JPH0778213B2 - Joint sheet - Google Patents

Joint sheet

Info

Publication number
JPH0778213B2
JPH0778213B2 JP16215991A JP16215991A JPH0778213B2 JP H0778213 B2 JPH0778213 B2 JP H0778213B2 JP 16215991 A JP16215991 A JP 16215991A JP 16215991 A JP16215991 A JP 16215991A JP H0778213 B2 JPH0778213 B2 JP H0778213B2
Authority
JP
Japan
Prior art keywords
vulcanization
joint sheet
resistance
rubber
asbestos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16215991A
Other languages
Japanese (ja)
Other versions
JPH04359987A (en
Inventor
芦澤正明
渡辺祐司
中野光行
重留祥一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP16215991A priority Critical patent/JPH0778213B2/en
Publication of JPH04359987A publication Critical patent/JPH04359987A/en
Publication of JPH0778213B2 publication Critical patent/JPH0778213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ガスケット基材に用
いられるノンアスベストジョイントシート(以下NAジ
ョイントシートと略する)の耐熱性、耐水蒸気性の改良
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of heat resistance and steam resistance of a non-asbestos joint sheet (hereinafter abbreviated as NA joint sheet) used as a gasket base material.

【0002】[0002]

【従来の技術】従来、ジョイントシートとして石綿ジョ
イントシートが汎用され、石綿繊維の優れた耐熱性や耐
薬品性を利用して、水、油、空気、水蒸気などの輸送管
・機器用のガスケットが打ち抜き加工されてきた。とこ
ろが、石綿繊維は天然鉱物であり、資源の枯渇、採掘費
及び輸送費の高騰により入手が難しくなる状況にあり、
また石綿繊維が原因とされている健康障害が社会的問題
となって、世界的に石綿の使用が規制される傾向となっ
てきた。それらのことにより、最近では石綿繊維をまっ
たく使用せず、石綿以外の無機繊維と有機繊維の両方ま
たはいずれか一方を使用したジョイントシート(アスベ
ストフリージョイントシートまたはノンアスベストジョ
イントシートと呼ばれる)が使用されるようになってき
た。
2. Description of the Related Art Conventionally, asbestos joint sheets have been widely used as joint sheets, and by utilizing the excellent heat resistance and chemical resistance of asbestos fibers, gaskets for transportation pipes and equipment such as water, oil, air and water vapor can be used. It has been stamped. However, asbestos fiber is a natural mineral, and it is difficult to obtain it due to the depletion of resources, the rising cost of mining and transportation,
In addition, health problems caused by asbestos fibers have become a social problem, and the use of asbestos has been regulated worldwide. Because of these, recently, asbestos fibers are not used at all, and joint sheets (called asbestos-free joint sheets or non-asbestos joint sheets) that use inorganic fibers and / or organic fibers other than asbestos are used. It started to come.

【0003】そもそもジョイントシートの一般的な製造
方法は、まず繊維材料、充填材、ゴム薬品に、溶剤に膨
潤させたゴム(あるいは粉末ゴムまたはラテックスに溶
剤を加えたもの)を加えてヘンシェルミキサー等で十分
混練し、ジョイントシート形成用組成物を調製し、次い
でこの組成物を熱ロール( 150℃)と冷ロール(20℃)
とからなる一対のロール間に投入し、熱ロール側に積層
させながら溶剤の蒸発・加硫を行い、最後に積層したシ
ート状物を剥離することによって製造されてきた。製品
によっては、加硫を完全にするために、得られたシート
状物をさらにオートクレーブ等の中で二次加硫を行う場
合もあった。なお、構成材料としては、用途に応じ、上
記のもののほかカップリング剤・軟化剤・可塑剤・水膨
潤剤・油膨潤剤等の少量添加剤が配合され、保管・識別
の点から顔料が配合されているものも多い。
In the first place, a general method for producing a joint sheet is to first add a fiber material, a filler, and a rubber chemical to a rubber swollen with a solvent (or a powder rubber or latex with a solvent added), a Henschel mixer, or the like. Kneading thoroughly to prepare a composition for forming a joint sheet, and then applying this composition to a hot roll (150 ° C) and a cold roll (20 ° C)
It has been manufactured by putting it between a pair of rolls consisting of and, evaporating and vulcanizing the solvent while laminating it on the hot roll side, and finally peeling off the laminated sheet. Depending on the product, in order to complete the vulcanization, the obtained sheet-shaped material may be subjected to secondary vulcanization in an autoclave or the like. As constituent materials, in addition to the above, small amounts of additives such as coupling agents, softening agents, plasticizers, water swelling agents, oil swelling agents, etc. are blended according to the application, and pigments are blended from the viewpoint of storage and identification. There are many things that have been done.

【0004】さて、NAジョイントシートに用いられる
繊維材料は大まかに有機繊維と無機繊維(石綿繊維以外
の)に分けられる。有機繊維は繊維自体が比較的しなや
かであるとともにゴム材料とSP値(溶解度パラメータ
ー)が近似しているので、ゴム材料や充填材との間で絡
みや結合・接合を起こし易く補強効果が高い。特にアラ
ミド繊維をフィブリル化させたアラミドパルプ(商品
名、ケブラーパルプ)は、石綿繊維同様に繊維が枝分か
れしているためチョプド状のものに比べ表面積が大き
く、ゴム材料や充填材との絡みが非常に発達し、引張強
さ・耐フロー性等の特性が向上するが、石綿繊維に比べ
ると耐熱性、特に耐水蒸気性は著しく劣るという欠点が
見られる。一方、無機繊維の場合、有機繊維に比べて剛
直であるとともにSP値がバインダーであるゴム材料と
はなれているので、ゴム材料や充填材との絡みや接合・
結合性が乏しく、補強効果はあまり期待できないが、無
機繊維の剛直性により復元性や耐応力緩和性は良好であ
り、有機繊維に比べて耐熱性・耐水蒸気性も良好であ
る。このようなことを考慮して、NAジョイントシート
は、これら有機、無機の繊維材料を目的用途に応じ組み
合わせて使用される場合が多く、一部の性能では石綿ジ
ョイントシートのレベルに近づいてきたものの、なお引
張強さ・耐熱性・耐水蒸気性の点で石綿ジョイントシー
トより著しく劣るのが現状である。
The fiber material used for the NA joint sheet is roughly classified into organic fiber and inorganic fiber (other than asbestos fiber). Since the organic fiber is relatively flexible and the SP value (solubility parameter) is similar to that of the rubber material, the organic fiber is liable to be entangled, bonded or joined with the rubber material or the filler, and has a high reinforcing effect. In particular, aramid pulp made by fibrillating aramid fibers (trade name, Kevlar pulp) has a larger surface area than chopped ones because the fibers are branched like asbestos fibers, and entanglement with rubber materials and fillers is extremely high. The properties such as tensile strength and flow resistance are improved, but there is a defect that heat resistance, especially steam resistance is significantly inferior to that of asbestos fiber. On the other hand, inorganic fibers are more rigid than organic fibers and have a SP value different from that of a rubber material that is a binder. Therefore, entanglement or joining with rubber materials or fillers
Although the binding property is poor and the reinforcing effect cannot be expected so much, the resilience and stress relaxation resistance are good due to the rigidity of the inorganic fiber, and the heat resistance and steam resistance are also better than those of the organic fiber. In consideration of this, NA joint sheets are often used in combination with these organic and inorganic fiber materials according to the intended use, and although some performance has approached that of asbestos joint sheets. However, the present situation is that tensile strength, heat resistance, and steam resistance are significantly inferior to those of asbestos joint sheets.

【0005】また、石綿ジョイントシートとNAジョイ
ントシートの相違点として、石綿繊維使用の有無の他
に、ジョイントシート固形分に対する繊維材料の配合比
率の点に注目しなければならない。石綿ジョイントシー
トでは石綿繊維が60重量%以上の割合で使用される場合
が多いのに対し、NAジョイントシートでは繊維量が大
きくなるにしたがって、カレンダーロールにおけるシー
ティングが困難になる傾向があるので、繊維量は50重量
%以下にすることが多い。繊維量が少なくなった分は充
填材で補っており、石綿ジョイントシートの充填材配合
比率が 3〜40重量%であるのに対し、NAジョイントシ
ートのそれは50〜80重量%の範囲である。このこともN
Aジョイントシートが引張強さ・耐熱性・耐水蒸気性の
劣る原因となっている。
Further, as a difference between the asbestos joint sheet and the NA joint sheet, attention must be paid to the mixing ratio of the fiber material to the solid content of the joint sheet, in addition to the use of asbestos fiber. In asbestos joint sheets, asbestos fibers are often used in a proportion of 60% by weight or more, whereas in NA joint sheets, as the amount of fibers increases, sheeting on a calender roll tends to become difficult. The amount is often less than 50% by weight. The amount of reduced fiber is compensated by the filler, and the filler mixing ratio of the asbestos joint sheet is 3 to 40% by weight, while that of the NA joint sheet is in the range of 50 to 80% by weight. This is also N
A joint sheet is the cause of poor tensile strength, heat resistance, and steam resistance.

【0006】[0006]

【発明が解決しようとする課題】すなわち、従来のNA
ジョイントシートにあっては、補強効果のある有機繊維
が、高熱条件・水蒸気雰囲気の下で使用すると、ゴム材
料とともに著しく劣化して、石綿ジョイントシートに比
べて製品寿命が著しく低下してしまう。また、耐熱性・
耐水蒸気性の高い無機繊維を併用しても、その補強効果
は有機繊維より著しく低く、さらに製造的な面でその配
合量を石綿繊維ほど多くすることができないために、補
強性能は上がらず、石綿ジョイントシートに比べてかな
り低下したものとなる。それに加えて、高熱条件・水蒸
気雰囲気の下で使用すると無機繊維自体の劣化こそ少な
いが、ゴム材料が劣化することで無機繊維の併用効果は
十分に発揮できず、結局石綿ジョイントシートに比べて
NAジョイントシートの製品寿命はかなり低下するとい
う問題点があった。
That is, the conventional NA
In the joint sheet, when the organic fiber having a reinforcing effect is used under a high heat condition / steam atmosphere, it is significantly deteriorated together with the rubber material, and the product life is remarkably reduced as compared with the asbestos joint sheet. Also, heat resistance
Even when used in combination with inorganic fibers having high water vapor resistance, its reinforcing effect is significantly lower than that of organic fibers, and since the compounding amount cannot be increased as much as asbestos fibers in terms of manufacturability, reinforcing performance does not increase, It is considerably lower than that of the asbestos joint sheet. In addition, when used under high heat conditions and steam atmosphere, the deterioration of the inorganic fiber itself is small, but due to the deterioration of the rubber material, the combined effect of the inorganic fiber cannot be fully exerted, and as a result, compared to the asbestos joint sheet, NA There is a problem that the product life of the joint sheet is considerably reduced.

【0007】この発明の目的は、耐熱性、耐水蒸気性を
改良したNAジョイントシートを提供することにある。
An object of the present invention is to provide an NA joint sheet having improved heat resistance and steam resistance.

【0008】[0008]

【課題を解決するための手段】この発明は、このような
従来の問題点に着目してなされたものである。NAジョ
イントシートのバインダーとして使用されるゴムの種類
を、耐熱性・耐水蒸気性に優れたエチレンプロピレンゴ
ム(EPR)とすることにより、ジョイントシートの耐
熱性を約30℃上昇させることが可能である。しかしなが
らEPR単独の使用ではジョイントシートの引張強さ・
耐油性・耐フロー性・耐応力緩和性に問題があることに
着眼した。そこで、本発明者らは他の引張強さが大きく
耐油性のあるゴムをブレンドすることを考え、あらゆる
ゴムの種類及び量を変えて種々の実験を行ったところ、
引張強さと耐油性を向上させるにはNBRが最も適して
いた。ところが、EPRのような極性の低いゴムとNB
Rのような極性の高いジエン系ゴムとではゴム同士のS
P値が異なるために相溶性が悪く、さらに加硫において
もNBRの加硫が進み過ぎEPRは未加硫となる偏加硫
が発生してしまう。
The present invention has been made in view of the above-mentioned conventional problems. It is possible to increase the heat resistance of the joint sheet by about 30 ° C by using ethylene propylene rubber (EPR), which has excellent heat resistance and water vapor resistance, as the type of rubber used as the binder of the NA joint sheet. . However, when using EPR alone, the tensile strength of the joint sheet
We focused on the problems of oil resistance, flow resistance, and stress relaxation resistance. Therefore, the present inventors considered blending other rubbers having large tensile strength and oil resistance, and performed various experiments by changing the types and amounts of all rubbers,
NBR was most suitable for improving the tensile strength and oil resistance. However, rubber with low polarity such as EPR and NB
With diene rubber having high polarity such as R, S between rubbers
Since the P values are different, the compatibility is poor, and the vulcanization of the NBR is too advanced during vulcanization, and the EPR is unvulcanized, resulting in partial vulcanization.

【0009】この偏加硫の機構をさらに説明すると、N
BRとEPRのようなブレンド系の加硫においては、当
初混練を十分に行い両方のゴムに加硫剤・加硫促進剤を
均一に分散させていても、加硫が進行すると、NBRは
加硫が早いので加硫剤・加硫促進剤が先に消費されるが
EPRは加硫が進まず両方のゴム中の加硫剤・加硫促進
剤の濃度が著しく異なってくる。すると、EPR中に残
っている加硫剤・加硫促進剤が、容易にNBR中に移行
してしまい、NBRはさらに加硫が進行するのに対し、
EPRは未加硫のまま終了してしまうのである。
The mechanism of this partial vulcanization will be further explained.
In the vulcanization of a blend system such as BR and EPR, even if the vulcanizing agent / vulcanization accelerator is uniformly dispersed in both rubbers at the beginning, NBR will be vulcanized when vulcanization proceeds. Since the vulcanization is fast, the vulcanizing agent / vulcanization accelerator is consumed first, but the EPR does not progress vulcanization and the concentrations of the vulcanizing agent / vulcanization accelerator in both rubbers are significantly different. Then, the vulcanizing agent / vulcanization accelerator remaining in the EPR easily migrates into the NBR, and the NBR is further vulcanized, whereas
The EPR ends unvulcanized.

【0010】このような偏加硫が発生すると、特性を改
良するためにゴムブレンドを行ったにもかかわらず、加
成則が成立しないために特性は改良されず、一部の特性
ではブレンド前よりも性能が低下する場合も見られる。
NBR/EPRブレンド系における、引張強さを図2
に、また5 ton の面圧に対して試料の水平手方向の変形
率(フロー)を図3に示す(図中破線は加成則が成立す
る理想直線である)。NBRの25〜50重量%ブレンド範
囲でみると、図2の引張強さはほとんど改善がみられ
ず、また図3の変形率(フロー)はかえって大きくなる
(耐フロー性が悪化する)。
When such partial vulcanization occurs, the rubber is blended to improve the properties, but the properties are not improved because the addition rule is not satisfied. There is also a case where the performance is lower than that.
Figure 2 shows the tensile strength of the NBR / EPR blend system.
Fig. 3 shows the deformation rate (flow) of the sample in the horizontal direction with respect to the surface pressure of 5 ton (broken line in the figure is an ideal straight line where the addition rule is satisfied). In the NBR blending range of 25 to 50% by weight, the tensile strength in FIG. 2 is hardly improved, and the deformation rate (flow) in FIG. 3 is rather large (the flow resistance is deteriorated).

【0011】そこで、本発明者らはNBRの種類の検討
および比率の変更の実験を行った結果、NBRの代わり
にNBRの炭素・炭素二重結合の一部を水素添加した高
飽和ニトリルゴム(NEM)を、EPRとブレンドする
ことにより、上記問題は解消できた。NEMはNBRに
比べて加硫に寄与する二重結合が少ないため、引張強さ
・耐油性・耐フロー性及び耐熱性に優れており、NBR
に比べて少ない量でも特性を著しく改良することが可能
であるのに加え、NBRに比べて加硫に寄与する二重結
合が少ないため、加硫が遅くなりEPRとの加硫速度の
差が小さくなることが判った。
Therefore, as a result of the examination of the type of NBR and the experiment of changing the ratio, the inventors of the present invention have shown that, instead of NBR, a highly saturated nitrile rubber obtained by hydrogenating a part of carbon-carbon double bonds of NBR ( The above problem could be solved by blending NEM) with EPR. Compared to NBR, NEM has fewer double bonds that contribute to vulcanization, so it has superior tensile strength, oil resistance, flow resistance, and heat resistance.
In addition to being able to remarkably improve the properties even in a smaller amount than in, the double bond contributing to vulcanization is less than in NBR, so that vulcanization becomes slow and the difference in vulcanization rate from EPR is It turned out to be smaller.

【0012】すなわち、本発明のジョイントシートは、
エチレンプロピレンゴムと高飽和ニトリルゴムとが併用
されてバインダー主成分を構成するとともに、エチレン
プロピレンゴムがバインダーの総量に対して60重量%〜
90重量%の割合であり、高飽和ニトリルゴムがバインダ
ーの総量に対して10重量%〜40重量%の割合であること
を特徴とする。
That is, the joint sheet of the present invention is
Ethylene propylene rubber and highly saturated nitrile rubber are used together to form the binder main component, and ethylene propylene rubber is 60% by weight to the total amount of the binder.
90% by weight, characterized in that the highly saturated nitrile rubber is 10% by weight to 40% by weight with respect to the total amount of the binder.

【0013】本発明者らは、これについてさらに検討を
進めた結果、加硫促進剤としてスルフェンアミド系及び
ジチオカルバミン酸塩系のものを併用することにより、
EPRとNEMの間に偏加硫がほとんど発生しないこと
を発見した。このことを示す加硫曲線を図1に示す。図
1において、EPR+NEM系の曲線はスルフェンア
ミド系+ジチオカルバミン酸塩系加硫促進剤を用いたも
の、EPR+NEM系の曲線はチアゾール系+チウラ
ム系加硫促進剤を用いたものであるが、EPR+NEM
系の加硫度はEPR+NEM系の場合よりもNBR
系に近く、偏加硫がほとんど発生しない。
The inventors of the present invention further studied this, and as a result, by using a sulfenamide type and a dithiocarbamate type as a vulcanization accelerator in combination,
It was discovered that there was almost no partial vulcanization between EPR and NEM. A vulcanization curve showing this is shown in FIG. In FIG. 1, the EPR + NEM-based curve uses a sulfenamide-based + dithiocarbamate-based vulcanization accelerator, and the EPR + NEM-based curve uses a thiazole-based + thiuram-based vulcanization accelerator, but EPR + NEM
The vulcanization degree of the system is NBR more than that of the EPR + NEM system
It is close to the system and almost no vulcanization occurs.

【0014】この機構は、スルフェンアミド系+ジチオ
カルバミン酸塩系加硫促進剤が比較的EPRに溶解し易
く、NEMには溶解し難いため、加硫自体はNEMの方
がEPRよりも多少早く進行して加硫促進剤の濃度が低
下するが、加硫促進剤の濃度傾斜が生じても移行が起き
にくいことによるものと考えられる。また、過酸化物の
みによって架橋することも好適である。
This mechanism is because the sulfenamide type + dithiocarbamate type vulcanization accelerator is relatively easy to dissolve in EPR and is difficult to dissolve in NEM. Therefore, vulcanization itself is slightly faster in NEM than in EPR. Although the concentration of the vulcanization accelerator progresses as it progresses, it is considered that the migration does not easily occur even if the concentration gradient of the vulcanization accelerator occurs. It is also preferable to crosslink with only a peroxide.

【0015】さらにEPRとNEMのブレンド比率につ
いても検討した結果、NEMの割合が10%以上ないとE
PRに足りない引張強さ・耐フロー性・耐油性の改善に
寄与しないし、NEMの割合が50%近くになると先に述
べたジョイントシートの成形時において、熱ロール上へ
の積層が非常に困難となり、得られたシートの特性も低
下することが判明している。これは、NEMが溶剤に膨
潤し難いことにより、ジョイントシート成形用組成物の
粘度が小さくなり、材料の熱ロール側への付着が悪くな
ることが原因である。
Furthermore, as a result of studying the blend ratio of EPR and NEM, it was found that if the ratio of NEM was 10% or more, E
It does not contribute to the improvement of tensile strength, flow resistance, and oil resistance, which is insufficient for PR, and the NEM ratio is close to 50%. When molding the joint sheet described above, it is extremely laminated on the heat roll. It has been found that it becomes difficult and the properties of the obtained sheet also deteriorate. This is because NEM is less likely to swell in the solvent, so that the viscosity of the joint sheet molding composition is reduced and the adhesion of the material to the hot roll side is deteriorated.

【0016】また、先に述べたスルフェンアミド系+ジ
チオカルバミン酸塩系を用いないときは製造時のロール
上だけでは加硫が不十分な場合が多いが、そのような時
でもその後オートクレーブ等で二次加硫を行うことによ
りほぼ完全加硫に到達させることが可能で、この場合は
耐クリープ性が向上する。
Further, when the above-mentioned sulfenamide type + dithiocarbamate type is not used, vulcanization is often insufficient only on the roll at the time of production, but even in such a case, it is then autoclaved. By performing secondary vulcanization, almost complete vulcanization can be reached, in which case creep resistance is improved.

【0017】[0017]

【実施例】以下、実施例により本発明を具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0018】実施例1 ゴム素練りロールにより 0.1mmに薄だし処理をしたゴム
材料を所定量計量した後、300 重量部のトルエン中に膨
潤させ、表1に示す配合の繊維材料・充填材・ゴム薬品
とともにヘンシェルミキサー(回転数 1000 RPM )にて
30分間混練した。これによって得られたジョイントシー
ト形成用組成物を、熱ロール( 150℃)、冷ロール(20
℃)のカレンダーロールによって加圧加硫成形し、厚さ
1.5mmのジョイントシートを得た。
Example 1 A predetermined amount of a rubber material thinned to 0.1 mm by a rubber masticating roll was weighed, swollen in 300 parts by weight of toluene, and a fiber material / filler having the composition shown in Table 1 was added. In a Henschel mixer (rotation speed 1000 RPM) with rubber chemicals
Kneaded for 30 minutes. The joint sheet-forming composition thus obtained was applied to a hot roll (150 ° C) and a cold roll (20
(° C) pressure vulcanization molding with calender rolls and thickness
A 1.5 mm joint sheet was obtained.

【0019】 実施例2〜、比較例1〜4のジョイン
トシートは、表1および表2に示す配合のものを、実施
例1と同様の方法で製造した。とくに、実施例5では、
上記方法で得られたジョイントシートをオートクレーブ
中で120℃×2時間の二次加硫を行い、実施例6で
は、上記方法においてゴム薬品として有機過酸化物を用
いて、過酸化物加硫を行っている。なお、表1および表
2の加硫促進剤の記号において、MSAはN−オキシジ
エチレン−2−ベンゾチアジルスルフェンアミドを、Z
nDMDCはジメチルジチオカルバミン酸亜鉛を、MB
Tは2−メルカプトベンゾチアゾールを、TMTDはテ
トラメチルチウラムジスルフィドを、それぞれ表す。
The joint sheets of Examples 2 to 6 and Comparative Examples 1 to 4 were prepared with the formulations shown in Table 1 and Table 2 in the same manner as in Example 1. In particular, in Example 5,
The joint sheet obtained by the above method was subjected to secondary vulcanization at 120 ° C. for 2 hours in an autoclave, and in Example 6, peroxide vulcanization was performed using an organic peroxide as a rubber chemical in the above method. Is going. In addition, Table 1 and Table
In the symbol 2 of vulcanization accelerator, MSA is N-oxydiene
Ethylene-2-benzothiazylsulfenamide, Z
nDMDC is zinc dimethyldithiocarbamate, MB
T is 2-mercaptobenzothiazole and TMTD is
Represents tramethylthiuram disulfide.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】次に、このようにして得られた各実施例と
各比較例の主な物性値を表3及び表4に示す。なお、ジ
ョイントシートの引張強さ・圧縮率・復元率・応力緩和
率・耐油性は、JIS−R3453に準じて測定した。
また、耐フロー性は、面圧 5tonをかけた時の試料の水
平方向の変形率によって評価し、耐熱性は 200℃のギヤ
オーブン中で 8時間加熱した後、引張伸びの減少率で判
定した。
Next, Table 3 and Table 4 show main physical property values of the respective Examples and Comparative Examples thus obtained. The tensile strength, compression rate, restoration rate, stress relaxation rate, and oil resistance of the joint sheet were measured according to JIS-R3453.
The flow resistance was evaluated by the horizontal deformation rate of the sample when a surface pressure of 5 tons was applied, and the heat resistance was judged by the reduction rate of tensile elongation after heating for 8 hours in a 200 ° C gear oven. .

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【発明の効果】表3および表4からも判るように、実施
例1〜6はいずれもEPRだけを用いた比較例1に比べ
て引張強さ・応力緩和率、耐フロー性・耐油性が著しく
改良されており、NBRだけを用いた比較例3に比べる
と耐熱性が明らかに良好であることが判る。また、比較
例2に示すようにNEMの量が多すぎると全体的に性能
が低下する傾向が見られる。さらに、比較例4に示すよ
うにEPRとNBRのブレンドでは偏加硫のために耐フ
ロー性が著しく低下しているのが判る。
As can be seen from Tables 3 and 4, Examples 1 to 6 have higher tensile strength / stress relaxation rate, flow resistance / oil resistance than Comparative Example 1 using only EPR. It is remarkably improved, and it can be seen that the heat resistance is clearly better than that of Comparative Example 3 using NBR alone. Further, as shown in Comparative Example 2, when the amount of NEM is too large, the performance tends to be deteriorated as a whole. Further, as shown in Comparative Example 4, it can be seen that the blend of EPR and NBR markedly deteriorates the flow resistance due to partial vulcanization.

【0026】また、二次加硫は引張強さと応力緩和率を
改良するために有効であり、過酸化物加硫も応力緩和率
が良好であることが判る。
It is also understood that the secondary vulcanization is effective for improving the tensile strength and the stress relaxation rate, and the peroxide vulcanization also has a good stress relaxation rate.

【0027】以上述べたように、この発明によって得ら
れたジョイントシートは、耐熱性・耐水蒸気性のよいE
PRの性能がNEMの併用により相乗的に発揮され、従
来のNAジョイントシートの欠点であった耐熱性・耐水
蒸気性が大幅に改良されると同時に、その他の特性も従
来のものと同等以上で石綿ジョイントシートに匹敵する
性能を有していることが判る。
As described above, the joint sheet obtained by the present invention has excellent heat resistance and water vapor resistance.
The performance of PR is synergistically exhibited by the combined use of NEM, and the heat resistance and steam resistance, which were the drawbacks of the conventional NA joint sheet, are greatly improved, and at the same time, other properties are equal to or higher than those of the conventional one. It can be seen that it has performance comparable to that of an asbestos joint sheet.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の作用を説明するための、加硫時間−加
硫度のグラフである。
FIG. 1 is a vulcanization time-vulcanization degree graph for explaining the operation of the present invention.

【図2】関連技術の問題点を説明するための、ゴム内N
BR量−引張強さのグラフである。
[FIG. 2] N in rubber for explaining problems of related art
It is a graph of BR amount-tensile strength.

【図3】関連技術の問題点を説明するための、ゴム内N
BR量−変形率(フロー)のグラフである。
[FIG. 3] N in rubber for explaining problems of related art
It is a graph of BR amount-deformation rate (flow).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エチレンプロピレンゴムと高飽和ニトリ
ルゴムとが併用されてバインダー主成分を構成するとと
もに、エチレンプロピレンゴムがバインダーの総量に対
して60重量%〜90重量%の割合であり、高飽和ニトリル
ゴムがバインダーの総量に対して10重量%〜40重量%の
割合であることを特徴とするジョイントシート。
1. An ethylene propylene rubber and a highly saturated nitrile rubber are used together to form a binder main component, and the ethylene propylene rubber is in a ratio of 60% by weight to 90% by weight with respect to the total amount of the binder, and is highly saturated. A joint sheet characterized in that the nitrile rubber is contained in an amount of 10% by weight to 40% by weight based on the total amount of the binder.
【請求項2】 請求項1において、スルフェンアミド系
加硫促進剤及びジチオカルバミン酸塩系加硫促進剤の添
加により加硫されたものであるジョイントシート。
2. The joint sheet according to claim 1, which is vulcanized by adding a sulfenamide vulcanization accelerator and a dithiocarbamate vulcanization accelerator.
JP16215991A 1991-06-06 1991-06-06 Joint sheet Expired - Lifetime JPH0778213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16215991A JPH0778213B2 (en) 1991-06-06 1991-06-06 Joint sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16215991A JPH0778213B2 (en) 1991-06-06 1991-06-06 Joint sheet

Publications (2)

Publication Number Publication Date
JPH04359987A JPH04359987A (en) 1992-12-14
JPH0778213B2 true JPH0778213B2 (en) 1995-08-23

Family

ID=15749155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16215991A Expired - Lifetime JPH0778213B2 (en) 1991-06-06 1991-06-06 Joint sheet

Country Status (1)

Country Link
JP (1) JPH0778213B2 (en)

Also Published As

Publication number Publication date
JPH04359987A (en) 1992-12-14

Similar Documents

Publication Publication Date Title
JP4746879B2 (en) Non-asbestos-based sheet gasket
JP2007239901A (en) Method of manufacturing sheet like gasket
Kim et al. Comparison of ultrasonic-treated rice husk carbon with the conventional carbon black towards improved mechanical properties of their EPDM composites
JPH0778213B2 (en) Joint sheet
JPH0841248A (en) Nbr/epichlorohydrin blend having improved heat and ozone resistances
CA2666676A1 (en) Compressed gasketing material
JPS6219784B2 (en)
JP5734589B2 (en) Rubber packing for water supply
JP2008275004A (en) Belt for power transmission
JPH06287542A (en) Joint sheet
JP2927699B2 (en) Joint sheet
JP2001158824A (en) Method for vulcanizing and bonding unvulcanized rubber, and rubber composition for vulcanization and bonding
JPH04212844A (en) Rubber composition for earthquakeproof laminate
TR201920177A2 (en) EPDM rubber composition with increased oil resistance
JP3593526B2 (en) Rubber composition and molded product thereof
JP2946185B2 (en) Joint sheet and manufacturing method thereof
JPH0686075B2 (en) Manufacturing method of joint sheet
JP2010285611A (en) Rubber composition for sealing material, and sealing material
JP2816905B2 (en) Method for producing adhesive composite of rubber and rubber
CN107163324A (en) A kind of low temperature resistant and oil-resistant acrylonitrile-butadirubber rubber and preparation method thereof
Jasso‐Gastinel et al. Mechanical and rheological properties of poly (butadiene‐acrylonitrile) rubber compounds reinforced with cellulosic material
JPH09137153A (en) Composite rubber sheet
JP2775679B2 (en) Sheet gasket and method of manufacturing the same
JP3023651B2 (en) Joint sheet and manufacturing method thereof
JPH10265765A (en) Joint sheet and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20080823

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20100823

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20110823

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20110823

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20110823