JPH0778527A - Formation of thin film having preferential orientation therein - Google Patents

Formation of thin film having preferential orientation therein

Info

Publication number
JPH0778527A
JPH0778527A JP22567993A JP22567993A JPH0778527A JP H0778527 A JPH0778527 A JP H0778527A JP 22567993 A JP22567993 A JP 22567993A JP 22567993 A JP22567993 A JP 22567993A JP H0778527 A JPH0778527 A JP H0778527A
Authority
JP
Japan
Prior art keywords
thin film
substrate
plasma
forming
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22567993A
Other languages
Japanese (ja)
Inventor
Masayuki Kamei
雅之 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AG Technology Co Ltd
Original Assignee
AG Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AG Technology Co Ltd filed Critical AG Technology Co Ltd
Priority to JP22567993A priority Critical patent/JPH0778527A/en
Publication of JPH0778527A publication Critical patent/JPH0778527A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To form a thin film with preferential orientation in the surface on a substrate by generating plasma with specifically high density near the substrate on which a thin film is to be formed and forming a thin film while ionization ratio of particles being heightened. CONSTITUTION:A magnetic field is generated in the axial direction of a plasma gun 1 by a hollow coil 2 and an evaporation raw material 3 and an evaporation raw material hearth 4 are set on the opposite to the objective substrate with the axial of the plasma gun 1 as a center. Voltage is so applied to the plasma gun 1 as to make the hearth work as a positive pole to the plasma gun 1 by a plasma gun electric power source 7 and high density plasma with 10<9>/cm<3> plasma density is generated, the plasma is curved toward the hearth 4 on which a magnetic field with 5 gauss or higher is generated by a magnet 5, the evaporation raw material 3 is heated and evaporated, and thus a thin film is formed on the substrate 6 while the ionization ratio of particles to compose the thin film being heightened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエレクトロニクス等の分
野において不可欠な技術である薄膜の作成方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film, which is an indispensable technique in the field of electronics and the like.

【0002】[0002]

【従来の技術】薄膜の作成方法としては蒸着法、スパッ
タリング法、CVD法などが知られており、広く用いら
れている。ところがこれらの手法を用いて、多結晶ある
いは非晶質(ガラスなど)の基板上に薄膜を形成した場
合、薄膜の結晶軸の基板面内の配向はランダムとなって
しまい、面内で優先配向した薄膜は得られなかった。
2. Description of the Related Art As a method for forming a thin film, vapor deposition, sputtering, CVD and the like are known and widely used. However, when a thin film is formed on a polycrystalline or amorphous (glass, etc.) substrate using these methods, the orientation of the crystal axes of the thin film in the plane of the substrate becomes random, and the preferred orientation in the plane. No thin film was obtained.

【0003】[0003]

【発明が解決しようとする課題】薄膜の電気特性等を使
用することを目的とする場合、薄膜の結晶がランダムな
配向を示していた場合、この結晶方位の乱れにより理想
的な単結晶の場合に比べて電気特性が劣化(特に電子の
移動度が低下)することが示されている。また電気特性
等に面内で異方性を持たせて使用することが必要な場
合、面内で薄膜に優先配向方向を持たせることが不可欠
であるが、従来の成膜方法では非晶質や多結晶の基板上
に面内優先配向を持つ薄膜を形成することは不可能であ
った。本発明の課題は非晶質や多結晶の基板上に面内優
先配向を持つ薄膜を形成して上記の問題を解決すること
である。
In order to use the electrical characteristics of a thin film, when the crystal of the thin film shows a random orientation, in the case of an ideal single crystal due to the disorder of the crystal orientation. It is shown that the electrical characteristics are deteriorated (especially, the mobility of electrons is lowered) compared with the above. When it is necessary to use in-plane anisotropy in electrical properties, it is indispensable to give the thin film a preferred orientation direction in the plane. It was impossible to form a thin film with in-plane preferred orientation on a polycrystalline substrate. An object of the present invention is to solve the above problems by forming a thin film having an in-plane preferential orientation on an amorphous or polycrystalline substrate.

【0004】[0004]

【課題を解決するための手段】即ち、本発明は、プラズ
マ密度が109 /cm3 以上の高密度プラズマを、薄膜
を形成する基体近傍に形成し、薄膜となる粒子のイオン
化率を高めて成膜を行うことを特徴とする面内に優先配
向を有する薄膜の作成方法、薄膜を形成する基体近傍に
5gauss以上の磁場を形成して成膜を行うことを特
徴とする面内に優先配向を有する薄膜の作成方法、およ
び、プラズマ密度が109 /cm3 以上の高密度プラズ
マを、薄膜を形成する基体近傍に形成し、薄膜となる粒
子のイオン化率を高め、かつ、薄膜を形成する基体近傍
に5gauss以上の磁場を形成して、成膜を行うこと
を特徴とする面内に優先配向を有する薄膜の作成方法を
提供するものである。
That is, according to the present invention, high-density plasma having a plasma density of 10 9 / cm 3 or more is formed in the vicinity of a substrate on which a thin film is formed, and the ionization rate of particles forming the thin film is increased. Method for forming a thin film having in-plane preferential orientation characterized by film formation, preferential orientation in-plane characterized by forming a magnetic field of 5 gauss or more in the vicinity of a substrate on which the thin film is formed And a high-density plasma having a plasma density of 10 9 / cm 3 or more in the vicinity of a substrate on which a thin film is formed to increase the ionization rate of particles forming the thin film and form the thin film. The present invention provides a method for forming a thin film having in-plane preferential orientation characterized by forming a film by forming a magnetic field of 5 gauss or more in the vicinity of a substrate.

【0005】本発明は成膜に高密度のプラズマを用いる
こと、かつ/または磁場を適当な方向へ印加すること
で、作成する薄膜を基板面内に優先配向方向を持たせ、
目的を達成することができる。また蒸着(イオンプレー
ティングを含む)、スパッタリング、CVD法と行った
成膜手法を問わず、上記の条件で面内優先配向膜を得る
ことができる。
The present invention uses a high density plasma for film formation and / or applies a magnetic field in an appropriate direction to give a thin film to be formed a preferred orientation direction in the plane of the substrate,
The purpose can be achieved. In addition, the in-plane preferential alignment film can be obtained under the above conditions regardless of the film forming method such as vapor deposition (including ion plating), sputtering, and CVD method.

【0006】薄膜と形成する粒子のイオン化率を充分に
高めるために、プラズマ密度は109 /cm3 以上、更
に好ましくは1010/cm3 以上であることが望まし
い。また、基体近傍に形成する磁場としては、作成する
薄膜の配向の方向を揃えるために、5gauss以上で
あることが好ましい。磁場強度の上限としては、100
00gauss程度であれば、かかる目的を達成するた
めには充分である。
It is desirable that the plasma density is 10 9 / cm 3 or more, more preferably 10 10 / cm 3 or more, in order to sufficiently increase the ionization rate of the particles formed with the thin film. The magnetic field formed in the vicinity of the substrate is preferably 5 gauss or more in order to align the orientation directions of the thin film to be formed. The upper limit of the magnetic field strength is 100
If it is about 00 gauss, it is sufficient to achieve such an object.

【0007】図1は本発明を行うための装置の一例であ
る蒸着装置の概念的断面図である。1はプラズマガン、
3は蒸着原料(以下単に原料ともいう)、4は蒸着原料
3を保持し、電子ビームの一方の電極として機能する蒸
着原料ハース(以下単に原料ハース、あるいはハースと
もいう)、6は薄膜を形成する基体である。
FIG. 1 is a conceptual sectional view of a vapor deposition apparatus which is an example of an apparatus for carrying out the present invention. 1 is a plasma gun,
Reference numeral 3 denotes a vapor deposition material (hereinafter also simply referred to as a raw material), 4 denotes a vapor deposition raw material hearth (hereinafter also simply referred to as a raw material hearth) which holds the vapor deposition raw material 3 and functions as one electrode of an electron beam, and 6 forms a thin film. It is a substrate to be.

【0008】本発明に用いられる高密度のプラズマの供
給源としては、非常に密度の高い電子ビーム、およびプ
ラズマを容易に供給できるアーク放電型の高密度プラズ
マガン1を用いるのが好ましい。かかるアーク放電型プ
ラズマガン1としては、複合陰極型プラズマ発生装置、
または、圧力勾配型プラズマ発生装置、または、両者を
組み合わせたプラズマ発生装置が好ましい。このような
プラズマ発生装置については、「真空」、第25巻、第
10号(1982年発行)に記載されている。
As a high-density plasma supply source used in the present invention, it is preferable to use an arc discharge high-density plasma gun 1 capable of easily supplying a very high-density electron beam and plasma. The arc discharge type plasma gun 1 includes a compound cathode type plasma generator,
Alternatively, a pressure gradient type plasma generator or a plasma generator in which both are combined is preferable. Such a plasma generator is described in "Vacuum", Vol. 25, No. 10 (published in 1982).

【0009】複合陰極型プラズマ発生装置とは、熱容量
の小さい補助陰極とLaB6 からなる主陰極とを有し、
該補助陰極に初期放電を集中させ、短時間で加熱し、そ
れを利用して主陰極LaB6 を加熱し、主陰極LaB6
が最終陰極としてアーク放電を行うようにしたプラズマ
発生装置である。例えば、図2のような装置が挙げられ
る。
The composite cathode type plasma generator has an auxiliary cathode having a small heat capacity and a main cathode made of LaB 6 ,
The initial discharge is concentrated on the auxiliary cathode and heated in a short time, and the main cathode LaB 6 is heated by using it to heat the main cathode LaB 6
Is a plasma generator that performs arc discharge as the final cathode. For example, a device as shown in FIG.

【0010】補助陰極52としては、W、Ta、Moな
どの高融点金属のコイル、またはパイプ状のものが挙げ
られる。53は陰極を保護するためのW等からなる円
板、54はMo等からなる円筒、55はMo等からなる
円板状の熱シールド、56は冷却水、57はステンレス
等からなる陰極支持台、58はガス導入口である。
As the auxiliary cathode 52, a coil of a refractory metal such as W, Ta or Mo, or a pipe-shaped one can be used. Reference numeral 53 is a disk made of W or the like for protecting the cathode, 54 is a cylinder made of Mo or the like, 55 is a disk-shaped heat shield made of Mo or the like, 56 is cooling water, and 57 is a cathode support base made of stainless steel or the like. , 58 are gas inlets.

【0011】このような複合陰極型プラズマ発生装置に
おいては、熱容量の小さな補助陰極52を集中的に初期
放電で加熱し、初期陰極として動作させ、間接的にLa
6の主陰極51を加熱し、最終的にはLaB6 の主陰
極51によるアーク放電へと移行させる方式であるの
で、補助陰極52が2500℃以上の高温になって寿命
に影響する以前にLaB6 の主陰極51が1500℃〜
1800℃に加熱され、大電子ビームが放出可能とな
り、補助陰極52のそれ以上の温度上昇が避けられると
いう点が大きな利点である。
In such a compound cathode type plasma generator, the auxiliary cathode 52 having a small heat capacity is intensively heated by the initial discharge to operate as the initial cathode and indirectly La.
Before the auxiliary cathode 52 reaches a high temperature of 2500 ° C. or higher and affects its life, it is a method of heating the B 6 main cathode 51 and finally shifting to arc discharge by the LaB 6 main cathode 51. The main cathode 51 of LaB 6 is 1500 ° C-
It is a great advantage that it is heated to 1800 ° C., a large electron beam can be emitted, and a further temperature rise of the auxiliary cathode 52 can be avoided.

【0012】また、圧力勾配型プラズマ発生装置とは、
陰極と陽極の間に中間電極を介在させ、陰極領域を数T
orr程度に、そして陽極領域を10-3Torr程度に
保って放電を行うものであり、陽極領域からのイオンの
逆流による陰極の損傷がない上に、中間電極のない放電
形式のものと比較して、放電電子ビームをつくりだすた
めのキャリアガスのガス効率が極めて高く、大電流放電
が可能であるという利点を有している。
The pressure gradient type plasma generator is
An intermediate electrode is interposed between the cathode and the anode, and the cathode area is several Ts.
The discharge is carried out at about orr and the anode region is maintained at about 10 -3 Torr, and there is no damage to the cathode due to backflow of ions from the anode region, and in comparison with the discharge type without intermediate electrode. In addition, the gas efficiency of the carrier gas for producing the discharge electron beam is extremely high, and there is an advantage that a large current discharge is possible.

【0013】複合陰極型プラズマ発生装置と圧力勾配型
プラズマ発生装置とは、それぞれ上記のような利点を有
しており、両者を組み合わせたプラズマ発生装置、すな
わち、陰極として複合陰極を用いると共に中間電極も配
したプラズマ発生装置は、上記利点を同時に得ることが
できるので本発明に用いるアーク放電型プラズマガン1
として大変好ましい。
The composite cathode type plasma generator and the pressure gradient type plasma generator have the above-mentioned advantages, respectively. A plasma generator in which both are combined, that is, a composite cathode is used as a cathode and an intermediate electrode is used. Since the plasma generator having the above arrangement can also obtain the above advantages at the same time, the arc discharge type plasma gun 1 used in the present invention is also provided.
Is very preferable as

【0014】次に、図1を参照しながら蒸着室10の構
成を説明する。空心コイル2によって、プラズマガンの
軸方向に磁場を形成し、その際形成する磁場の向きはガ
ンの出力方向とする。さらに、プラズマガンの軸を中心
とし目的とする基体6と反対側に蒸着原料3と蒸着原料
ハース4を配置する。
Next, the structure of the vapor deposition chamber 10 will be described with reference to FIG. A magnetic field is formed in the axial direction of the plasma gun by the air-core coil 2, and the direction of the magnetic field formed at that time is the output direction of the gun. Further, the vapor deposition raw material 3 and the vapor deposition raw material hearth 4 are arranged on the side opposite to the target substrate 6 with the axis of the plasma gun as the center.

【0015】また、電子ビーム成分を含んだ高密度プラ
ズマ9をハース4方向に曲げる目的で蒸着ハース4の直
下に磁石5を配置する。この場合、プラズマガン1から
出た磁力線がハース4上に効率よく収束させるために、
ハース4側からS極、N極となるように磁石5を配置
し、プラズマガン1に対してハース4が陽極になるよう
にプラズマガン電源7により電圧を印加して、プラズマ
流の中の主に電子ビームによって蒸着原料3を加熱蒸発
させる。また、薄膜を形成する基体6はハース4と対向
するように配置する。このとき、基体6を加熱ヒーター
11によって加熱してもよく、また、基体バイアス電源
12により、直流、あるいはRF電圧を印加してもよ
い。反応性蒸着を行う場合は反応ガス13を導入する。
A magnet 5 is arranged immediately below the vapor deposition hearth 4 for the purpose of bending the high-density plasma 9 containing the electron beam component in the direction of the hearth 4. In this case, in order for the magnetic field lines emitted from the plasma gun 1 to efficiently converge on the hearth 4,
The magnets 5 are arranged so that the hearth 4 becomes the S pole and the N pole from the side of the hearth 4, and a voltage is applied from the plasma gun power source 7 so that the hearth 4 becomes the anode with respect to the plasma gun 1 and the The vapor deposition material 3 is heated and evaporated by the electron beam. Further, the substrate 6 forming the thin film is arranged so as to face the hearth 4. At this time, the substrate 6 may be heated by the heater 11, and the substrate bias power supply 12 may apply a DC or RF voltage. When performing the reactive deposition, the reaction gas 13 is introduced.

【0016】[0016]

【作用】本発明において高密度のプラズマは蒸着粒子の
イオン化率を上昇させることで本来配向しない方向への
ITO膜の配向を可能とし、磁場はその配向の方向を一
方向に揃える作用を持つものと考えられる。
In the present invention, the high-density plasma increases the ionization rate of vapor deposition particles to allow the ITO film to be oriented in a direction not originally oriented, and the magnetic field has a function of aligning the orientation direction in one direction. it is conceivable that.

【0017】[0017]

【実施例】図1のような装置を用い高密度のプラズマビ
ームによりIn23 (7wt%以上のSnO2 を含
む)の原料を加熱し、蒸発させることでガラス基板上に
透明電導膜(ITO)を作成した。その際100Gの磁
場を基板に平行に印加した。基板温度200℃、酸素分
圧1mTorrの条件でITO膜を作成した。プラズマ
の密度は基板近傍において約109 /cm3 であった。
このITO膜の面内での優先配向方向を調べるためX線
極図形法(Pole figure法、斜線部分方向への回折強度が
高いことを示す) による評価を行った。
[Example] Using a device as shown in FIG. 1, a raw material of In 2 O 3 (containing 7 wt% or more of SnO 2 ) is heated by a high-density plasma beam and evaporated to form a transparent conductive film ( ITO) was prepared. At that time, a magnetic field of 100 G was applied parallel to the substrate. An ITO film was formed under the conditions of a substrate temperature of 200 ° C. and an oxygen partial pressure of 1 mTorr. The plasma density was about 10 9 / cm 3 near the substrate.
In order to investigate the preferential in-plane orientation direction of this ITO film, evaluation was performed by the X-ray polar figure method (Pole figure method, which shows that the diffraction intensity in the shaded direction is high).

【0018】図3にこの膜の結晶の(222)面につい
ての極図形を示す。図形は点状となりこの膜が面内に優
先配向を有していることを示している。このことを反映
してこの膜の電気特性は比抵抗1.74×10-4Ω・c
m(移動度41.0cm2 /Vsec. )と優れたもの
であった。
FIG. 3 shows a polar diagram of the (222) plane of the crystal of this film. The figure becomes dot-like, indicating that this film has in-plane preferred orientation. Reflecting this, the electric characteristics of this film have a specific resistance of 1.74 × 10 −4 Ω · c.
m (mobility 41.0 cm 2 / Vsec.) was excellent.

【0019】[0019]

【比較例】比較のために通常のスパッタリング法(基板
温度300℃、酸素分圧2mTorr)を用いて成膜し
たITO膜の(222)面についての極図形を図4に示
す。プラズマ密度は基板近傍で107 /cm3 以下であ
り、基板への磁場の印加は行わなかった。基板とITO
原料は実施例と同じものを用いた。極図形はリング状と
なり、この膜が面内配向を持たないことを示している。
また膜の電気特性も比抵抗2.0×10-4Ω・cm(移
動度38cm2 /Vsec. )と面内配向を有するもの
より劣っていることがわかる。
[Comparative Example] For comparison, FIG. 4 shows a polar diagram of the (222) plane of the ITO film formed by the ordinary sputtering method (substrate temperature 300 ° C., oxygen partial pressure 2 mTorr). The plasma density was 10 7 / cm 3 or less near the substrate, and no magnetic field was applied to the substrate. Substrate and ITO
The same raw material as that used in the example was used. The polar figure is ring-shaped, indicating that this film has no in-plane orientation.
Also, it is understood that the electrical characteristics of the film are inferior to those having the in-plane orientation with the specific resistance of 2.0 × 10 −4 Ω · cm (mobility 38 cm 2 / Vsec.

【0020】[0020]

【発明の効果】本発明を適用することで、従来不可能で
あった非晶質、あるいは多結晶の基板上に面内に優先配
向した薄膜を形成することが可能になる。このことによ
って、膜の電気特性、機械特性などが改善され、かつ特
性に異方性を持たせることができる。
EFFECTS OF THE INVENTION By applying the present invention, it becomes possible to form an in-plane preferentially oriented thin film on an amorphous or polycrystalline substrate which has been impossible in the past. As a result, the electrical properties and mechanical properties of the film are improved, and the properties can be made anisotropic.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いる装置の一例である蒸着装置の概
念的断面図
FIG. 1 is a conceptual cross-sectional view of a vapor deposition apparatus which is an example of an apparatus used in the present invention.

【図2】本発明で用いるアーク放電型プラズマガンの例
の断面図
FIG. 2 is a sectional view of an example of an arc discharge type plasma gun used in the present invention.

【図3】実施例のITO薄膜の(222)面についての
X線極図形
FIG. 3 is an X-ray polar diagram of the (222) plane of the ITO thin film of the example.

【図4】比較例で作成したITO薄膜のX線極図形FIG. 4 is an X-ray polar pattern of an ITO thin film prepared in a comparative example.

【符号の説明】[Explanation of symbols]

1:アーク放電型プラズマガン 2:空心コイル 3:蒸着原料 4:蒸着原料ハース 5:磁石 6:基体 7:プラズマガン電源 9:高密度プラズマ 10:蒸着室 11:基体加熱ヒーター 12:基体バイアス電源(直流、またはRF) 13:反応ガス導入口 51:LaB6 主陰極 52:Taパイプの補助陰極 53:陰極を保護するためのWからなる円盤 54:Moからなる円筒 55:Moからなる円盤状の熱シールド 56:冷却水 57:ステンレスからなる陰極支持台 58:ガス導入口1: Arc discharge type plasma gun 2: Air-core coil 3: Evaporation raw material 4: Evaporation raw material Hearth 5: Magnet 6: Substrate 7: Plasma gun power supply 9: High density plasma 10: Deposition chamber 11: Substrate heating power supply 12: Substrate bias power supply (DC or RF) 13: Reaction gas inlet 51: LaB 6 main cathode 52: Ta pipe auxiliary cathode 53: W disk for protecting the cathode 54: Mo cylinder 55: Mo disk Heat shield 56: Cooling water 57: Cathode support made of stainless steel 58: Gas inlet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】プラズマ密度が109 /cm3 以上の高密
度プラズマを、薄膜を形成する基体近傍に形成し、薄膜
となる粒子のイオン化率を高めて成膜を行うことを特徴
とする面内に優先配向を有する薄膜の作成方法。
1. A surface characterized in that high-density plasma having a plasma density of 10 9 / cm 3 or more is formed in the vicinity of a substrate on which a thin film is formed, and the ionization rate of particles forming the thin film is increased to form the film. A method for forming a thin film having a preferred orientation in the interior.
【請求項2】薄膜を形成する基体近傍に5gauss以
上の磁場を形成して成膜を行うことを特徴とする面内に
優先配向を有する薄膜の作成方法。
2. A method of forming a thin film having in-plane preferential orientation, which comprises forming a film by forming a magnetic field of 5 gauss or more in the vicinity of a substrate on which the thin film is formed.
【請求項3】プラズマ密度が109 /cm3 以上の高密
度プラズマを、薄膜を形成する基体近傍に形成し、薄膜
となる粒子のイオン化率を高め、かつ、薄膜を形成する
基体近傍に5gauss以上の磁場を形成して、成膜を
行うことを特徴とする面内に優先配向を有する薄膜の作
成方法。
3. A high density plasma having a plasma density of 10 9 / cm 3 or more is formed in the vicinity of a substrate on which a thin film is formed to increase the ionization rate of particles forming the thin film, and 5 gauss in the vicinity of the substrate on which the thin film is formed. A method for forming a thin film having in-plane preferential orientation, characterized by forming the above magnetic field to form a film.
【請求項4】基体と平行に磁場を形成することを特徴と
する請求項2または3の面内に優先配向を有する薄膜の
作成方法。
4. The method for producing a thin film having in-plane preferential orientation according to claim 2, wherein a magnetic field is formed parallel to the substrate.
【請求項5】面内に優先配向を有するITO膜を成膜す
ることを特徴とする請求項1〜4いずれか1項の面内に
優先配向を有する薄膜の作成方法。
5. The method for producing a thin film having in-plane preferential orientation according to claim 1, wherein an ITO film having in-plane preferential orientation is formed.
JP22567993A 1993-09-10 1993-09-10 Formation of thin film having preferential orientation therein Withdrawn JPH0778527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22567993A JPH0778527A (en) 1993-09-10 1993-09-10 Formation of thin film having preferential orientation therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22567993A JPH0778527A (en) 1993-09-10 1993-09-10 Formation of thin film having preferential orientation therein

Publications (1)

Publication Number Publication Date
JPH0778527A true JPH0778527A (en) 1995-03-20

Family

ID=16833091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22567993A Withdrawn JPH0778527A (en) 1993-09-10 1993-09-10 Formation of thin film having preferential orientation therein

Country Status (1)

Country Link
JP (1) JPH0778527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164817A (en) * 2004-12-09 2006-06-22 Central Glass Co Ltd Method of depositing ito transparent conductive film and color filter substrate with ito transparent conductive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164817A (en) * 2004-12-09 2006-06-22 Central Glass Co Ltd Method of depositing ito transparent conductive film and color filter substrate with ito transparent conductive film
JP4693401B2 (en) * 2004-12-09 2011-06-01 セントラル硝子株式会社 Method for forming ITO transparent conductive film and color filter substrate with ITO transparent conductive film

Similar Documents

Publication Publication Date Title
US4941915A (en) Thin film forming apparatus and ion source utilizing plasma sputtering
NL8600417A (en) METHOD FOR REACTIVELY VAPORATING LAYERS FROM OXIDES, NITRIDES, OXYNITRIDES AND CARBIDES
JP4240471B2 (en) Method for forming transparent conductive film
JPH11504751A (en) Boron nitride cold cathode
JPH02101160A (en) Ion plating method
JPH0778527A (en) Formation of thin film having preferential orientation therein
US4869835A (en) Ion source
JP3478561B2 (en) Sputter deposition method
JPH05295526A (en) Vapor deposition method and vapor deposition device
JPH0778514A (en) Ito thin film having prior orientation in base board surface
JPS6350463A (en) Method and apparatus for ion plating
JPH09125243A (en) Thin film forming device
JPH0273963A (en) Formation of thin film on low-temperature substrate
JPH0699799B2 (en) Vacuum deposition method
JPH0776770A (en) Vapor deposition device
JP3263499B2 (en) Method and apparatus for forming diamond-like film
JPH0361364A (en) Formation of thin film using sheet plasma
JPH031377B2 (en)
KR100223988B1 (en) Manufactruing method of diamond phase carbon filmed field emitter by plasma chemical deposition
JP3452458B2 (en) Thin film forming equipment
JPS6127464B2 (en)
JP3378626B2 (en) Method and apparatus for forming diamond-like film
JP3778501B2 (en) Sputtering apparatus and sputtering method
JPH0344463A (en) Formation of thin film utilizing sheet plasma
JPH0565632A (en) Apparatus for coating base with indium/tin oxide

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128