there is a problem that power loss becomes large and stable and high quality power cannot be supplied, and there is a problem that the device becomes large.

【0005】本発明の目的は、電力変換用スイッチング
半導体素子を任意の導体により多数並列接続して構成し
た半導体素子群に、任意の直流電源を接続し、PWM制
御により交流電力または直流電力を出力する電力変換装
置において、電流不平衡の抑制、すなわちスイッチング
動作時の各電力変換用スイッチング半導体素子毎の電流
不平衡を抑制することにある。
An object of the present invention is to connect an arbitrary DC power source to a semiconductor element group formed by connecting a large number of switching semiconductor elements for power conversion in parallel with an arbitrary conductor, and output AC power or DC power by PWM control. In the power converter, the current imbalance is suppressed, that is, the current imbalance of each switching semiconductor element for power conversion during the switching operation is suppressed.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、多数並列接続された各電力変換用スイッチング半
導体素子の電流経路長と単位長当りの配線インピーダン
スをもとめ、各素子の電流経路の配線インピーダンス
が、均等になるように分岐接続点を移動させること、及
び任意の直流電源と電力変換用スイッチング半導体素子
の電流経路のインピーダンスが、均等になるように同一
配線長で接続することにより達成される。
In order to achieve the above object, the current path length and the wiring impedance per unit length of each power conversion switching semiconductor element connected in parallel are obtained, and the current path of each element is calculated. Achieved by moving the branch connection point so that the wiring impedance becomes equal, and by connecting the DC wiring and the switching semiconductor element for power conversion with the same wiring length so that the impedance of the current path becomes equal. To be done.

【0007】[0007]

【作用】上記の半導体素子の並列接続方法により、各電
流経路毎の配線インピーダンスが同一となり均等化され
る。これにより、各半導体素子の電流が均等化され電流
不平衡は抑制できる。
With the parallel connection method of the semiconductor elements, the wiring impedances of the respective current paths are equalized and equalized. Thereby, the currents of the respective semiconductor elements are equalized and the current imbalance can be suppressed.

【0008】[0008]

【実施例】(実施例1)以下、本発明の一実施例を図1
〜図7により説明する。本発明の回路接続図を図1にし
めし、構成図を図2にしめす。本発明の等価回路を図3
及び図4(a)(b)(c)にしめす。従来の並列接続
のシミュレーション結果を図5にしめし本発明の並列接
続シミュレーション結果を図6にしめす。電力変換装置
の全体シーケンスを図7にしめす。図7に於いて直流電
源1,電解コンデンサ2,インバータモジュール13,
交流フィルタ14、により構成される電力変換装置であ
り、直流電源から交流電力、若しくは直流電力に変換し
負荷15にエネルギーを供給する。
(Embodiment 1) An embodiment of the present invention will be described below with reference to FIG.
~ It demonstrates by FIG. The circuit connection diagram of the present invention is shown in FIG. 1, and the configuration diagram is shown in FIG. An equivalent circuit of the present invention is shown in FIG.
4 (a), (b) and (c). The conventional parallel connection simulation result is shown in FIG. 5, and the parallel connection simulation result of the present invention is shown in FIG. The overall sequence of the power conversion device is shown in FIG. In FIG. 7, DC power supply 1, electrolytic capacitor 2, inverter module 13,
This is a power conversion device configured by an AC filter 14, and converts DC power into AC power or DC power and supplies energy to the load 15.

【0009】図2に於いて電力変換用スイッチング半導
体素子3〜7のコレクタを並列接続導体17により接続
し、電力変換用スイッチング半導体素子3〜7のエミッ
タと半導体素子8〜12のコレクタを並列接続導体18
により接続し、電力変換用スイッチング半導体素子8〜
12のエミッタを並列接続導体19により接続する。本
発明はこの並列接続導体17,19の構成方法に関する
ものである。
In FIG. 2, the collectors of the power conversion switching semiconductor elements 3 to 7 are connected by a parallel connection conductor 17, and the emitters of the power conversion switching semiconductor elements 3 to 7 and the collectors of the semiconductor elements 8 to 12 are connected in parallel. Conductor 18
And the switching semiconductor element for power conversion 8 to
The twelve emitters are connected by the parallel connection conductor 19. The present invention relates to a method of constructing the parallel connection conductors 17 and 19.

【0010】次に本発明の動作を説明、最適な並列導体
接続17,19の構成を見いだす。図1,図2において
電力変換用スイッチング半導体素子3〜7が点弧した
時、電力変換用スイッチング半導体素子3〜7と出力端
子に、電流が流れるが、その時反対側の電力変換用スイ
ッチング半導体素子8〜12のダイオードリカバリ電流
が電流端子P−N間を短絡するような大きさでながれ
る。
Next, the operation of the present invention will be described to find the optimum configuration of the parallel conductor connections 17 and 19. 1 and 2, when the power conversion switching semiconductor elements 3 to 7 are ignited, a current flows through the power conversion switching semiconductor elements 3 to 7 and the output terminal, but at that time, the power conversion switching semiconductor elements on the opposite side. The diode recovery currents of 8 to 12 are so large as to short-circuit the current terminals P and N.

【0011】また、並列素子から電流への引き出し線の
影響は、電流分担には影響がないとすると、点弧時の等
価回路は図3の様になる。電力変換用スイッチング半導
体素子の並列接続群であるインバータモジュール13に
おける配線インダクタンスと比較し配線抵抗は無視でき
る値であり電流分担には影響小のため無視し、半導体素
子3〜7しか点弧していないので等価回路は図4(a)
の様になる。ここで定数kは接続点の長さ比である。さ
らに、この回路は左右対称であるから中央の半導体素子
5,10には左右から等しい電流が流れ込むものとする
と、等価回路は図4(b)の様になる。すなわち、対称
性から5並列の半分の分担電流を検討すればよい。
If the influence of the lead lines from the parallel elements to the current does not affect the current sharing, the equivalent circuit at the time of ignition is as shown in FIG. Compared with the wiring inductance in the inverter module 13, which is a group of parallel connection of power conversion switching semiconductor elements, the wiring resistance is a negligible value, and the current sharing is negligible because it is negligible, and only the semiconductor elements 3 to 7 are fired. The equivalent circuit is shown in Fig. 4 (a).
It becomes like. Here, the constant k is the length ratio of the connection points. Further, since this circuit is bilaterally symmetric, assuming that equal currents flow into the central semiconductor elements 5 and 10 from the left and right, the equivalent circuit is as shown in FIG. That is, from the symmetry, half of the shared current of 5 parallels may be considered.

【0012】いまNow

【0013】[0013]

【数1】 L0=a×L1 …(数1) とすると、半分の部分の等価回路は図4(c)の様にな
り、これによって分担電流を検討することにする。
## EQU00001 ## If L0 = a.times.L1 (Equation 1), the equivalent circuit of the half part is as shown in FIG. 4C, and the sharing current will be examined.

【0014】図4(c)より各素子電流I1,I2,I
3の時間変化率をI1′,I2′,I3′で表すと
From FIG. 4C, the element currents I1, I2, I
When the time rate of change of 3 is represented by I1 ', I2', I3 '

【0015】[0015]

【数2】 I1′=(k×L1+a×L1) =(I2′+0.5×I3′)×(1−k)×L1+I2′×a×L1 …(数2)[Equation 2] I1 ′ = (k × L1 + a × L1) = (I2 ′ + 0.5 × I3 ′) × (1-k) × L1 + I2 ′ × a × L1 (Equation 2)

【0016】[0016]

【数3】 I2′×a×L1=0.5×I3′(L1+2×a×L1) …(数3) 数3より[Equation 3] I2 ′ × a × L1 = 0.5 × I3 ′ (L1 + 2 × a × L1) (Equation 3) From Equation 3

【0017】[0017]

【数4】 [Equation 4]

【0018】数3,数4よりFrom equations 3 and 4

【0019】[0019]

【数5】 [Equation 5]

【0020】いま、I1′=I2′になるようなaに対
するkをk0とすると
Now, let k0 be k for a such that I1 '= I2'.

【0021】[0021]

【数6】 [Equation 6]

【0022】となる。aに対するI3は、数4より求め
られる。
It becomes I3 for a is obtained from the equation 4.

【0023】以上の検討よりk0を適当な値をとること
により分担電流を均等化する事ができる。
From the above examination, it is possible to equalize the shared currents by setting k0 to an appropriate value.

【0024】この実施例ではk0=0.6 となり図2の
並列接続導体17,19のように構成した。
In this embodiment, k0 = 0.6 and the parallel connection conductors 17 and 19 shown in FIG.

【0025】図5と図6は従来の並列接続方法と本発明
の並列接続方法の電流分担におけるシミュレーション結
果である。これからもわかるように本実施例で電力変換
用スイッチング半導体素子3〜7の分担電流が均一にな
る効果があることがわかる。またインバータ回路のスイ
ッチング動作のターンオン時に於けるdi/dtが均一
になるので、各電力変換用スイッチング半導体素子の電
流アンバランスが解消できる。これにより、電力変換用
スイッチング半導体素子の電流の格差をなくし、多数に
わたる並列接続が可能となる。
FIGS. 5 and 6 are simulation results in current sharing between the conventional parallel connection method and the parallel connection method of the present invention. As can be seen from this, it can be seen that the present embodiment has the effect of making the shared currents of the power conversion switching semiconductor elements 3 to 7 uniform. Further, since the di / dt at the turn-on of the switching operation of the inverter circuit becomes uniform, the current imbalance of each power conversion switching semiconductor element can be eliminated. This eliminates the difference in the currents of the power conversion switching semiconductor elements and enables a large number of parallel connections.

【0026】(実施例2)以下、本発明の別の実施例を
図8により説明する。
(Embodiment 2) Another embodiment of the present invention will be described below with reference to FIG.

【0027】図8は、本発明を拡張展開した接続図の一
例であり、直流電源1,電解コンデンサ2,電力変換用
スイッチング半導体素子の並列接続群であるインバータ
モジュール13をさらに並列にした接続群16により構
成される。
FIG. 8 is an example of a connection diagram in which the present invention is expanded and developed. A connection group in which a DC power supply 1, an electrolytic capacitor 2 and a switching semiconductor element for power conversion, which are parallel connection groups, are further connected in parallel. It is composed of 16.

【0028】上記のインバータモジュール13を1つの
素子として考え、上記実施例1のように接続する。これ
により、電力変換用スイッチング半導体素子毎の、電流
の格差がなく多数にわたる電力変換用スイッチング半導
体素子の並列接続が可能となり、容量アップが容易にな
る。
The inverter module 13 is considered as one element and is connected as in the first embodiment. As a result, a large number of power conversion switching semiconductor elements can be connected in parallel without any difference in current between the power conversion switching semiconductor elements, and the capacity can be easily increased.

【0029】(実施例3)以下、本発明の別の実施例を
図9により説明する。
(Embodiment 3) Another embodiment of the present invention will be described below with reference to FIG.

【0030】図9は、本発明を拡張展開した接続図の他
の一例であり、直流電源1,電解コンデンサ2,電力変
換用スイッチング半導体素子3〜12,並列接続導体2
0〜29より構成される。
FIG. 9 is another example of a connection diagram in which the present invention is expanded and developed. The DC power supply 1, the electrolytic capacitor 2, the power conversion switching semiconductor elements 3 to 12, and the parallel connection conductor 2 are shown.
It is composed of 0-29.

【0031】図3においては、直流電源1と、電力変換
用スイッチング半導体素子3〜12を、電解コンデンサ
2を通して、並列接続導体20〜29により並列接続し
ている。ここで、並列接続導体20〜29を同一の長さ
で各個別の電力変換用スイッチング半導体素子に接続す
る。それにより、直流電源1と電力変換用スイッチング
半導体素子3〜12が、個別に同一配線長で接続される
ため、直流電源1と電力変換用スイッチング半導体素子
3〜12の電流経路のインピーダンスが、均等になり、
電流不平衡を抑制できる効果がある。
In FIG. 3, the DC power supply 1 and the power conversion switching semiconductor elements 3 to 12 are connected in parallel through the electrolytic capacitor 2 by the parallel connection conductors 20 to 29. Here, the parallel connection conductors 20 to 29 are connected to each individual power conversion switching semiconductor element with the same length. Thereby, the DC power supply 1 and the power conversion switching semiconductor elements 3 to 12 are individually connected with the same wiring length, so that the impedances of the current paths of the DC power supply 1 and the power conversion switching semiconductor elements 3 to 12 are equal. become,
This has the effect of suppressing current imbalance.

【0032】[0032]

【発明の効果】本発明によれば、電力変換用スイッチン
グ半導体素子の電流が均等化され各素子の電流アンバン
ランスが解消できる。これによって電力変換用スイッチ
ング半導体素子の電流負担の格差をなくし、多数にわた
る並列接続が可能となり電力変換用スイッチング半導体
素子を使用した電力変換装置の容量アップが容易に構成
できる。
According to the present invention, the currents of the switching semiconductor elements for power conversion are equalized, and the current imbalance of each element can be eliminated. This eliminates the difference in the current burden of the power conversion switching semiconductor elements, allows a large number of parallel connections, and easily increases the capacity of the power conversion device using the power conversion switching semiconductor elements.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電力変換用スイッチング半導体素子の
5並列接続時の接続図である。
FIG. 1 is a connection diagram of five switching semiconductor elements for power conversion of the present invention when connected in parallel.

【図2】本発明の電力変換用スイッチング半導体素子の
5並列接続時の構成図である。
FIG. 2 is a configuration diagram of the power conversion switching semiconductor element of the present invention when connected in parallel with 5;

【図3】本発明の電力変換用スイッチング半導体素子の
5並列接続時の等価回路図である。
FIG. 3 is an equivalent circuit diagram of the power conversion switching semiconductor element of the present invention when 5 parallel connections are made.

【図4】本発明の電力変換用スイッチング半導体素子の
5並列接続時の簡略等価回路図である。
FIG. 4 is a simplified equivalent circuit diagram of the power conversion switching semiconductor element of the present invention when 5 parallel connections are made.

【図5】従来の電力変換装置に於ける電力変換用スイッ
チング半導体素子の5並列接続時のシミュレーション結
果を示す図である。
FIG. 5 is a diagram showing a simulation result when five switching semiconductor elements for power conversion are connected in parallel in a conventional power conversion device.

【図6】本発明の電力変換装置における電力変換用スイ
ッチング半導体素子の5並列接続時のシミュレーション
結果を示す図である。
FIG. 6 is a diagram showing simulation results when five switching semiconductor elements for power conversion are connected in parallel in the power conversion device of the present invention.

【図7】電力変換装置の全体シーケンスの一例を示す図
である。
FIG. 7 is a diagram showing an example of an overall sequence of a power conversion device.

【図8】本発明の拡張展開した接続図である。FIG. 8 is an expanded and expanded connection diagram of the present invention.

【図9】本発明の拡張展開した他の接続図である。FIG. 9 is another connection diagram in which the present invention is expanded and developed.

【符号の説明】[Explanation of symbols]

1…直流電源、2…電解コンデンサ、3〜12…電力変
換用スイッチング半導体素子、13…インバータモジュ
ール、14…交流フィルタ、15…負荷、16…電力変
換用スイッチング半導体素子の並列接続群であるインバ
ータモジュール13をさらに並列にした接続群、17〜
29…並列接続導体。
DESCRIPTION OF SYMBOLS 1 ... DC power supply, 2 ... Electrolytic capacitor, 3-12 ... Switching semiconductor element for power conversion, 13 ... Inverter module, 14 ... AC filter, 15 ... Load, 16 ... Inverter which is a parallel connection group of switching semiconductor elements for power conversion Connection group in which module 13 is further parallelized, 17-
29 ... Parallel connection conductor.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電力変換用スイッチング半導体素子を、任
意の導体により多数並列接続して構成した半導体素子群
に、任意の直流電源を接続し、PWM制御により交流電
力または直流電力を出力する電力変換装置において、前
記直流電源と前記半導体素子群とを接続する任意の導体
の配線長を最小とし、各電力変換用スイッチング半導体
素子毎の配線インピーダンス、及び素子内部のインピー
ダンスを考慮し、各電力変換用スイッチング半導体素子
の電流経路のインピーダンスが均等となるように任意の
導体を2点分岐接続したことを特徴とする電力変換装
置。
1. A power conversion system in which a large number of switching semiconductor elements for power conversion are connected in parallel by arbitrary conductors to connect a desired DC power supply to a semiconductor element group and output AC power or DC power by PWM control. In the device, the wiring length of any conductor that connects the DC power supply and the semiconductor element group is minimized, and the wiring impedance of each switching semiconductor element for power conversion and the impedance inside the element are taken into consideration for each power conversion. An electric power converter characterized in that an arbitrary conductor is branched and connected at two points so that the impedance of the current path of the switching semiconductor element becomes equal.
【請求項2】請求項1の電力変換装置において、前記半
導体素子群をさらに任意の導体により多数並列接続して
構成した並列半導体素子群においても、前記直流電源と
前記並列半導体素子群とを接続する任意の導体の配線長
を最小とし、各半導体素子群の配線インピーダンス及び
半導体素子群内部のインピーダンスを考慮し、各半導体
素子群の電流経路のインピーダンスが均等となるように
任意の導体を2点分岐接続したことを特徴とする電力変
換装置。
2. The power converter according to claim 1, wherein in the parallel semiconductor element group formed by connecting a large number of the semiconductor element groups in parallel with an arbitrary conductor, the DC power source and the parallel semiconductor element group are connected. Set the minimum wiring length of any conductor, and consider the wiring impedance of each semiconductor element group and the impedance inside the semiconductor element group, and use two arbitrary conductors so that the impedance of the current path of each semiconductor element group becomes equal. A power converter characterized by being branched and connected.
【請求項3】請求項1の電力変換装置において、多数並
列接続する各電力変換用スイッチング半導体素子を任意
の導体で接続し、かつ、前記直流電源と各電力変換用ス
イッチング半導体素子の電流経路のインピーダンスが、
均等になるように同一配線長で最短の導体で個別に接続
したことを特徴とする電力変換装置。
3. The power conversion device according to claim 1, wherein a large number of power conversion switching semiconductor elements connected in parallel are connected by an arbitrary conductor, and the DC power source and the current path of each power conversion switching semiconductor element are connected. Impedance is
A power conversion device characterized in that they are individually connected with the shortest conductors having the same wiring length so as to be even.
JP5143286A 1993-06-15 1993-06-15 Power converter Pending JPH077958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5143286A JPH077958A (en) 1993-06-15 1993-06-15 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5143286A JPH077958A (en) 1993-06-15 1993-06-15 Power converter

Publications (1)

Publication Number Publication Date
JPH077958A true JPH077958A (en) 1995-01-10

Family

ID=15335202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5143286A Pending JPH077958A (en) 1993-06-15 1993-06-15 Power converter

Country Status (1)

Country Link
JP (1) JPH077958A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088142A (en) * 2001-09-10 2003-03-20 Toshiba Corp Frequency converter
JP2005176576A (en) * 2003-12-15 2005-06-30 Toshiba Corp Power converting device
JP2007028742A (en) * 2005-07-14 2007-02-01 Hitachi Ltd Power converter and power conversion method
JP2009284604A (en) * 2008-05-20 2009-12-03 Toyota Industries Corp Power conversion device
JP2010514397A (en) * 2006-12-21 2010-04-30 シーメンス アクチエンゲゼルシヤフト Converter having short-circuit current limiting unit
WO2015111215A1 (en) * 2014-01-27 2015-07-30 株式会社日立製作所 Switching-element drive device
US10014793B2 (en) 2014-03-10 2018-07-03 Hitachi, Ltd. Power conversion unit, power converter, and power conversion method
CN111357106A (en) * 2017-11-21 2020-06-30 三菱电机株式会社 Semiconductor module, power conversion device, and moving object
CN112953260A (en) * 2021-02-19 2021-06-11 阳光电源股份有限公司 Contravariant module structure and dc-to-ac converter
WO2023140077A1 (en) * 2022-01-20 2023-07-27 日立Astemo株式会社 Semiconductor device and inverter provided with semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088142A (en) * 2001-09-10 2003-03-20 Toshiba Corp Frequency converter
JP2005176576A (en) * 2003-12-15 2005-06-30 Toshiba Corp Power converting device
JP2007028742A (en) * 2005-07-14 2007-02-01 Hitachi Ltd Power converter and power conversion method
JP2010514397A (en) * 2006-12-21 2010-04-30 シーメンス アクチエンゲゼルシヤフト Converter having short-circuit current limiting unit
JP2009284604A (en) * 2008-05-20 2009-12-03 Toyota Industries Corp Power conversion device
JP4561874B2 (en) * 2008-05-20 2010-10-13 株式会社豊田自動織機 Power converter
WO2015111215A1 (en) * 2014-01-27 2015-07-30 株式会社日立製作所 Switching-element drive device
US10014793B2 (en) 2014-03-10 2018-07-03 Hitachi, Ltd. Power conversion unit, power converter, and power conversion method
CN111357106A (en) * 2017-11-21 2020-06-30 三菱电机株式会社 Semiconductor module, power conversion device, and moving object
US11348902B2 (en) 2017-11-21 2022-05-31 Mitsubishi Electric Corporation Semiconductor module, power conversion device, and movable body
CN111357106B (en) * 2017-11-21 2023-11-14 三菱电机株式会社 Semiconductor module, power conversion device, and moving object
CN112953260A (en) * 2021-02-19 2021-06-11 阳光电源股份有限公司 Contravariant module structure and dc-to-ac converter
CN112953260B (en) * 2021-02-19 2024-05-14 阳光电源股份有限公司 Inverter module structure and inverter
WO2023140077A1 (en) * 2022-01-20 2023-07-27 日立Astemo株式会社 Semiconductor device and inverter provided with semiconductor device

Similar Documents

Publication Publication Date Title
US11038435B2 (en) Converter, electrical polyphase system and method for efficient power exchange
US7705490B2 (en) Integral stack columns
US8289730B2 (en) Ripple cancellation
US11601064B2 (en) Power conversion device having a frequency of a first control signal higher than a frequency of a second control signal
CN112467839B (en) Battery cluster management device and battery energy storage system
JP6425855B1 (en) Power converter
JP6797333B1 (en) Power converter
JPH077958A (en) Power converter
Almakhles et al. Switched capacitor-based 13L inverter topology for high-frequency AC power distribution system
JP6899967B1 (en) Power converter
Mohamad Matrix Inverter: A Multilevel Inverter Based on Matrix Converter Switch Matrix
JPS5996876A (en) Inverter device
JPH09274904A (en) Method for wiring battery array
US11804771B2 (en) Customizable power converter and customizable power conversion system
KR20220062408A (en) Vehicle electrical system having vehicle charging circuit and vehicle charging circuit
JP2816692B2 (en) Current supply balance method to switching element
JPH04229079A (en) Parallel connecting method for semiconductor, switch circuit and inverter
US11424618B2 (en) Converter, arrangement comprising a converter and method for operating same
CN215378860U (en) Photovoltaic inverter with multi-path MPPT input and photovoltaic power generation system
SU944075A1 (en) Device for adding power of n electric oscillation generators
JP2558631B2 (en) Voltage type multiple PWM inverter
EP0704114A4 (en) A power converter with star configured modules
JP3150521B2 (en) Bridge circuit and inverter device
JP3092450B2 (en) Active filter main circuit wiring method
CN118137615A (en) Power distribution control system of multi-port charger