JPH07776A - Polyketone porous film and production thereof - Google Patents
Polyketone porous film and production thereofInfo
- Publication number
- JPH07776A JPH07776A JP14657293A JP14657293A JPH07776A JP H07776 A JPH07776 A JP H07776A JP 14657293 A JP14657293 A JP 14657293A JP 14657293 A JP14657293 A JP 14657293A JP H07776 A JPH07776 A JP H07776A
- Authority
- JP
- Japan
- Prior art keywords
- polyketone
- fine
- fine particles
- film
- porous membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Polyethers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、精密濾過に使用される
ポリケトン多孔質膜及びその製造方法に関する。TECHNICAL FIELD The present invention relates to a polyketone porous membrane used for microfiltration and a method for producing the same.
【0002】[0002]
【従来の技術】多孔質膜は、工業排水・工程水の処理等
の工業分野、人工腎臓・血漿分離等の医療分野、食品関
連分野、家庭用浄水器など幅広い分野における精密濾過
に使用されている。2. Description of the Related Art Porous membranes are used for microfiltration in a wide range of fields such as industrial fields such as industrial wastewater / process water treatment, medical fields such as artificial kidney / plasma separation, food-related fields and household water purifiers. There is.
【0003】このような用途に用いられる多孔質膜の製
造方法としては様々な方法が知られており、例えばミク
ロ相分離湿式法、添加剤抽出法、放射線照射後エッチン
グ法、溶融賦形延伸法等があげられる。これらの中では
溶融賦形延伸法により多孔質化する方法が比較的簡単で
あり、しかも溶剤を使用しないことから安全性に優れる
という特徴を有している。Various methods are known as a method for producing a porous film used for such purposes, for example, a micro-phase separation wet method, an additive extraction method, a post-irradiation etching method, a melt shaping drawing method. Etc. Among these, the method of making it porous by the melt-shaped drawing method is relatively simple, and since it does not use a solvent, it is excellent in safety.
【0004】溶融賦形延伸法としては、結晶性高分子の
ラメラ積層結晶部間を剥離させることにより微細貫通孔
を形成する方法(特公昭56−52123号公報、特開
昭57−42919号公報)、ポリオレフィンに微粒子
を添加してマトリックスとなるポリオレフィンと微粒子
との界面を剥離させることにより微細貫通孔を形成する
方法(特開平1−293102号公報)が開示されてい
る。As the melt-shaped drawing method, a method of forming fine through-holes by separating lamella laminated crystal parts of a crystalline polymer (Japanese Patent Publication No. 56-52123 and Japanese Patent Publication No. 57-42919). ), A method of forming fine through holes by adding fine particles to polyolefin and peeling the interface between the polyolefin serving as a matrix and the fine particles (JP-A-1-293102).
【0005】しかしながら特公昭56−52123号公
報及び特開昭57−42919号公報に記載された方法
では、膜材料が結晶性高分子の中でも比較的結晶化速度
の速いポリオレフィンに限られている。また特開平1−
293102号公報に記載された方法でも、膜材料とし
ては凝集力の比較的低いポリオレフィンしか開示されて
いない。However, in the methods described in JP-B-56-52123 and JP-A-57-42919, the film material is limited to the polyolefin having a relatively high crystallization rate among the crystalline polymers. In addition, Japanese Patent Laid-Open No. 1-
The method described in Japanese Patent No. 293102 also discloses only a polyolefin having a relatively low cohesive force as a film material.
【0006】一方近年膜素材としては、耐熱性、耐酸
性、耐アルカリ性等の観点からポリケトン系ポリマーが
注目され検討されている。例えば、特開平2−1362
29号公報には湿式法によるポリエーテルエーテルケト
ン(以下PEEKと略記)多孔質膜が開示されている。On the other hand, in recent years, polyketone-based polymers have been attracting attention and studied from the viewpoints of heat resistance, acid resistance, alkali resistance and the like as membrane materials. For example, Japanese Patent Laid-Open No. 2-1362
Japanese Patent Publication No. 29 discloses a polyetheretherketone (hereinafter abbreviated as PEEK) porous film by a wet method.
【0007】この膜はPEEKポリマーを非スルホン化
性の酸溶媒に溶解させた後、PEEKポリマーに対して
は非溶媒であるが非スルホン化性の酸溶媒とは混和性で
ある凝固浴中で凝固させることにより製造され、膜表面
がスキン層で膜内部が指状空洞である非対称構造となっ
ている。This membrane is prepared by dissolving PEEK polymer in a non-sulphonating acid solvent and then in a coagulation bath which is non-solvent for PEEK polymer but miscible with non-sulphonating acid solvent. It is manufactured by solidifying and has an asymmetric structure in which the surface of the film is a skin layer and the inside of the film is a finger-like cavity.
【0008】また特開平4−293533号公報には抽
出法によるPEEK多孔質平膜が開示されている。この
膜はPEEKポリマー及び低融点の結晶可能なポリマー
を混合しフィルム状に溶融賦形した後、低融点の結晶可
能なポリマーを抽出することにより製造され、対称また
は非対称構造となっている。Further, Japanese Unexamined Patent Publication No. 4-293533 discloses a PEEK porous flat membrane by an extraction method. This film is produced by mixing PEEK polymer and a low melting point crystallizable polymer, melt-forming into a film, and then extracting the low melting point crystallizable polymer to obtain a symmetrical or asymmetric structure.
【0009】しかしながら一般に湿式法や抽出法では孔
の形は円形になり、ポリケトン膜についてはスリット状
微細孔を有する多孔質膜はこれまでのところ開示されて
いない。更にポリケトンのような結晶化速度の比較的遅
いポリマーについては、溶融賦形延伸法により多孔質膜
を製造する方法はこれまでのところ開示されていない。However, generally, in the wet method and the extraction method, the shape of the pores is circular, and as for the polyketone membrane, a porous membrane having slit-shaped fine pores has not been disclosed so far. Further, regarding a polymer having a relatively low crystallization rate such as polyketone, a method for producing a porous film by a melt-shaped drawing method has not been disclosed so far.
【0010】[0010]
【発明が解決しようとする課題】本発明の目的は、耐熱
性、耐圧性及び耐薬品性に優れるスリット状微細孔を有
するポリケトン多孔質膜を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a polyketone porous membrane having slit-shaped fine pores which is excellent in heat resistance, pressure resistance and chemical resistance.
【0011】[0011]
【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、ポリケトン重合体
に特定粒径の微粒子を特定量混合することで上記目的の
膜を得ることを見いだした。Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors obtained a film of the above object by mixing a specific amount of fine particles having a specific particle size with a polyketone polymer. I found it.
【0012】即ち本発明の要旨は、ポリケトン重合体4
0〜95重量%と平均粒子径が0.02〜10μmであ
る微粒子60〜5重量%とからなる多孔質膜であって、
多孔質膜の厚み方向に微細孔が貫通しており、該微細孔
が平均幅0.01〜10μmのスリット状微細孔からな
るポリケトン多孔質膜及びその製造方法にある。That is, the gist of the present invention is polyketone polymer 4
A porous film comprising 0 to 95% by weight and 60 to 5% by weight of fine particles having an average particle size of 0.02 to 10 μm,
The polyketone porous membrane has fine pores penetrating in the thickness direction of the porous membrane, and the fine pores are slit-like fine pores having an average width of 0.01 to 10 μm, and a method for producing the same.
【0013】以下、本発明について説明する。本発明の
ポリケトン重合体とは、その分子中に−CO−基を有す
るモノマーユニットからなる重合体であるが、例えば下
記の(I)式〜(VI)式(式中ベンゼン環は、アルキル
基、ハロゲン、ニトロ基、スルホニル基、カルボキシル
基等で置換されていてもよい)で表される重合体が挙げ
られる。The present invention will be described below. The polyketone polymer of the present invention is a polymer composed of a monomer unit having a —CO— group in its molecule. For example, the following formulas (I) to (VI) (wherein the benzene ring is an alkyl group) , Which may be substituted with a halogen, a nitro group, a sulfonyl group, a carboxyl group or the like).
【0014】[0014]
【化1】 [Chemical 1]
【0015】本発明中の微粒子としては、平均粒子径が
0.02〜10μmであれば特に制限はなく無機微粒子
でも有機微粒子でも使用することができる。無機微粒子
としては、例えば炭酸カルシウム、酸化カルシウム、酸
化チタン、シリカ、酸化マグネシウム、酸化アルミニウ
ム、硫酸アルミニウム、硫酸バリウム、タルク、クレー
等が挙げられ、有機微粒子としては架橋シリコーン樹
脂、架橋ポリスチレン樹脂、架橋PMMK樹脂等が挙げ
られる。The fine particles in the present invention are not particularly limited as long as they have an average particle diameter of 0.02 to 10 μm, and either inorganic fine particles or organic fine particles can be used. Examples of the inorganic fine particles include calcium carbonate, calcium oxide, titanium oxide, silica, magnesium oxide, aluminum oxide, aluminum sulfate, barium sulfate, talc, clay, and the like, and organic fine particles include crosslinked silicone resin, crosslinked polystyrene resin, and crosslinked. PMMK resin etc. are mentioned.
【0016】微粒子の平均粒子径は0.02〜10μm
であることが必要である。微粒子の平均粒子径が0.0
2μmより小さい場合には延伸を行っても多孔化しな
い。また微粒子の平均粒子径が10μmを越える場合に
は、延伸により生じる微細孔のスリット幅が大きくなり
すぎて、機械的強度に劣り、膜としての使用に耐えな
い。The average particle size of the fine particles is 0.02 to 10 μm.
It is necessary to be. The average particle size of the fine particles is 0.0
When it is smaller than 2 μm, it does not become porous even if it is stretched. On the other hand, when the average particle size of the fine particles exceeds 10 μm, the slit width of the fine pores generated by stretching becomes too large, resulting in poor mechanical strength and unusable as a film.
【0017】ポリケトン重合体と平均粒子径が0.02
〜10μmである微粒子との混合割合は、ポリケトン重
合体40〜95重量%、微粒子60〜5重量%である必
要がある。微粒子の混合率が60重量%を越えると、延
伸が困難となり、逆に5重量%未満では、貫通孔の形成
が困難となる。Polyketone polymer and average particle size 0.02
The mixing ratio with the fine particles having a particle size of 10 μm must be 40 to 95% by weight of the polyketone polymer and 60 to 5% by weight of the fine particles. If the mixing ratio of the fine particles exceeds 60% by weight, the stretching becomes difficult, and conversely, if it is less than 5% by weight, the formation of the through holes becomes difficult.
【0018】また本発明のポリケトン多孔質膜の空孔率
は10〜95%であることが濾過性能上好ましい。The porosity of the polyketone porous membrane of the present invention is preferably 10 to 95% in terms of filtration performance.
【0019】本発明の特徴は、特定粒径の微粒子を特定
量混合したポリケトン多孔質膜にあり、該微粒子の配合
によって平均幅が0.01μm以上の比較的大きな幅の
スリット状微細貫通孔を有するポリケトン多孔質膜を得
ることができる。また該微粒子の粒径を制御することに
より、スリット状微細孔の幅を簡単にしかも精度よく制
御することが可能である。The feature of the present invention resides in a polyketone porous membrane in which a specific amount of fine particles having a specific particle size are mixed, and by mixing the fine particles, a slit-like fine through hole having a relatively large average width of 0.01 μm or more. A polyketone porous membrane having the same can be obtained. Further, by controlling the particle diameter of the fine particles, the width of the slit-shaped fine holes can be controlled easily and accurately.
【0020】本発明の膜は微粒子と一体化されたもので
あるので、ポリケトンのみの多孔質膜よりも、より耐熱
性と耐圧性に優れるものである。また本発明のポリケト
ン多孔質膜の形状は、平膜でも良いし、中空繊維状でも
良い。Since the membrane of the present invention is integrated with fine particles, it is more excellent in heat resistance and pressure resistance than a porous membrane containing only polyketone. The polyketone porous membrane of the present invention may have a flat membrane shape or a hollow fiber shape.
【0021】次に本発明のポリケトン多孔質膜の製造方
法の一例について述べる。本発明のポリケトン多孔質膜
が中空繊維である場合には、ポリケトン重合体と特定粒
径の微粒子を特定量混合し、中空繊維状に溶融賦形した
後、延伸して製造することができる。Next, an example of the method for producing the polyketone porous membrane of the present invention will be described. When the polyketone porous membrane of the present invention is a hollow fiber, it can be produced by mixing a specific amount of a polyketone polymer and fine particles having a specific particle size, melt-forming into a hollow fiber shape, and stretching.
【0022】混合方法は特に限定されず、公知の混合方
法が使用できる。例えば前記成分をヘンシェルミキサー
等の混合機に添加し混合することもできるし、一軸ある
いは二軸のスクリュー押し出し機により溶融混練し、押
し出し物を切断してペレットとした後に使用することも
できる。The mixing method is not particularly limited, and known mixing methods can be used. For example, the above components may be added to and mixed with a mixer such as a Henschel mixer, or may be melt-kneaded with a uniaxial or biaxial screw extruder, and the extruded product may be cut into pellets before use.
【0023】次いで上記混合物を中空繊維状に溶融賦形
する。溶融賦形の際に用いる中空繊維製造用ノズルとし
ては、二重円筒タイプ、ブリッジタイプ等の公知のもの
を用いることができる。Next, the above mixture is melt-shaped into hollow fibers. As the hollow fiber manufacturing nozzle used in the melt shaping, a known double-cylindrical type, bridge type, or the like can be used.
【0024】溶融賦形温度は300〜450℃であるこ
とが好ましい。300℃未満では紡糸が困難であり、逆
に450℃を越えるとポリケトン重合体が分解する。The melt shaping temperature is preferably 300 to 450 ° C. If the temperature is less than 300 ° C, spinning is difficult, while if it exceeds 450 ° C, the polyketone polymer is decomposed.
【0025】この範囲の温度でノズルから吐出された前
記混合物は、ドラフト比1〜200の範囲で巻き取られ
ることが好ましく、より好ましくは1〜100の範囲で
ある。ドラフト比が1より小さい場合には安定して巻き
取ることが困難であり、逆にドラフト比が200を越え
ると未延伸糸の配向が進み、後の工程である延伸が困難
となる。The mixture discharged from the nozzle at a temperature in this range is preferably wound in a draft ratio of 1 to 200, more preferably 1 to 100. If the draft ratio is less than 1, it is difficult to stably wind the fiber. On the contrary, if the draft ratio exceeds 200, the orientation of the undrawn yarn proceeds, and the subsequent drawing process becomes difficult.
【0026】次いで得られた中空繊維を延伸する。該中
空繊維は、延伸することにより多孔質構造となる。即ち
延伸によって微粒子の周辺にボイドやクレーズが発生
し、これらが延伸とともに拡大してスリット状の微細孔
となり、粒径に対応した幅のスリット状微細孔が形成さ
れる。従って微粒子の粒径を制御することにより、微細
孔のスリット幅を制御することができる。Next, the obtained hollow fiber is drawn. The hollow fiber has a porous structure by being drawn. That is, voids and crazes are generated around the fine particles by stretching, and these expand with stretching to form slit-shaped fine holes, and slit-shaped fine holes having a width corresponding to the particle diameter are formed. Therefore, by controlling the particle size of the fine particles, the slit width of the fine holes can be controlled.
【0027】延伸温度は、ポリケトン重合体のガラス転
移点(Tg)以上が好ましく、より好ましくはTgより
0〜150℃高い温度範囲である。Tg未満では、ポリ
ケトン重合体の流動性が低いため、延伸が困難となる。
しかし50%までの延伸量ならばTg未満の温度でも延
伸が可能であり、この後Tg以上で延伸する方法も採用
される。The stretching temperature is preferably equal to or higher than the glass transition point (Tg) of the polyketone polymer, more preferably in the temperature range of 0 to 150 ° C. higher than Tg. If it is less than Tg, the fluidity of the polyketone polymer is low, so that stretching becomes difficult.
However, if the stretched amount is up to 50%, it is possible to stretch at a temperature lower than Tg, and then a method of stretching at Tg or higher is also adopted.
【0028】延伸時の変形速度は1%/min以上が好
ましい。変形速度が1%/min未満では、延伸が不均
一となり延伸時に糸切れが発生しやすくなる。延伸方法
としては、例えばローラー間で連続的に行えるが、2段
以上の多段で行うことでより均一な延伸が可能となる。The deformation rate during stretching is preferably 1% / min or more. When the deformation rate is less than 1% / min, the drawing is non-uniform and yarn breakage easily occurs during the drawing. As a stretching method, for example, the stretching can be performed continuously between rollers, but a more uniform stretching can be performed by performing the stretching in two or more stages.
【0029】延伸量は100〜900%(即ち延伸比
2.0〜10.0倍)が好ましく、より好ましくは、2
00〜800%である。延伸量が100%未満では、微
粒子の周りに発生した微細孔はそれぞれ独立しており、
貫通孔とはならない。The stretching amount is preferably 100 to 900% (that is, a stretching ratio of 2.0 to 10.0 times), more preferably 2
It is from 00 to 800%. When the stretching amount is less than 100%, the fine holes generated around the fine particles are independent,
It does not become a through hole.
【0030】100%以上延伸することにより、発生し
たスリット状微細孔同士が連結して貫通孔となる。逆に
延伸量が900%を越えると、延伸時に糸切れが発生し
やすくなる。By stretching by 100% or more, the generated slit-shaped fine holes are connected to each other to form a through hole. On the other hand, if the stretched amount exceeds 900%, yarn breakage tends to occur during stretching.
【0031】また必要に応じて得られた多孔質中空繊維
膜をポリマーのTg以上で熱セットを行うこともでき
る。If necessary, the obtained porous hollow fiber membrane can be heat-set at a Tg or higher of the polymer.
【0032】以上の方法で、平均幅0.01〜10μm
のスリット状微細孔が厚み方向に貫通したポリケトン多
孔質中空繊維膜が得られる。このようにして得られた多
孔質中空繊維膜は、外径が2mm以下であることが好ま
しく、より好ましい範囲は20〜1000μmである。By the above method, the average width is 0.01 to 10 μm.
A polyketone porous hollow fiber membrane in which the slit-like fine pores of (3) penetrate in the thickness direction is obtained. The porous hollow fiber membrane thus obtained preferably has an outer diameter of 2 mm or less, more preferably 20 to 1000 μm.
【0033】また肉厚は500μm以下であることが好
ましく、より好ましい範囲は5〜400μmである。多
孔質中空繊維膜の外径が2mmを越えると、中空形状を
保つのが困難となる傾向にあり、特に外圧がかかると偏
平化しやすくなる。また外径が20μmより小さくなる
と、紡糸時に糸切れが発生しやすくなる。The wall thickness is preferably 500 μm or less, more preferably 5 to 400 μm. If the outer diameter of the porous hollow fiber membrane exceeds 2 mm, it tends to be difficult to maintain the hollow shape, and flattening tends to occur particularly when external pressure is applied. When the outer diameter is smaller than 20 μm, yarn breakage easily occurs during spinning.
【0034】本発明のポリケトン多孔質膜が平膜である
場合には、前記のポリケトン重合体と特定粒径微粒子混
合物を溶融押し出し法でフィルム状に賦形した後、延伸
して製造することができる。When the polyketone porous membrane of the present invention is a flat membrane, the polyketone polymer and the fine particle mixture having a specific particle size are shaped into a film by a melt extrusion method and then stretched. it can.
【0035】フィルムの延伸は1軸延伸しても良いし、
機械的強度を低下させない程度に2軸延伸しても良い。
フィルムの厚みは5〜500μm、より好ましい範囲は
5〜400μmである。The film may be stretched uniaxially,
Biaxial stretching may be performed to the extent that mechanical strength is not reduced.
The thickness of the film is 5 to 500 μm, and the more preferable range is 5 to 400 μm.
【0036】以上述べたように、本発明の特徴は、特定
粒径の微粒子を特定量混合したポリケトン多孔質膜にあ
り、該微粒子の配合によって平均幅が0.01μm以上
の比較的大きな幅のスリット状微細貫通孔を有するポリ
ケトン多孔質膜を得ることができ、しかも該微粒子の粒
径を制御することにより、スリット状微細孔の幅を簡単
に精度よく制御することができることにある。As described above, the feature of the present invention resides in the polyketone porous membrane in which a specific amount of fine particles having a specific particle diameter are mixed, and the average width of the polyketone is relatively large by 0.01 μm or more. It is possible to obtain a polyketone porous film having slit-shaped fine through holes, and moreover, by controlling the particle size of the fine particles, the width of the slit-shaped fine holes can be easily and accurately controlled.
【0037】[0037]
【実施例】以下実施例により本発明を具体的に説明す
る。 実施例1 ポリエーテルエーテルケトン(ICIジャパン社製ビク
トレックスPEEK「150P」)60重量部、平均粒
径0.8μmの架橋シリコーン微粒子(東芝シリコーン
社製「トスパール108」)40重量部を混合し、二軸
押し出し機により380℃で混練し、ペレットを得た。The present invention will be described in detail with reference to the following examples. Example 1 60 parts by weight of polyether ether ketone (Victrex PEEK "150P" manufactured by ICI Japan) and 40 parts by weight of crosslinked silicone fine particles having an average particle size of 0.8 μm ("Tospearl 108" manufactured by Toshiba Silicone Co., Ltd.) were mixed, Kneading was performed at 380 ° C. with a twin-screw extruder to obtain pellets.
【0038】得られたペレットを二重円筒型中空繊維製
造用ルズルを用いて、紡糸温度400℃、吐出線速度1
0cm/min、巻き取り速度4m/min、ドラフト
比40で紡糸した。次いで得られた未延伸中空繊維を1
45℃、10%/minの変形速度で、延伸量が300
%となるよう熱延伸した。The pellets thus obtained were subjected to a spinning temperature of 400 ° C. and a linear discharge speed of 1 by using a double cylinder type hollow fiber for producing slurries.
Spinning was performed at 0 cm / min, a winding speed of 4 m / min, and a draft ratio of 40. Then, the unstretched hollow fiber obtained was used as 1
At a deformation rate of 45% and 10% / min, the stretching amount is 300.
The film was hot-stretched so that the content became%.
【0039】得られた多孔質中空繊維膜は外径800μ
m、内径500μmであった。また中空繊維膜の外表
面、内表面及び断面を走査型電子顕微鏡(以下SEMと
略記)で観察した結果、平均幅0.6μm、平均長さ4
μmのスリット状微細孔が開孔し、厚み方向に貫通して
いることが認められた。この中空繊維膜の空孔率は72
%であった。The obtained porous hollow fiber membrane has an outer diameter of 800 μm.
m and an inner diameter of 500 μm. Further, the outer surface, inner surface and cross section of the hollow fiber membrane were observed with a scanning electron microscope (hereinafter abbreviated as SEM). As a result, an average width of 0.6 μm and an average length of 4
It was confirmed that slit-shaped fine pores of μm were opened and penetrated in the thickness direction. The porosity of this hollow fiber membrane is 72
%Met.
【0040】実施例2 ポリエーテルケトン(ICIジャパン社製ビクトレック
スPEK「220P」)70重量部、平均粒径0.8μ
mの架橋シリコーン微粒子(東芝シリコーン社製「トス
パール108」)30重量部を混合し、二軸押し出し機
により400℃で混練し、ペレットを得た。Example 2 70 parts by weight of polyetherketone (Victrex PEK "220P" manufactured by ICI Japan) and an average particle size of 0.8 μ
30 parts by weight of crosslinked silicone fine particles of m (“TOSPEARL 108” manufactured by Toshiba Silicone Co., Ltd.) were mixed and kneaded at 400 ° C. by a twin-screw extruder to obtain pellets.
【0041】得られたペレットを二重円筒型中空繊維製
造用ノズルを用いて、紡糸温度420℃、吐出線速度1
0cm/min、巻き取り速度1m/min、ドラフト
比10で紡糸した。次いで得られた未延伸中空繊維を1
65℃、100%/minの変形速度で、延伸量が50
0%となるよう熱延伸した。The pellets thus obtained were subjected to a spinning temperature of 420 ° C. and a linear discharge speed of 1 using a nozzle for producing a double cylindrical hollow fiber.
Spinning was performed at 0 cm / min, a winding speed of 1 m / min, and a draft ratio of 10. Then, the unstretched hollow fiber obtained was used as 1
The stretching amount is 50 at a deformation rate of 65% at 100% / min.
It was hot stretched to 0%.
【0042】得られた多孔質中空繊維膜は外径560μ
m、内径480μmであった。また中空繊維膜の内表面
及び外表面及び断面をSEMで観察した結果、平均幅
0.5μm、平均長さ5μmのスリット状微細孔が開孔
し、厚み方向に貫通していることが認められた。空孔率
は80%であった。The obtained porous hollow fiber membrane has an outer diameter of 560 μm.
m and an inner diameter of 480 μm. Moreover, as a result of observing the inner surface, the outer surface and the cross section of the hollow fiber membrane with an SEM, it was confirmed that slit-shaped micropores having an average width of 0.5 μm and an average length of 5 μm were opened and penetrated in the thickness direction. It was The porosity was 80%.
【0043】実施例3 ポリエーテルエーテルケトン(ICIジャパン社製ビク
トレックスPEEK「380P」)85重量部、平均粒
径0.3μmの架橋シリコーン微粒子(東芝シリコーン
社製「トスパール103」)15重量部を混合し、二軸
押し出し機により380℃で混練し、ペレットを得た。Example 3 85 parts by weight of polyether ether ketone (Victrex PEEK "380P" manufactured by ICI Japan) and 15 parts by weight of crosslinked silicone fine particles having an average particle size of 0.3 μm ("Tospearl 103" manufactured by Toshiba Silicone Co., Ltd.) The mixture was mixed and kneaded with a twin-screw extruder at 380 ° C. to obtain pellets.
【0044】得られたペレットを二重円筒型中空繊維製
造用ノズルを用いて、紡糸温度400℃、吐出線速度1
0cm/min、巻き取り速度0.3m/min、ドラ
フト比3で紡糸した。次いで得られた未延伸中空繊維を
145℃、1000%/minの変形速度で、延伸量が
700%となるよう熱延伸した後、230℃で1分間熱
セットを行った。。The pellets thus obtained were subjected to a spinning temperature of 400 ° C. and a discharge linear velocity of 1 using a double cylinder type hollow fiber producing nozzle.
Spinning was performed at 0 cm / min, a winding speed of 0.3 m / min, and a draft ratio of 3. Next, the obtained unstretched hollow fiber was heat-stretched at 145 ° C. at a deformation rate of 1000% / min so that the stretched amount was 700%, and then heat-set at 230 ° C. for 1 minute. .
【0045】得られた多孔質中空繊維膜は外径400μ
m、内径270μmであった。また中空繊維膜の内表面
及び外表面及び断面をSEMで観察した結果、平均幅
0.2μm、平均長さ10μmのスリット状微細孔が開
孔し、厚み方向に貫通していることが認められた。空孔
率は84%であった。The obtained porous hollow fiber membrane has an outer diameter of 400 μm.
m and an inner diameter of 270 μm. In addition, as a result of observing the inner surface, the outer surface and the cross section of the hollow fiber membrane with an SEM, it was confirmed that slit-shaped micropores having an average width of 0.2 μm and an average length of 10 μm were opened and penetrated in the thickness direction. It was The porosity was 84%.
【0046】実施例4 ポリエーテルエーテルケトン(ICIジャパン社製ビク
トレックスPEEK「380P」)70重量部、平均粒
径1.0μmの表面処理炭酸カルシウム微粒子(白石カ
ルシウム社製「POフィラー」)30重量部を混合し、
二軸押し出し機により400℃で混練し、ペレットを得
た。Example 4 70 parts by weight of polyether ether ketone (Victrex PEEK "380P" manufactured by ICI Japan) and 30 parts by weight of surface-treated calcium carbonate fine particles ("PO filler" manufactured by Shiraishi Calcium Co., Ltd.) having an average particle size of 1.0 μm. Mix the parts,
The mixture was kneaded at 400 ° C. with a twin-screw extruder to obtain pellets.
【0047】得られたペレットを二重円筒型中空繊維製
造用ノズルを用いて、紡糸温度400℃、吐出線速度1
0cm/min、巻き取り速度1m/min、ドラフト
比10で紡糸した。次いで得られた未延伸中空繊維を1
45℃、100%/minの変形速度で、総延伸量が5
00%となるよう五段で熱延伸した。The obtained pellets were subjected to a spinning temperature of 400 ° C. and a discharge linear velocity of 1 using a double cylinder type hollow fiber producing nozzle.
Spinning was performed at 0 cm / min, a winding speed of 1 m / min, and a draft ratio of 10. Then, the unstretched hollow fiber obtained was used as 1
At 45 ° C and a deformation rate of 100% / min, the total stretching amount is 5
The film was hot-stretched in five stages so that it would be 00%.
【0048】得られた多孔質中空繊維膜は外径570μ
m、内径500μmであった。また中空繊維膜の内表面
及び外表面及び断面をSEMで観察した結果、平均幅
0.8μm、平均長さ5μmのスリット状微細孔が開孔
し、厚み方向に貫通していることが認められた。The obtained porous hollow fiber membrane has an outer diameter of 570 μm.
m and an inner diameter of 500 μm. Moreover, as a result of observing the inner surface, the outer surface and the cross section of the hollow fiber membrane with an SEM, it was confirmed that slit-shaped fine holes having an average width of 0.8 μm and an average length of 5 μm were opened and penetrated in the thickness direction. It was
【0049】実施例5 ポリエーテルエーテルケトン(ICIジャパン社製ビク
トレックスPEEK「450P」)70重量部、平均粒
径2.0μmの架橋シリコーン微粒子(東芝シリコーン
社製「トスパール120」)30重量部を混合し、二軸
押し出し機により400℃で混練し、ペレットを得た。Example 5 70 parts by weight of polyether ether ketone (Victrex PEEK "450P" manufactured by ICI Japan) and 30 parts by weight of crosslinked silicone fine particles having an average particle size of 2.0 μm ("Tospearl 120" manufactured by Toshiba Silicone Co., Ltd.) The mixture was mixed and kneaded with a twin-screw extruder at 400 ° C. to obtain pellets.
【0050】得られたペレットをフィルムダイを用いて
400℃で押し出しフィムを得た。ついでフィルムを1
45℃、3000%/minの変形速度で、延伸量が3
00%となるよう1軸に熱延伸し、多孔質平膜を得た。The obtained pellets were extruded using a film die at 400 ° C. to obtain a film. Then film 1
At a deformation rate of 45 ° C and 3000% / min, the stretching amount is 3
The film was uniaxially heat-stretched so as to be 00% to obtain a porous flat film.
【0051】得られたフィルムの膜厚は50μmであっ
た。SEM観察により、平均幅2μm・平均長さ10μ
mのスリット状微細孔が開孔していた。The thickness of the obtained film was 50 μm. SEM observation shows average width of 2μm and average length of 10μ
m slit-shaped fine holes were open.
【0052】[0052]
【発明の効果】本発明のポリケトン多孔質膜は、平均幅
0.01〜10μmのスリット状微細孔が厚み方向に貫
通し、従来品にはない特性を有しており、耐熱性、耐圧
性に優れるため、蒸気滅菌が必要とされる医療用途、食
品用途、高温での濾過分離用途等に広い適性を有してい
る。EFFECT OF THE INVENTION The polyketone porous membrane of the present invention has slit-like fine pores having an average width of 0.01 to 10 μm penetrating in the thickness direction, and has the characteristics not found in conventional products, and has heat resistance and pressure resistance. Therefore, it has wide suitability for medical applications requiring steam sterilization, food applications, high temperature filtration separation applications, and the like.
Claims (4)
均粒子径が0.02〜10μmである微粒子60〜5重
量%とからなる多孔質膜であって、多孔質膜の厚み方向
に微細孔が貫通しており、該微細孔が平均幅0.01〜
10μmのスリット状微細孔であることを特徴とするポ
リケトン多孔質膜。1. A porous membrane comprising 40 to 95% by weight of a polyketone polymer and 60 to 5% by weight of fine particles having an average particle diameter of 0.02 to 10 μm, wherein the fine pores are present in the thickness direction of the porous membrane. Penetrate, and the fine holes have an average width of 0.01 to
A polyketone porous membrane having slit-like fine pores of 10 μm.
とする請求項1記載の多孔質膜。2. The porous membrane according to claim 1, wherein the porous membrane is a hollow fiber membrane.
する請求項1記載の多孔質膜。3. The porous membrane according to claim 1, wherein the porous membrane is a film.
均粒子径が0.02〜10μmである微粒子60〜5重
量%を混合した後、所定の形状に溶融賦形し、次いでこ
の賦形物を延伸することを特徴とする請求項1記載の多
孔質膜の製造方法。4. A mixture of 40 to 95% by weight of a polyketone polymer and 60 to 5% by weight of fine particles having an average particle size of 0.02 to 10 μm, and then melt-molded into a predetermined shape, and then this shaped product. The method for producing a porous membrane according to claim 1, wherein the porous membrane is stretched.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14657293A JPH07776A (en) | 1993-06-17 | 1993-06-17 | Polyketone porous film and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14657293A JPH07776A (en) | 1993-06-17 | 1993-06-17 | Polyketone porous film and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07776A true JPH07776A (en) | 1995-01-06 |
Family
ID=15410730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14657293A Pending JPH07776A (en) | 1993-06-17 | 1993-06-17 | Polyketone porous film and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07776A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4952521A (en) * | 1985-04-26 | 1990-08-28 | Fujitsu Limited | Process for fabricating a semiconductor device with selective growth of a metal silicide |
JP2012167209A (en) * | 2011-02-15 | 2012-09-06 | Asahi Kasei Fibers Corp | Polyketone porous material |
CN109263074A (en) * | 2018-09-19 | 2019-01-25 | 广东工业大学 | A kind of aliphatic polyketone microporous barrier and preparation method thereof |
CN109263073A (en) * | 2018-09-19 | 2019-01-25 | 广东工业大学 | A kind of compound fat adoption ketone microporous barrier and preparation method thereof |
-
1993
- 1993-06-17 JP JP14657293A patent/JPH07776A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4952521A (en) * | 1985-04-26 | 1990-08-28 | Fujitsu Limited | Process for fabricating a semiconductor device with selective growth of a metal silicide |
JP2012167209A (en) * | 2011-02-15 | 2012-09-06 | Asahi Kasei Fibers Corp | Polyketone porous material |
CN109263074A (en) * | 2018-09-19 | 2019-01-25 | 广东工业大学 | A kind of aliphatic polyketone microporous barrier and preparation method thereof |
CN109263073A (en) * | 2018-09-19 | 2019-01-25 | 广东工业大学 | A kind of compound fat adoption ketone microporous barrier and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5339677B2 (en) | Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof | |
JP4885539B2 (en) | Vinylidene fluoride resin porous membrane and method for producing the same | |
US6824680B2 (en) | Preparation of microporous films from immiscible blends via melt processing and stretching | |
JP5068168B2 (en) | Vinylidene fluoride resin hollow fiber porous membrane | |
US5746916A (en) | Microporous membrane made of non-crystalline polymers and method of producing the same | |
JP4987471B2 (en) | Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof | |
JP5036033B2 (en) | Porous membrane for water treatment and method for producing the same | |
JPH02144132A (en) | Porous polyolefin film | |
JP4781691B2 (en) | Porous membrane and method for producing the same | |
JPH07776A (en) | Polyketone porous film and production thereof | |
JP2007283232A (en) | Vinylidene fluoride type resin hollow filament porous membrane and its manufacturing method | |
CN102764595A (en) | Polyvinylidene fluoride separation membrane and its preparation method | |
JPH07232044A (en) | Porous membrane and manufacture of the same | |
JP2016121354A (en) | Production method of polyolefin microporous film | |
KR20070031330A (en) | Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same | |
JP4832739B2 (en) | Method for producing vinylidene fluoride resin porous membrane | |
JPH078769A (en) | Polyester porous film and its manufacture | |
JPH06128406A (en) | Production of porous membrane of polytetrafluoroethylene-based resin | |
JPH07213879A (en) | Hydrophilic laminated porous membrane and its production | |
JPH0615152A (en) | Production of hollow fiber membrane | |
US20050155926A1 (en) | System and method for synthesizing a polymer membrane | |
CN115920669A (en) | Preparation method of perfluorinated hollow fiber porous membrane | |
JP2017137384A (en) | Polyolefin porous membrane | |
JPH09136982A (en) | Porous molded product and its manufacture | |
JP2005193194A (en) | Polyphenyl sulfone porous membrane and its production method |