JPH0778689A - Thin-film electroluminescence element - Google Patents

Thin-film electroluminescence element

Info

Publication number
JPH0778689A
JPH0778689A JP5222682A JP22268293A JPH0778689A JP H0778689 A JPH0778689 A JP H0778689A JP 5222682 A JP5222682 A JP 5222682A JP 22268293 A JP22268293 A JP 22268293A JP H0778689 A JPH0778689 A JP H0778689A
Authority
JP
Japan
Prior art keywords
light
layer
thin film
light emitting
emitting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5222682A
Other languages
Japanese (ja)
Inventor
Harutaka Taniguchi
春隆 谷口
Tomoyuki Kawashima
朋之 河島
Yukinori Kawamura
幸則 河村
Kazuyoshi Shibata
一喜 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5222682A priority Critical patent/JPH0778689A/en
Publication of JPH0778689A publication Critical patent/JPH0778689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To enhance the brightness by making the peak wavelength of the light given by a light emitting layer identical to the interferential peak wavelength due to the interference generated when the light passes different layers. CONSTITUTION:Part of the light emitted from a light emitting layer 4 of a thin film FL element becomes an outgoing beam of light 10 to pass through the first insulative layer 3, lower transparent electrode 2, and photo-transmissive board 1, while the light having reached the back surface becomes a reflected beam of light 20 to pass through the second insulative layer 5, light emitting layer 4, layer 3, electrode 2, and board 1. When the film thicknesses of these layers are optimised according to the material and refractive index of each layer, the peak wavelength of the light emission spectrum of the layer 4 becomes identical to the peak wavelength of the photo-separation spectrum generated due to interference of multi-layer thin film. and thereby the brightness of the thin film FL element is heightened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、交流電界の印加によっ
てエレクトロルミネセンス (以下ELと略す) 発光を呈
する薄膜EL素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film EL element which exhibits electroluminescence (hereinafter abbreviated as EL) light emission when an alternating electric field is applied.

【0002】[0002]

【従来の技術】従来より電場発光螢光体を用いた固体映
像装置としてX−Yマトリックス表示装置が知られてい
る。この装置は、電場発光層の両面に水平平行電極群と
垂直電極群とを互いに直行するように配置し、それぞれ
の電極群に接続された給電線により切替え装置を通して
信号を加えて、両電極の交点部分の電場発光層 (EL発
光層) を発光させ、発光した交点部分のいわゆる絵素の
組合わせによって文字信号、図形を表示させるものであ
る。
2. Description of the Related Art An XY matrix display device has been conventionally known as a solid-state image device using an electroluminescent phosphor. In this device, horizontal parallel electrode groups and vertical electrode groups are arranged on both sides of an electroluminescent layer so as to be orthogonal to each other, and a signal is applied through a switching device by a power supply line connected to each electrode group, and both electrodes are connected. The electroluminescent layer (EL emitting layer) at the intersection is made to emit light, and a character signal and a graphic are displayed by a combination of so-called picture elements at the emitted intersection.

【0003】ここで用いられる固体映像表示装置の表示
板としては、通常、図3に示すように透光性基板1上に
平行な下部透明電極群2を形成し、その上に第一絶縁層
3、EL発光層4、第二絶縁層5を順次積層し、さらに
その上に背面平行電極群6を図4に示すように下部透明
電極群2と絵素7で直交する配置で積層して形成する。
透光性基板1の材料には、ソーダガラス、ほうけい酸ガ
ラス、バリウムほうけい酸ガラスの一つを用い、その基
板上にSnO2 あるいはITO (In2 3 +SnO 2 ) のよ
うな透明導電材料を、電子ビーム (EB) 蒸着法、スパ
ッタリング法により150 〜400nm の間の厚さで形成して
透明電極2とする。第一、第二絶縁層3、5の材料に
は、Y2 3 、SiO2 、Si3 4 、Al2 3 、Ta
2 5 、SiON、SiAlON等より一種ないし二種を選
び、1層ないし2層を厚さ200 〜400nm の間でEB蒸着
法、スパッタリング法で形成する。EL発光層4は、Zn
Sを母体とし、添加物としてMn、Tb、Eu、Sm、Tma を加
え、あるいはSrSを母体とし、添加物としてCe等を加
え、EB蒸着法、原子層結晶成長 (ALE) 法、スパッ
タリング法、有機金属CVD法などにより、400 〜900n
m の厚さに形成する。背面電極6は、Alなどの金属材料
によりEB蒸着法あるいはスパッタリング法で1層ない
し2層、合計厚さ300 〜1000nmに形成する。
Display of solid-state image display device used here
As a plate, usually, as shown in FIG.
The lower transparent electrode group 2 is formed in parallel and the first insulating layer is formed on the lower transparent electrode group 2.
3, EL light emitting layer 4, second insulating layer 5 are sequentially stacked,
The rear parallel electrode group 6 is transparent on the bottom as shown in FIG.
The electrode group 2 and the picture element 7 are formed by stacking them in a perpendicular arrangement.
The transparent substrate 1 is made of soda glass or borosilicate gas.
Use one of lath and barium borosilicate glass
SnO on the board2Or ITO (In2O3+ SnO 2)
Such a transparent conductive material is formed by electron beam (EB) vapor deposition, spa
It is formed with a thickness of between 150 and 400 nm by the Tattering method.
The transparent electrode 2 is used. For the materials of the first and second insulating layers 3 and 5
Is Y2O3, SiO2, Si3NFour, Al2O3, Ta
2OFiveSelect one or two types from SiON, SiON, SiAlON, etc.
And EB deposition of one or two layers with a thickness of 200-400 nm
Method, sputtering method. The EL emission layer 4 is Zn
With S as a matrix, Mn, Tb, Eu, Sm, and Tma are added as additives.
Or, SrS is used as a base material and Ce or the like is added as an additive.
E, EB evaporation method, atomic layer crystal growth (ALE) method, sputtering
400-900n by the tarring method, metalorganic CVD method, etc.
Form to a thickness of m. The back electrode 6 is made of a metal material such as Al.
By EB evaporation method or sputtering method
Then, two layers are formed to a total thickness of 300 to 1000 nm.

【0004】[0004]

【発明が解決しようとする課題】薄膜EL素子の発光閾
値電圧は、第一絶縁層、第二絶縁層の各膜厚と誘電率で
決まる。発光輝度は、発光層母材に添加した励起源の添
加物濃度が最適値であるとき、発光母材の膜質等によ
り、また、絶縁層の材料特性により影響されて、その発
光輝度が概略決まる。このような、一般的なEL素子に
おいて、高輝度化はかねてよりの課題である。また、最
近、カラー薄膜EL素子の開発が急速に進展しつつあ
る。しかし現状は、赤色発光、緑色発光、青色発光等
は、実用的な輝度に達していない。
The light emission threshold voltage of the thin film EL element is determined by the film thickness and dielectric constant of the first insulating layer and the second insulating layer. The emission brightness is roughly determined when the additive concentration of the excitation source added to the light emitting layer base material has an optimum value and is influenced by the film quality of the light emitting base material and the material properties of the insulating layer. . In such a general EL element, high brightness has been a problem for some time. Further, recently, the development of color thin film EL elements has been rapidly progressing. However, at present, red light emission, green light emission, blue light emission, etc. have not reached a practical brightness.

【0005】本発明の目的は、このような現状に鑑み、
輝度を向上させた薄膜EL素子を提供することにある。
In view of such a current situation, an object of the present invention is to
It is to provide a thin film EL element with improved brightness.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、絶縁性基板上で発光層の両面にそれぞ
れ絶縁層を介して基板側が透光性である条状電極を備え
た薄膜EL素子において、発光層で発生する光の発光ピ
ーク波長と、発光層で発生する光が積層された各層を通
過することによって干渉して生ずる干渉ピーク波長とが
一致しているものとする。発光ピーク波長と干渉ピーク
波長とが、各層の材料、屈折率に対応して各層の膜厚を
調整することにより一致させられたことが良い。発光層
の材料がZnSを母体としたこと、あるいはSrSを母体と
したことが有効である。
In order to achieve the above-mentioned object, the present invention comprises a strip-shaped electrode on the insulating substrate on both sides of which the light-emitting layer is transparent and the substrate side is transparent through the insulating layers. In the thin-film EL device, the emission peak wavelength of the light generated in the light emitting layer and the interference peak wavelength generated by the interference of the light generated in the light emitting layer by passing through each layer in which the light emitting layers are stacked are the same. . It is preferable that the emission peak wavelength and the interference peak wavelength be matched by adjusting the film thickness of each layer according to the material and refractive index of each layer. It is effective that the material of the light emitting layer is ZnS as a base material or SrS as a base material.

【0007】[0007]

【作用】薄膜EL素子の積層膜の各膜厚を適当に設定し
て発光させると、膜厚と各層の屈折率によって多層薄膜
の干渉が発生する。これを、図3を用いて詳細に説明す
ると、発光層で発生した光は、一部は、第一絶縁層3、
下部透明電極2および基板1を通って出射され、透過光
10となる。一方、背面側に出た光は、第二絶縁層を通
り、背面電極6で反射して、第二絶縁層5、発光層4、
第一絶縁層3、下部透明電極2、透明基板1を通して出
射され、反射光20となる。
When the respective film thicknesses of the laminated film of the thin film EL element are appropriately set to emit light, interference of the multilayer thin films occurs due to the film thickness and the refractive index of each layer. This will be described in detail with reference to FIG. 3. The light generated in the light emitting layer is partly composed of the first insulating layer 3,
The transmitted light is emitted through the lower transparent electrode 2 and the substrate 1.
Will be 10. On the other hand, the light emitted to the back side passes through the second insulating layer and is reflected by the back electrode 6, and the second insulating layer 5, the light emitting layer 4,
The reflected light 20 is emitted through the first insulating layer 3, the lower transparent electrode 2, and the transparent substrate 1.

【0008】この構成の薄膜EL素子の各構成材料とし
て、絶縁層は、誘電率、絶縁耐圧、tan δの良い特性が
要求され、EL発光層は、実用的な所望の発光輝度が得
られる特性が要求される。このため絶縁性、誘電性、E
L発光特性よりさまざまな材料が使用あるいは開発され
ている。このような構成材を用いた時、多層薄膜のため
多重干渉が発生し、その干渉ピークと干渉の谷の差は、
例えば透過光10では、10〜15%透過率となる。一方、反
射光20の場合も同様となるため、全体での干渉特性は20
〜30%となる。このため、薄膜EL素子の各膜厚値が、
干渉ピークとなるように設定されていると、輝度が20〜
30%増加し、一方、多重干渉の谷となるよう設定されて
いると輝度が20〜30%減少することとなる。
As each constituent material of the thin film EL device having this structure, the insulating layer is required to have good characteristics of dielectric constant, withstand voltage, and tan δ, and the EL light emitting layer has characteristics of obtaining practically desired emission brightness. Is required. Therefore, insulation, dielectric properties, E
Various materials have been used or developed based on the L emission characteristics. When such a component is used, multiple interference occurs due to the multilayer thin film, and the difference between the interference peak and the valley of the interference is
For example, transmitted light 10 has a transmittance of 10 to 15%. On the other hand, the same applies to the case of reflected light 20, so the overall interference characteristic is 20
It will be ~ 30%. Therefore, each film thickness value of the thin film EL element is
If the interference peak is set, the brightness will increase from 20 to
It is increased by 30%, while the brightness is reduced by 20 to 30% when it is set to the valley of multiple interference.

【0009】ZnS:Mn螢光体を例にして説明すると、発
光範囲が550nm 〜640nm で、発光ピークが585nm ないし
580nm である。EL素子の膜厚のばらつきが大きい場
合、干渉効果の山と谷が両方出現する。この場合、干渉
効果の山と谷の両方が作用し、発光分光スペクトルに影
響がでる。これによって、低波長の緑が0〜30%強く出
たり、あるいは長波長側の赤が0〜30%強く出たりする
と、肉眼では、EL素子面内で色むらとして見える。こ
れを防ぐのには、発光ピーク波長で薄膜多重干渉ピーク
となるように、各層の材料、屈折率に対応して最適膜厚
を設定すればよく、それによって高輝度が得られる。
A ZnS: Mn phosphor will be described as an example. The emission range is 550 nm to 640 nm, and the emission peak is 585 nm to 585 nm.
It is 580 nm. When the variation in the film thickness of the EL element is large, both peaks and troughs of the interference effect appear. In this case, both peaks and troughs of the interference effect act and affect the emission spectrum. As a result, if the low-wavelength green is strongly emitted by 0 to 30% or the long-wavelength red is emitted by 0 to 30%, it appears as uneven color on the surface of the EL element with the naked eye. In order to prevent this, the optimum film thickness may be set in accordance with the material of each layer and the refractive index so that the thin film multiple interference peak is obtained at the emission peak wavelength, whereby high brightness can be obtained.

【0010】[0010]

【実施例】図5は本発明の一実施例の薄膜EL素子を示
し、透明基板1の材料としてバリウムほうけい酸ガラス
を用い、透明電極2の材料としてITOを用いた。第一
絶縁層3、第二絶縁層5には、それぞれ30nmの厚さのSi
2 膜、180 〜200nm の厚さのSi3 4 膜を積層して用
い、発光層4には、ZnS:MnをEB蒸着法で形成したも
のを用い、背面電極6にはAl膜を用いた。発光層の膜厚
を400 〜800nm の範囲で2種類選定した。図2は、分光
透光率を示し、EL発光層4、第一絶縁層3、透明電極
2による透過光10の干渉効果により干渉ピークと干渉の
谷ができているが、実線21の場合は、ZnS:Mnの発光ピ
ーク波長585nm に対し、透過率の干渉ピークが一致して
いるのに対し、点線22の場合は、透過率が干渉の谷と発
光ピーク波長が重なっている。この結果からEL発光の
透過光10の強度が最大10〜15%違ってくる。同様にEL
発光の背面電極から反射した光、反射光20もあるため、
全体としては、20〜30%の光の強度が変わることにな
る。
EXAMPLE FIG. 5 shows a thin film EL device according to an example of the present invention. Barium borosilicate glass was used as the material of the transparent substrate 1 and ITO was used as the material of the transparent electrode 2. The first insulating layer 3 and the second insulating layer 5 each have a Si thickness of 30 nm.
An O 2 film and a Si 3 N 4 film having a thickness of 180 to 200 nm are laminated and used, the light emitting layer 4 is formed of ZnS: Mn by the EB vapor deposition method, and the back electrode 6 is an Al film. Using. Two kinds of film thickness of the light emitting layer were selected in the range of 400 to 800 nm. FIG. 2 shows the spectral transmittance, and an interference peak and a valley are formed due to the interference effect of the transmitted light 10 by the EL light emitting layer 4, the first insulating layer 3, and the transparent electrode 2, but in the case of the solid line 21 , ZnS: Mn emission peak wavelength is 585 nm, the interference peak of transmittance coincides, whereas in the case of dotted line 22, the valley of interference of transmission and emission peak wavelength overlap. From this result, the intensity of the transmitted light 10 of EL emission differs by a maximum of 10 to 15%. Similarly EL
There is also light reflected from the back electrode of the light emission, reflected light 20,
Overall, 20-30% of the light intensity will change.

【0011】図1は、図2の分光透過率曲線21が得られ
た発光層4の膜厚750 〜800nm のEL素子と分光透過率
曲線22が得られたEL素子との駆動電圧180 V以下での
発光分光スペクトルをそれぞれ線11、12で示し、線11で
は多層薄膜干渉ピークと発光ピークが、一致した時の発
光分光スペクトルが得られている。このスペクトルは、
緑色や赤色の波長は強く出ていないため、黄橙色であ
る。しかし、線12では、多層薄膜の干渉の谷と発光ピー
クが一致しているため、この発光分光スペクトルは、緑
色と赤色の波長が強く出て、ZnS:Mnの585nm ピーク強
度が少し低く出ている。このため、多少黄橙色からはず
れている。
FIG. 1 shows a driving voltage of 180 V or less for an EL element having a film thickness of 750 to 800 nm of the light emitting layer 4 having the spectral transmittance curve 21 shown in FIG. 2 and an EL element having the spectral transmittance curve 22. Lines 11 and 12 respectively show the emission spectrums in the above, and in the line 11, the emission spectrums when the multilayer thin film interference peak and the emission peak coincide with each other are obtained. This spectrum is
Since the wavelengths of green and red are not strong, they are yellow-orange. However, in line 12, the emission valleys of the multilayer thin film coincide with the emission peaks, so the emission spectrum shows strong green and red wavelengths, and the 585 nm peak intensity of ZnS: Mn is slightly lower. There is. For this reason, it is slightly deviated from yellow-orange.

【0012】本発明は、薄膜EL素子として記載した
が、実用的には、EL素子が外気の温度の影響を受ける
ため、EL素子自体を外気遮断のため封止構造を取るこ
とは言うまでもない。
Although the present invention has been described as a thin film EL element, it is needless to say that the EL element itself has a sealing structure for shutting off the outside air in practice because the EL element is affected by the temperature of the outside air.

【0013】[0013]

【発明の効果】本発明によれば、発光層の発光スペクト
ルのピークと多層薄膜の干渉効果によって生ずる分光ス
ペクトルのピークを一致させるように、各層の材料、屈
折率に応じて各層の膜厚を最適化することにより、発光
輝度を従来よりも20〜30%向上させ、発光分光スペクト
ルによる色むらを抑えた薄膜EL素子を得ることができ
る。
According to the present invention, the film thickness of each layer is adjusted according to the material of each layer and the refractive index so that the peak of the emission spectrum of the light emitting layer and the peak of the spectral spectrum generated by the interference effect of the multilayer thin film may coincide with each other. By optimizing, the emission luminance can be improved by 20 to 30% as compared with the conventional one, and a thin film EL element in which color unevenness due to an emission spectrum is suppressed can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例および比較例の薄膜EL素子
の発光分光スペクトル線図
FIG. 1 is an emission spectral line diagram of a thin film EL element according to an example of the present invention and a comparative example.

【図2】本発明の一実施例および比較例の薄膜EL素子
の分光透過率線図
FIG. 2 is a spectral transmittance diagram of thin film EL elements of one example and a comparative example of the present invention.

【図3】薄膜EL素子の構造および光の通路を示す断面
FIG. 3 is a cross-sectional view showing a structure of a thin film EL element and a light passage.

【図4】薄膜EL素子の電極配置を示す平面図FIG. 4 is a plan view showing an electrode arrangement of a thin film EL element.

【図5】本発明の一実施例の薄膜EL素子の断面図FIG. 5 is a sectional view of a thin film EL element according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 透光性基板 2 透明電極 3 第一絶縁層 4 発光層 5 第二絶縁層 6 背面電極 7 絵素 1 Translucent Substrate 2 Transparent Electrode 3 First Insulating Layer 4 Light Emitting Layer 5 Second Insulating Layer 6 Back Electrode 7 Picture Element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 一喜 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuki Shibata 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板上で発光層の両面にそれぞれ絶
縁層を介して基板側が透光性である条状電極を備えた薄
膜エレクトロルミネセンス素子において、発光層で発生
する光の発光ピーク波長と、発光層で発生する光が積層
された各層を通過することによって干渉して生ずる干渉
ピーク波長とが一致していることを特徴とする薄膜エレ
クトロルミネセンス素子。
1. A light emitting peak of light generated in a light emitting layer in a thin film electroluminescent device comprising a strip-shaped electrode having a light-transmitting substrate on both sides of the light emitting layer via an insulating layer on the insulating substrate. A thin film electroluminescent device, wherein the wavelength and the interference peak wavelength generated by the interference of the light generated in the light emitting layer passing through each of the laminated layers coincide with each other.
【請求項2】発光ピーク波長と干渉ピーク波長とが、各
層の材料、屈折率に対応して各層の膜厚を調整すること
により一致させられた請求項1記載の薄膜エレクトロル
ミネセンス素子。
2. The thin film electroluminescence device according to claim 1, wherein the emission peak wavelength and the interference peak wavelength are matched by adjusting the film thickness of each layer in accordance with the material and refractive index of each layer.
【請求項3】発光層の材料が硫化亜鉛を母体とした請求
項1あるいは2記載の薄膜エレクトロルミネセンス素
子。
3. The thin film electroluminescent device according to claim 1, wherein the material of the light emitting layer is zinc sulfide as a base material.
【請求項4】発光層の材料が硫化ストロンチウムを母体
とした請求項1あるいは2記載の薄膜エレクトロルミネ
センス素子。
4. The thin film electroluminescence device according to claim 1, wherein the material of the light emitting layer is strontium sulfide as a base material.
JP5222682A 1993-09-08 1993-09-08 Thin-film electroluminescence element Pending JPH0778689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5222682A JPH0778689A (en) 1993-09-08 1993-09-08 Thin-film electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5222682A JPH0778689A (en) 1993-09-08 1993-09-08 Thin-film electroluminescence element

Publications (1)

Publication Number Publication Date
JPH0778689A true JPH0778689A (en) 1995-03-20

Family

ID=16786273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5222682A Pending JPH0778689A (en) 1993-09-08 1993-09-08 Thin-film electroluminescence element

Country Status (1)

Country Link
JP (1) JPH0778689A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060905A1 (en) * 1999-04-05 2000-10-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and its manufacturing method
KR100809931B1 (en) * 2001-06-30 2008-03-06 엘지.필립스 엘시디 주식회사 Organic Electroluminescence Display and Fabricating Method Thereof
US8063558B2 (en) 2005-06-30 2011-11-22 Canon Kabushiki Kaisha Multi-color display apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060905A1 (en) * 1999-04-05 2000-10-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and its manufacturing method
US6469438B2 (en) 1999-04-05 2002-10-22 Idemitsu Kosan Co., Ltd. Organic electroluminescence device with prescribed optical path length
US6844210B2 (en) 1999-04-05 2005-01-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and method of manufacturing same
EP2262032A2 (en) 1999-04-05 2010-12-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and its manufacturing method
KR100809931B1 (en) * 2001-06-30 2008-03-06 엘지.필립스 엘시디 주식회사 Organic Electroluminescence Display and Fabricating Method Thereof
US8063558B2 (en) 2005-06-30 2011-11-22 Canon Kabushiki Kaisha Multi-color display apparatus

Similar Documents

Publication Publication Date Title
JP2553696B2 (en) Multicolor light emitting thin film electroluminescent device
US5598059A (en) AC TFEL device having a white light emitting multilayer phosphor
US4727003A (en) Electroluminescence device
US4945009A (en) Electroluminescence device
US4977350A (en) Color electroluminescence display panel having alternately-extending electrode groups
US5289171A (en) Color display apparatus
US4954747A (en) Multi-colored thin-film electroluminescent display with filter
EP0313656B1 (en) Color display device
CN100459208C (en) Organic electroluminescence device
JPH0778689A (en) Thin-film electroluminescence element
US5635307A (en) Thin-film electroluminescent element
US6451460B1 (en) Thin film electroluminescent device
US6099979A (en) Electroluminescent display element and manufacturing method for manufacturing same
JP3533710B2 (en) Electroluminescence device and multicolor electroluminescence device
JP3442918B2 (en) Thin-film electroluminescence panel
JPH03187186A (en) Thin film electroluminescence device containing light interference filter
KR100342650B1 (en) A electroluminescent display device
JPH08162273A (en) Thin film el element
JP2583994B2 (en) Thin-film electroluminescence device
KR100326464B1 (en) Electroluminescent display device
JP3438788B2 (en) Electroluminescence element
JPH06231882A (en) Thin film electroluminescent element
KR100908229B1 (en) Organic electroluminescent element
KR0170449B1 (en) Field emission display
KR970009736B1 (en) White color voltaic light emitting device