JPH0778616A - Porous body - Google Patents
Porous bodyInfo
- Publication number
- JPH0778616A JPH0778616A JP5221935A JP22193593A JPH0778616A JP H0778616 A JPH0778616 A JP H0778616A JP 5221935 A JP5221935 A JP 5221935A JP 22193593 A JP22193593 A JP 22193593A JP H0778616 A JPH0778616 A JP H0778616A
- Authority
- JP
- Japan
- Prior art keywords
- porous body
- fuel cell
- powder
- air electrode
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Inert Electrodes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高温固体電解質型燃料
電池等の空気極に好適に使用される金属酸化物の多孔質
体に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal oxide porous body suitable for use in an air electrode of a high temperature solid oxide fuel cell or the like.
【0002】[0002]
【従来の技術】従来、高温固体電解質型燃料電池とし
て、特開平5−29008号公報に記載されたものが知
られている。前記燃料電池は、図4に示すように、安定
化剤としてイットリアを含むジルコニアからなる緻密な
固体電解質膜1の内側に多孔性の空気極2が形成され、
前記固体電解質膜1の外側にNi−ZrO2 サーメット
からなる燃料極3が形成された構成となっている。2. Description of the Related Art Conventionally, as a high temperature solid oxide fuel cell, the one described in Japanese Patent Laid-Open No. 5-29008 is known. In the fuel cell, as shown in FIG. 4, a porous air electrode 2 is formed inside a dense solid electrolyte membrane 1 made of zirconia containing yttria as a stabilizer,
A fuel electrode 3 made of Ni—ZrO 2 cermet is formed outside the solid electrolyte membrane 1.
【0003】図4示の燃料電池において、空気極2は、
気相、電解質、電極の三相界面を長くするために多孔質
体からなることが望ましく、また固体電解質膜1の基体
となるために一定の強度を有することが望ましい。前記
物性を有する空気極2として、前記公報には金属酸化物
と合成樹脂粉末とを含有するスラリーから余剰のスラリ
ーを除去して成形された成形体をさらに焼成してなるも
のが記載されている。In the fuel cell shown in FIG. 4, the air electrode 2 is
It is preferably made of a porous material in order to lengthen the three-phase interface of the gas phase, the electrolyte and the electrode, and it is desirable that it has a certain strength so as to be the base of the solid electrolyte membrane 1. As the air electrode 2 having the above-mentioned physical properties, the above-mentioned publication describes one formed by further removing a surplus slurry from a slurry containing a metal oxide and a synthetic resin powder, and further firing the molded body. .
【0004】前記公報の記載によれば、前記金属酸化物
としては希土類またはアルカリ土類金属を添加したLa
MnO3 、LaCoO3 、CaMnO3 が例示されてお
り、前記合成樹脂粉末としてはテフロン粉末、塩化ビニ
ル粉末、ナイロン粉末、アクリル粉末等が例示されてい
る。According to the description of the above-mentioned publication, La containing a rare earth or alkaline earth metal as the metal oxide is added.
Examples thereof include MnO 3 , LaCoO 3 , and CaMnO 3 , and examples of the synthetic resin powder include Teflon powder, vinyl chloride powder, nylon powder, acrylic powder, and the like.
【0005】しかしながら、前記金属酸化物と前記合成
樹脂粉末とから前記のようにして得られた成形体を焼成
すると、得られた多孔質体は通気度が低く、前記空気極
2として使用することが難しいという不都合がある。However, when the molded body obtained as described above from the metal oxide and the synthetic resin powder is fired, the obtained porous body has a low air permeability and should be used as the air electrode 2. However, there is a disadvantage that it is difficult.
【0006】[0006]
【発明が解決しようとする課題】かかる不都合を解消し
て、本発明は燃料電池の空気極として好適に使用できる
通気度を有する金属酸化物の多孔質体を提供することを
目的とする。SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and provide a porous metal oxide body having a gas permeability that can be suitably used as an air electrode of a fuel cell.
【0007】[0007]
【課題を解決するための手段】本発明者らの検討によれ
ば、金属酸化物に合成樹脂粉末を混合して得られた成形
体を焼成すると、前記合成樹脂粉末の燃焼により得られ
る気孔が独立の閉気孔となる傾向があり、このために得
られる多孔質体の通気度が低くなることが判明した。According to the study by the present inventors, when a molded body obtained by mixing a metal oxide with a synthetic resin powder is fired, pores obtained by combustion of the synthetic resin powder are generated. It has been found that there is a tendency for closed closed pores, which results in a low air permeability of the resulting porous body.
【0008】そこで、本発明者らは前記知見に基づいて
さらに検討を重ねた結果、特定の金属酸化物に難溶性澱
粉を混合して焼成することにより、連続性の開気孔が形
成され、高温固体電解質型燃料電池の空気極に適した高
い通気度を有する多孔質体が得られることを見い出し、
本発明を完成した。Therefore, as a result of further studies based on the above findings, the present inventors have found that continuous open pores are formed by mixing a sparingly soluble starch with a specific metal oxide and firing the mixture. It was found that a porous body having a high air permeability suitable for an air electrode of a solid oxide fuel cell can be obtained,
The present invention has been completed.
【0009】即ち、本発明の多孔質体は、燃料電池の空
気極に用いられる金属酸化物の多孔質体であって、La
2 O3 、SrCO3 、Mn2 O3 の粉末を混合したのち
仮焼して得られた粉末に、難溶性澱粉を2.5〜15重
量%の範囲で添加、混合したのち焼成してなりLaMn
O3 系結晶構造を有することを特徴とする。That is, the porous body of the present invention is a porous body of a metal oxide used for an air electrode of a fuel cell, which is La
2 O 3 , SrCO 3 , and Mn 2 O 3 powders were mixed and then calcined, and then sparingly soluble starch was added in the range of 2.5 to 15% by weight, mixed, and then calcined. LaMn
It is characterized by having an O 3 based crystal structure.
【0010】前記難溶性澱粉の添加量が2.5重量%未
満であるときには、燃料電池の空気極における反応に使
用される酸素量に対して十分な量の空気を供給できる通
気度が得られない。また、前記難溶性澱粉の添加量が1
5重量%を超えると、得られる多孔質体の電導率が急峻
に低下し、燃料電池の空気極として使用することが困難
になる。When the amount of the sparingly soluble starch added is less than 2.5% by weight, the air permeability is sufficient to supply a sufficient amount of air with respect to the amount of oxygen used for the reaction in the air electrode of the fuel cell. Absent. Further, the addition amount of the hardly soluble starch is 1
When it exceeds 5% by weight, the electric conductivity of the obtained porous body is sharply lowered, and it becomes difficult to use it as an air electrode of a fuel cell.
【0011】前記難溶性澱粉は、前記多孔質体に燃料電
池の空気極における反応に使用される酸素量に対して十
分な量の空気を供給できる通気度を付与するために、そ
の平均粒子径が5〜20μmの範囲にあることが好まし
い。The poorly soluble starch has an average particle diameter in order to provide the porous body with air permeability capable of supplying a sufficient amount of air with respect to the amount of oxygen used for the reaction in the air electrode of the fuel cell. Is preferably in the range of 5 to 20 μm.
【0012】前記難溶性澱粉としては、ポテトスター
チ、小麦スターチ、コーンスターチ等の澱粉を挙げるこ
とができるが、前記範囲の平均粒子径を有するものが容
易に得られることから、コーンスターチであることが好
ましい。[0012] Examples of the sparingly soluble starch include starch such as potato starch, wheat starch, corn starch and the like, and corn starch is preferred because those having an average particle size within the above range can be easily obtained. .
【0013】[0013]
【作用】かかる手段によれば、La2 O3 、SrC
O3 、Mn2 O3 の粉末を混合したのち仮焼して得られ
た粉末に、難溶性澱粉を2.5〜15重量%の範囲で添
加、混合したのち焼成することにより、LaMnO3 系
結晶構造を有する金属酸化物に、該金属酸化物の表面に
開口部を有し互いに連続している気孔が形成され、多孔
質性が付与される。このような気孔は互いに連続してい
るので、前記多孔質体は燃料電池の空気極における反応
に使用される酸素量に対して十分な量の空気を供給でき
る通気度が得られる。According to such means, La 2 O 3 , SrC
A powder of O 3 and Mn 2 O 3 was mixed and then calcined to obtain a powder of sparingly soluble starch in the range of 2.5 to 15 wt%, mixed and baked to obtain a LaMnO 3 system. In the metal oxide having a crystal structure, continuous pores having openings on the surface of the metal oxide are formed, and porosity is imparted. Since such pores are continuous with each other, the porous body has an air permeability capable of supplying a sufficient amount of air with respect to the amount of oxygen used for the reaction in the air electrode of the fuel cell.
【0014】前記難溶性澱粉の平均粒子径が5〜20μ
mの範囲にあることにより、前記多孔質体に前記燃料電
池の空気極に好適な通気度が付与される。The average particle size of the poorly soluble starch is 5 to 20 μm.
Within the range of m, the porous body is provided with the air permeability suitable for the air electrode of the fuel cell.
【0015】また、前記難溶性澱粉としてコーンスター
チを用いることにより、前記範囲の平均粒子径が容易に
得られる。By using cornstarch as the sparingly soluble starch, the average particle size in the above range can be easily obtained.
【0016】[0016]
【実施例】次に、添付の図面を参照しながら本発明の多
孔質体についてさらに詳しく説明する。図1は本実施例
の各試料を焼成する際の熱履歴を示すグラフであり、図
2は本実施例で得られた各多孔質体のコーンスターチ添
加量と気孔率との関係を示すグラフであり、図3は本実
施例で得られた各多孔質体の気孔率と電導率との関係を
示すグラフである。The porous material of the present invention will now be described in more detail with reference to the accompanying drawings. FIG. 1 is a graph showing the thermal history when firing each sample of this example, and FIG. 2 is a graph showing the relationship between the amount of corn starch added and the porosity of each porous body obtained in this example. FIG. 3 is a graph showing the relationship between the porosity and the electrical conductivity of each porous body obtained in this example.
【0017】本実施例では、高温固体電解質型燃料電池
の空気極に用いられる多孔質体を次のようにして製造し
た。In this example, a porous body used for the air electrode of a high temperature solid oxide fuel cell was manufactured as follows.
【0018】まず、La2 O3 (ナカライテスク社
製)、SrCO3 (ナカライテスク社製)、Mn2 O3
(アルファプロダクツ社製)の粉末を化学量論的にLa
0.7 Sr 0.3 MnO3 の組成になるように混合し、さら
に水及び分散剤(中京油脂社製PAA、商品名:セルナ
#D305)を添加して攪拌混合したのち、1000℃
で36時間仮焼した。First, La2O3(Nacalai Tesque, Inc.
Made), SrCO3(Made by Nakarai Tesque), Mn2O3
(Alpha Products Co.) powder is stoichiometrically La
0.7Sr 0.3MnO3Mix to obtain the composition of
Water and dispersant (PAA manufactured by Chukyo Yushi Co., Ltd., trade name: Serna
Add # D305) and stir to mix, then 1000 ℃
It was calcined for 36 hours.
【0019】得られた粉末をボールミルで1時間湿式混
合したのち、平均粒子径5〜20μmのコーンスターチ
(和光純薬工業社製)を、該粉末に対してそれぞれ0重
量%、10重量%、15重量%、20重量%、25重量
%、30重量%添加し、6種の試料を準備した。The obtained powders were wet mixed in a ball mill for 1 hour, and cornstarch (manufactured by Wako Pure Chemical Industries, Ltd.) having an average particle diameter of 5 to 20 μm was added to the powders in an amount of 0% by weight, 10% by weight and 15% by weight, respectively. %, 20% by weight, 25% by weight and 30% by weight were added to prepare 6 kinds of samples.
【0020】次に、各試料をさらにボールミルで1時間
湿式混合した後、2000rpm、30分の遠心分離に
かけ、110℃で24時間減圧乾燥した。乾燥後の試料
を馬脳乳鉢で粉砕、混合し、一軸油圧プレスでタブレッ
ト型に成形した。Next, each sample was further wet-mixed in a ball mill for 1 hour, centrifuged at 2000 rpm for 30 minutes, and dried under reduced pressure at 110 ° C. for 24 hours. The dried sample was crushed and mixed in a horse mortar and shaped into a tablet by a uniaxial hydraulic press.
【0021】次に、前記のように成形された各試料を焼
成し、成形体を得た。前記焼成は、図1示のように、室
温から100℃まで2時間かけて昇温したのち、さらに
500℃まで20時間かけて昇温し、500℃に5時間
維持して脱脂を行った。次いで、500℃から1300
℃まで5時間かけて昇温したのち、1300℃に10時
間維持して本焼を行い、そののち5時間かけて室温まで
冷却して、金属酸化物多孔質体の成形体を得た。前記各
試料の多孔質体を粉砕し、X線回折により結晶構造を調
べたところ、LaMnO3 系結晶構造を有し、その組成
はLaMnO3. 15で表されることが判明した。Next, each sample molded as described above was fired to obtain a molded body. In the firing, as shown in FIG. 1, the temperature was raised from room temperature to 100 ° C. over 2 hours, further increased to 500 ° C. over 20 hours, and maintained at 500 ° C. for 5 hours for degreasing. Then from 500 ℃ to 1300
The temperature was raised to 5 ° C. over 5 hours, the temperature was maintained at 1300 ° C. for 10 hours for main firing, and then the temperature was cooled down to room temperature over 5 hours to obtain a metal oxide porous body. The grinding the porous body of each sample was examined crystal structure by X-ray diffraction, has a LaMnO 3 based crystal structure, the composition was found to be expressed in LaMnO 3. 15.
【0022】前記各試料のコーンスターチ添加量と気孔
率との関係を図2に、前記各試料の気孔率と導電率との
関係を図3に示す。The relationship between the amount of corn starch added and the porosity of each sample is shown in FIG. 2, and the relationship between the porosity and the conductivity of each sample is shown in FIG.
【0023】高温固体電解質型燃料電池の空気極では、
反応に使用される酸素量に対して十分な量の空気を供給
できる通気度を確保するために、前記気孔率は5%以上
であることが必要とされるが、図2から、コーンスター
チ添加量が2.5重量%未満であるときには前記気孔率
が5%に達しないことが明らかである。At the air electrode of the high temperature solid oxide fuel cell,
The porosity is required to be 5% or more in order to secure the air permeability capable of supplying a sufficient amount of air with respect to the amount of oxygen used in the reaction. It is clear that the porosity does not reach 5% when is less than 2.5% by weight.
【0024】また、図3から、前記気孔率が36%を超
えると、前記多孔質の電導率が急峻に低下することが明
らかである。前記気孔率が36%となるのは、コーンス
ターチ添加量が15重量%であるときに相当する。Further, it is clear from FIG. 3 that when the porosity exceeds 36%, the electrical conductivity of the porous material sharply decreases. The porosity of 36% corresponds to an amount of corn starch added of 15% by weight.
【0025】[0025]
【発明の効果】以上のことから明らかなように、本発明
によれば、La2 O3 、SrCO3 、Mn2 O3 の粉末
を混合したのち仮焼して得られた粉末に、難溶性澱粉を
2.5〜15重量%の範囲で混合することにより、La
MnO3 系結晶構造を有する金属酸化物に多孔性を付与
することができ、燃料電池の空気極に適した通気度を有
する金属酸化物の多孔質体を得ることができる。As is apparent from the above, according to the present invention, the powder obtained by mixing the powders of La 2 O 3 , SrCO 3 , and Mn 2 O 3 and then calcining the mixture is hardly soluble. By mixing the starch in the range of 2.5 to 15% by weight, the La
It is possible to impart porosity to a metal oxide having a MnO 3 type crystal structure, and to obtain a metal oxide porous body having an air permeability suitable for an air electrode of a fuel cell.
【0026】前記難溶性澱粉は平均粒子径5〜20μm
の範囲にあることにより、前記通気度を容易に得ること
ができる。また、前記難溶性澱粉としてコーンスターチ
を用いることにより、前記範囲の平均粒子径を容易に得
ることができる。The sparingly soluble starch has an average particle size of 5 to 20 μm.
Within the range, the air permeability can be easily obtained. Further, by using cornstarch as the sparingly soluble starch, the average particle size in the above range can be easily obtained.
【図1】本発明の多孔質体を焼成する際の熱履歴の一例
を示すグラフ。FIG. 1 is a graph showing an example of heat history when firing a porous body of the present invention.
【図2】本実施例で得られた各多孔質体のコーンスター
チ添加量と気孔率との関係を示すグラフ。FIG. 2 is a graph showing the relationship between the amount of corn starch added and the porosity of each porous body obtained in this example.
【図3】本実施例で得られた各多孔質体の気孔率と電導
率との関係を示すグラフ。FIG. 3 is a graph showing the relationship between the porosity and the electrical conductivity of each porous body obtained in this example.
【図4】従来の燃料電池の一構成例を示す説明的断面
図。FIG. 4 is an explanatory cross-sectional view showing a configuration example of a conventional fuel cell.
1…固体電解質膜、 2…多孔性の空気極、 3…燃料
極。1 ... Solid electrolyte membrane, 2 ... Porous air electrode, 3 ... Fuel electrode.
Claims (3)
の多孔質体であって、 La2 O3 、SrCO3 、Mn2 O3 の粉末を混合した
のち仮焼して得られた粉末に、難溶性澱粉を2.5〜1
5重量%の範囲で添加、混合したのち焼成してなりLa
MnO3 系結晶構造を有することを特徴とする多孔質
体。1. A porous metal oxide body used for an air electrode of a fuel cell, which is obtained by mixing powders of La 2 O 3 , SrCO 3 , and Mn 2 O 3 and then calcining the mixture. And the sparingly soluble starch is 2.5 to 1
It is made by adding and mixing in the range of 5% by weight and then firing it to obtain La.
A porous body having a MnO 3 system crystal structure.
mの範囲にあることを特徴とする請求項1記載の多孔質
体。2. The average particle size of the sparingly soluble starch is 5 to 20 μm.
The porous body according to claim 1, which is in the range of m.
とを特徴とする請求項1記載の多孔質体。3. The porous body according to claim 1, wherein the poorly soluble starch is corn starch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5221935A JP2774436B2 (en) | 1993-09-07 | 1993-09-07 | Porous body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5221935A JP2774436B2 (en) | 1993-09-07 | 1993-09-07 | Porous body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0778616A true JPH0778616A (en) | 1995-03-20 |
JP2774436B2 JP2774436B2 (en) | 1998-07-09 |
Family
ID=16774469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5221935A Expired - Fee Related JP2774436B2 (en) | 1993-09-07 | 1993-09-07 | Porous body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2774436B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6528345B1 (en) | 1999-03-03 | 2003-03-04 | Intel Corporation | Process line for underfilling a controlled collapse |
US7141448B2 (en) | 1999-03-03 | 2006-11-28 | Intel Corporation | Controlled collapse chip connection (C4) integrated circuit package which has two dissimilar underfill materials |
RU2570509C1 (en) * | 2014-11-27 | 2015-12-10 | Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук | Method of production of thin-film solid electrolyte for electrochemical devices |
JP2019199367A (en) * | 2018-05-14 | 2019-11-21 | 国立研究開発法人物質・材料研究機構 | Porous ceramic sintered body, method for producing the same and application using the same |
US11677080B2 (en) | 2017-03-31 | 2023-06-13 | Osaka Gas Co., Ltd. | Electrochemical element, electrochemical module, solid oxide fuel cell and manufacturing method |
-
1993
- 1993-09-07 JP JP5221935A patent/JP2774436B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6528345B1 (en) | 1999-03-03 | 2003-03-04 | Intel Corporation | Process line for underfilling a controlled collapse |
US7141448B2 (en) | 1999-03-03 | 2006-11-28 | Intel Corporation | Controlled collapse chip connection (C4) integrated circuit package which has two dissimilar underfill materials |
RU2570509C1 (en) * | 2014-11-27 | 2015-12-10 | Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук | Method of production of thin-film solid electrolyte for electrochemical devices |
US11677080B2 (en) | 2017-03-31 | 2023-06-13 | Osaka Gas Co., Ltd. | Electrochemical element, electrochemical module, solid oxide fuel cell and manufacturing method |
JP2019199367A (en) * | 2018-05-14 | 2019-11-21 | 国立研究開発法人物質・材料研究機構 | Porous ceramic sintered body, method for producing the same and application using the same |
JP2023009089A (en) * | 2018-05-14 | 2023-01-19 | 国立研究開発法人物質・材料研究機構 | Porous ceramic sintered body and use therewith |
Also Published As
Publication number | Publication date |
---|---|
JP2774436B2 (en) | 1998-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sammes et al. | Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials | |
Horita et al. | Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte | |
US4931214A (en) | Oxidic bodies with ionic and electronic conductivity | |
EP0469831B1 (en) | A thin tubular self-supporting electrode for solid oxide electrolyte electrochemical cells | |
JP5163122B2 (en) | Nickel oxide powder material for solid oxide fuel cell, method for producing the same, raw material composition used therefor, and fuel electrode material using the same | |
CZ275498A3 (en) | Cheap stable material of air electrodes for high-temperature electrochemical cells with electrolyte of solid oxide | |
JPH06124711A (en) | Ceramic electrode material | |
WO2011081417A2 (en) | Composite ceramic material and a production method therefor | |
Murphy et al. | Tape casting of lanthanum chromite | |
JP2004503054A (en) | Method for producing electrode having temperature stable conductivity | |
US5227258A (en) | Fuel electrodes for solid oxide fuel cells and production thereof | |
AU5225998A (en) | Lamo3 type composition, m being aluminium, gallium or indium, in powder or sintered form, method of preparation and use as conductor of oxygen | |
JPH0778616A (en) | Porous body | |
JP2004339035A (en) | Lanthanum gallate sintered compact, method for producing the same, and use of the same | |
JP4784197B2 (en) | Nickel oxide powder and anode material for anode material of solid oxide fuel cell | |
JP3134882B2 (en) | Lanthanum chromite complex oxides and applications | |
JPH076622A (en) | Crystal phase stabilized solid electrolyte material | |
JP4889166B2 (en) | Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same | |
JP2836852B2 (en) | Solid oxide fuel cell separator | |
JP2007311060A (en) | Nickel oxide powder composition for solid oxide fuel cell, its manufacturing method, and fuel electrode material using it | |
JPH0437646A (en) | Production of zirconia ceramics film and its calcination method as well as zirconia conductive ceramics produced by this method and solid electrolyte fuel battery utilizing this ceramics | |
Rozumek et al. | Study of the Solid State Reactions between (La, Sr)(Ga, Mg) O3 and (La, Sr) MnO3,(La, Ca) CrO3, and Ni | |
Liou | Microstructure development in (LaxSr1− x) MnO3 ceramics | |
KR101793365B1 (en) | Cathode based in perovskite for solid oxide fuel cell, manufacturing method thereof | |
KR101806441B1 (en) | Zirconia-bismuth oxide sintered compound and manufacturing methods thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |