JPH0777659A - Multiple-lens optical device - Google Patents
Multiple-lens optical deviceInfo
- Publication number
- JPH0777659A JPH0777659A JP22585393A JP22585393A JPH0777659A JP H0777659 A JPH0777659 A JP H0777659A JP 22585393 A JP22585393 A JP 22585393A JP 22585393 A JP22585393 A JP 22585393A JP H0777659 A JPH0777659 A JP H0777659A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- visual field
- binoculars
- objective
- optical device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Telescopes (AREA)
- Lens Barrels (AREA)
- Adjustment Of Camera Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は双眼鏡や監視装置の様な
多眼光学装置に関し、ことに視差による像の不一致を緩
和した装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-eye optical device such as a binocular or a monitoring device, and more particularly to a device for alleviating image disagreement due to parallax.
【0002】[0002]
【従来の技術】図6は従来知られた双眼鏡の光学系を示
している。2. Description of the Related Art FIG. 6 shows a conventionally known optical system for binoculars.
【0003】左右の光線LLおよびRRはそれぞれの対
物レンズ21L、21Rを透過して途中結像するが、ま
たそれぞれの正立プリズム22L、21Rによって正立
光線に直された後にそれぞれの接眼レンズ23L、23
Rを透過して観察者の眼球に達する。双眼鏡の使用者の
手動操作によって、破線で便宣的に示した機構MMを介
し対物レンズは連動して繰り出されたり繰り込まれたり
し、目的とする被写体に焦点が合って良く見えるように
なる。The left and right light beams LL and RR pass through the respective objective lenses 21L and 21R to form images on the way, but are also converted into erect light beams by the respective erecting prisms 22L and 21R and then the respective eyepieces 23L. , 23
It penetrates R and reaches the eyeball of the observer. By the manual operation of the user of the binoculars, the objective lens is interlocked and retracted via the mechanism MM indicated by a broken line, so that the desired subject is in good focus and can be seen easily. .
【0004】図7(A)、(B)は、従来技術による双
眼鏡で被写体を見た時の像の例である。双眼鏡の左右の
光学系の光軸は平行である為に、遠距離の被写体を見た
時は図3(A)の様に左右の像が一致して一つに見え円
形の枠になるが、近距離の被写体を見た時は視差により
ズレを生じ、図3(B)の様に瓢箪形の枠になって見え
てしまう。FIGS. 7A and 7B are examples of images when a subject is viewed with binoculars according to the prior art. Since the optical axes of the left and right optical systems of the binoculars are parallel to each other, when looking at a distant object, the left and right images appear as one and appear as a circular frame as shown in FIG. When a short-distance subject is viewed, a parallax causes a shift, and the object appears as a gourd-shaped frame as shown in FIG.
【0005】[0005]
【発明が解決しようとする課題】本発明は上で述べたよ
うに、近距離の被写体を見た時に生じる視差を補正し、
例えば図3(B)のような瓢箪形ではなく、図3(C)
のような円形の枠になって見えるようにするものであ
る。SUMMARY OF THE INVENTION As described above, the present invention corrects parallax that occurs when a subject at a short distance is viewed,
For example, instead of the gourd shape as shown in FIG. 3 (B), FIG. 3 (C)
It looks like a circular frame like.
【0006】[0006]
【課題を解決するための手段】本発明に係れる光学装置
は、被写体の像を虚像または実像に結像する複数の対物
光学系と、前記対物光学形に対応し、その入射光線光軸
を変更することが可能な光軸可変光学素子(可変頂角プ
リズム等)と、視野ズレを検出する視野ズレ検出手段を
有し、この視野ズレ検出信号に基づき前記光軸可変光学
素子を駆動し、被写体に応じた光軸を設定するものであ
る。An optical device according to the present invention corresponds to a plurality of objective optical systems for forming an image of a subject into a virtual image or a real image, and an optical axis of an incident light beam corresponding to the objective optical system. The optical axis variable optical element that can be changed (variable apex angle prism, etc.) and the visual field deviation detection means for detecting the visual field deviation are provided, and the optical axis variable optical element is driven based on this visual field deviation detection signal, The optical axis is set according to the subject.
【0007】[0007]
【実施例】図1は本発明の実施例を示しており、視野ズ
レ検出手段として赤外光を用いた自動焦点調節装置を用
いている。21L、21Rは対物レンズ、22L、22
Rは正立プリズム、23L、23Rは接眼レンズで、こ
れらは対物光学系を構成する。尚、対物光学系の構成は
本例に限らない。またここでは手ブレ補償光学手段を備
えた双眼鏡に本発明を適用する。FIG. 1 shows an embodiment of the present invention in which an automatic focus adjusting device using infrared light is used as a visual field deviation detecting means. 21L and 21R are objective lenses, 22L and 22
R is an erecting prism, and 23L and 23R are eyepieces, which form an objective optical system. The configuration of the objective optical system is not limited to this example. Further, the present invention is applied to the binoculars provided with the camera shake compensation optical means.
【0008】68L、68Rは手ブレ補償用の可変頂角
プリズムで、構成は周知であるから詳述を省くが、2板
の透明平板をベローズで連結して内部にシリコンオイル
の様な光学媒質に充填し、透明平板の一方を水平に他方
を垂直にティルトさせて所望の方向に光軸を屈折させる
ものである。なお、本例では対物光学系の前方に可変頂
角プリズムを配置しているが、対物光学系中にアフオー
カル光路を作って、そこに配置しても良い。68L and 68R are variable apex angle prisms for camera shake compensation, and the details are omitted because they are well known in construction, but two transparent flat plates are connected by a bellows and an optical medium such as silicon oil is provided inside. , And one of the transparent plates is tilted horizontally and the other is tilted vertically to refract the optical axis in a desired direction. In this example, the variable apex angle prism is arranged in front of the objective optical system, but an afocal optical path may be formed in the objective optical system and arranged there.
【0009】実施例の装置は双眼鏡の本体に固着されて
双眼鏡の光学系とは別の投光及び受光の光学系を有して
いる。The apparatus of the embodiment has an optical system for projecting and receiving light which is fixed to the body of the binoculars and is different from the optical system of the binoculars.
【0010】11のLEDで発光した赤外光は12の投
光レンズにより双眼鏡の光軸LL及びBBに平行な光線
FF上を照射する。この赤外光は被写体により反射さ
れ、その光線BBは13の受光レンズにより14の分割
受光素子上に結像する。この受光素子は、便宣上破線で
示す機械的結合機構Mによって双眼鏡の焦点調節部(対
物レンズの繰り出し量を決める部位)と連動して基線長
方向に動かされ、赤外反射光が14の受光素子の中心に
結像する位置になった時に双眼鏡の焦点も合致するとい
う関係になっている。Infrared light emitted from the 11 LEDs is projected onto a light beam FF parallel to the optical axes LL and BB of the binoculars by the 12 projection lens. This infrared light is reflected by the subject, and its light beam BB is imaged on the 14 divided light receiving elements by the 13 light receiving lens. This light receiving element is moved in the base line length direction by a mechanical coupling mechanism M indicated by a broken line in conjunction with the focus adjustment unit (a part that determines the amount of extension of the objective lens) of the binoculars, and the infrared reflected light of 14 There is a relationship that the focus of the binoculars is aligned when the image is formed at the center of the light receiving element.
【0011】14の受光素子からの信号は、15の信号
処理回路により所定の処理を受けて焦点調節駆動信号を
発生し、16の焦点調節モータを駆動する。この駆動に
伴い、前述の連動機構Mによって双眼鏡の焦点調節は自
動的に行われる。更に、17のエンコーダを同時に動か
すので、これから視野ズレ検出信号が得られて後述の6
0の手ブレ補正回路に加えられる。前述した様に本実施
例は手ブレ補正手段を有しており、その機能の為の構成
として可変頂角プリズムを有している。まずその手ブレ
補正手段の構成と動作について説明する。The signal from the 14 light receiving elements is subjected to a predetermined process by a signal processing circuit of 15 to generate a focus adjustment drive signal, which drives a 16 focus adjustment motor. With this drive, the above-mentioned interlocking mechanism M automatically adjusts the focus of the binoculars. Furthermore, since the 17 encoders are moved simultaneously, a visual field deviation detection signal can be obtained from this and
0 is added to the image stabilization circuit. As described above, this embodiment has the camera shake correction means, and has the variable apex angle prism as a structure for its function. First, the configuration and operation of the camera shake correction means will be described.
【0012】60は手ブレ補正装置の回路ブロックであ
る。可変頂角プリズムと合わせた構成を図2に示し、そ
れに従って説明する。Reference numeral 60 is a circuit block of the camera shake correction device. A configuration combined with a variable apex angle prism is shown in FIG. 2 and will be described accordingly.
【0013】横方向の振動に対応するY系について説明
するが、縦方向にX系についても一部の構成を欠除する
点を除きほとんど同じであるのでその説明は省略する。
但し、付番にRが付くものが右目系Lが付くのが左目
系。The Y system corresponding to the vibration in the horizontal direction will be described. However, the X system in the vertical direction is almost the same except that a part of the configuration is omitted, and the description thereof will be omitted.
However, the left-eye system has the right-eye system L with the suffix R.
【0014】60Yは振動ジャイロであり、双眼鏡全体
の回転動作に於ける角速度を検出する。検出信号は62
Yのハイパスフィルタを通過し直流成分が除去される。
その後63Yの積分回路に加えられ角度信号に変換せれ
る。この出力信号が可変頂角プリズムの目標値となる。
この目標信号は64LY、64RYの加算回路の正
(+)入力に加えられる。加算回路64LY、64RY
の出力は65LY、65RYの像幅回路の加えられ、所
定の振幅に像幅され、66LY、66RYの駆動回路で
電力像幅され、67LY、67RYの駆動アクチュェー
タに電流を供給する。するとそれに応じて可変頂角プリ
ズムが動き、光軸が変更されて手ブレは補償される。プ
リズムの動きは69LY、69RYの頂角センサによっ
て検知され、その出力は64の加算回路の負(−)入力
に加えられ、閉ループ制御系が構成される。A vibrating gyro 60Y detects the angular velocity in the rotating operation of the entire binoculars. The detection signal is 62
The DC component is removed by passing through the Y high-pass filter.
Then, it is added to the 63Y integrating circuit and converted into an angle signal. This output signal becomes the target value of the variable apex angle prism.
This target signal is applied to the positive (+) inputs of the 64LY and 64RY adder circuits. Adder circuits 64LY and 64RY
Is applied to an image width circuit of 65LY and 65RY, image width is set to a predetermined amplitude, power image width is applied by the drive circuit of 66LY and 66RY, and current is supplied to the drive actuators of 67LY and 67RY. Then, the variable apex angle prism moves accordingly, the optical axis is changed, and camera shake is compensated. The movement of the prism is detected by the apex angle sensors of 69LY and 69RY, and the output thereof is added to the negative (-) input of 64 adder circuits to form a closed loop control system.
【0015】ここで横方向のY系が縦方向のX系と異な
る点は、視野ズレ検出手段12〜17から送られて来る
補正信号を64LYの加算回路に加わえている事であ
る。本回路例では左目の系の64LYには加算、右目の
系の64RYには減算を施している。この加減算によ
り、左右の光軸は各々内側に向くように補正されるので
視差による像の不一致は解消される。The difference between the horizontal Y system and the vertical X system is that the correction signals sent from the visual field deviation detecting means 12 to 17 are added to the 64LY addition circuit. In this circuit example, 64LY of the left eye system is added, and 64RY of the right eye system is subtracted. By this addition and subtraction, the left and right optical axes are corrected so as to face inward, respectively, so that the mismatch of images due to parallax is eliminated.
【0016】本実施例では視差補正に可変頂角プリズム
を用いているが、22の正立プリズム反射面の一部を可
動のミラーにして、これと前述の焦点調節とを連動させ
ても同等の効果が得られる。尚、自動焦点調節装置は赤
外光を使用するものの代わりに超音波を使うものでも良
い。In this embodiment, the variable apex angle prism is used for parallax correction. However, even if a part of the erecting prism reflecting surface of 22 is made a movable mirror and this and the above-mentioned focus adjustment are interlocked, it is equivalent. The effect of is obtained. The automatic focus adjusting device may use ultrasonic waves instead of infrared light.
【0017】図3は本発明の別の実施例である。本例は
視野ズレ検出手段とてブレ検出手段を共通の像センサを
用いて実現している。視野ズレの検出は左右像の相関を
評価する方法で、手ブレの検出は所定時間を隔てた複数
像の相関を評価する方法でおこなう。本実施例では、正
立のプリズム22L、22Rの一部の反射面をハーフミ
ラーにし、入射光線の一部を自動調節の為の光学系に導
いている。41L、41Rはその結像光学系で、42
L、42Rの撮像素子の様な像センサ面上に被写体像を
結像する。像センサ42L、42Rには左右の像が各々
結像する事になり、目標とする被写体上で左右の光軸が
交差するならば両像は一致する事になる。両像の像信号
は70の処理回路に入力され、この信号に基づいて、一
方では68の可変頂角プリズムを駆動することによって
手ブレ補正と視野補正を行い、他方では21の対物レン
ズを駆動することによって焦点調節を行う。FIG. 3 shows another embodiment of the present invention. In this example, the field shift detecting means and the blur detecting means are realized by using a common image sensor. The visual field shift is detected by evaluating the correlation between the left and right images, and the camera shake is detected by evaluating the correlation between a plurality of images separated by a predetermined time. In this embodiment, a part of the reflecting surfaces of the erecting prisms 22L and 22R is a half mirror, and a part of the incident light rays is guided to an optical system for automatic adjustment. 41L and 41R are the image forming optical systems,
A subject image is formed on an image sensor surface such as an image sensor of L or 42R. Left and right images are respectively formed on the image sensors 42L and 42R, and if the left and right optical axes intersect on the target subject, both images will coincide. The image signals of both images are input to the processing circuit of 70, and on the basis of this signal, the image stabilization is performed by driving the variable apex angle prism of 68 on the one hand, and the objective lens of 21 is driven on the other hand. To adjust the focus.
【0018】図4にて70の処理回路の処理の詳細を説
明する。42L、42Rは像センサで、左右の結像光学
系に対応している。その片方の421の出力信号は71
の遅延回路に記憶され、その出力信号(前サンプリング
のデータ)と42Lの直接の出力信号(今サンプリング
のデータ)は、72の相関回路に加えられる。相関回路
72では時間上での像のズレが算出され、この出力を7
3の積分回路にて積分する事により手ブレ情報を得る事
が出来る。積分回路73の出力は76L、76Rの加算
回路の介して77L、77Rの駆動回路に加えられ、7
8L、78Rのステッピングモータを駆動する。その駆
動力は68L、68Rの可変頂角プリズムを動かし、手
ブレ補正が行われる。The details of the processing of the processing circuit 70 will be described with reference to FIG. Image sensors 42L and 42R correspond to the left and right imaging optical systems. The output signal of the one 421 is 71
Of the output circuit (pre-sampling data) and the 42L direct output signal (current sampling data) are added to the 72 correlation circuit. The correlation circuit 72 calculates the image shift over time, and outputs this output as 7
The camera shake information can be obtained by integrating with the integrating circuit of 3. The output of the integrating circuit 73 is added to the 77L and 77R driving circuits via the 76L and 76R adding circuits,
Drives 8L and 78R stepping motors. The driving force moves the 68L and 68R variable apex angle prisms to perform camera shake correction.
【0019】一方像センサ42L、42Rの両出力信号
は74の相関回路に加えられ、ここで空間上の像のズレ
量が算出される。この出力信号を75の積分回路にて積
分する事により視野ズレ検出信号を得る事が出来る。On the other hand, both output signals of the image sensors 42L and 42R are applied to a correlating circuit 74, where the amount of image shift in space is calculated. A visual field deviation detection signal can be obtained by integrating this output signal with an integrating circuit 75.
【0020】この出力信号はまず、76L、76Rの加
算回路に加算または減算されて、手ブレ情報が補正さ
れ、視野ズレ補正行われる。さらに積分回路75の出力
信号は79の駆動回路にも加えれて、80のステッピン
グモータを駆動する。その駆動力は21L、21Rの対
物レンズを動かし、焦点調節が行われる。This output signal is first added to or subtracted from the adder circuit of 76L and 76R to correct the camera shake information and correct the visual field deviation. Further, the output signal of the integrating circuit 75 is also applied to the drive circuit 79 to drive the stepping motor 80. The driving force moves the 21L and 21R objective lenses to adjust the focus.
【0021】図5は本発明の更に別の実施例である。FIG. 5 shows another embodiment of the present invention.
【0022】視野ズレ検出手段として手動の焦点調節機
構を用い、これと可変頂角プリズムの頂角の変化を連動
させる機構Mを介在させる構造としている。つまり、可
変頂角プリズムの水平方向に頂角を変える方の透明平板
を機械的に回動させる。仮に被写体が無限である場合、
21L、21Rの対物レンズは最も繰り込まれた位置で
焦点が合う。その時可変頂角プリズムの頂角はゼロであ
り、左右像は一致する。一方、被写体が至近距離にある
場合、21L、21Rの対物レンズは最も繰り出された
状態で焦点が合う。その時可変頂角プリズムの頂角は左
右の光軸が内側に向くように制御される。本実施例で
は、このように焦点調節と可変頂角プリズムの頂角が機
械的に連動するようになっているので、視差による像の
見えの悪化を防止できる。上述した実施例では左右の両
光学系について光軸変更を行っているが、片方について
のみ行っても同等の効果は得られる。また手ブレ補償手
段を持たない双眼鏡にも本発明は適用できるし、可変頂
角プリズムの変わりに正立プリズムの反射面の一つを切
離して回転ミラーとし、これを水平に回動しても良い。A manual focus adjusting mechanism is used as the visual field deviation detecting means, and a mechanism M for interlocking this with the change in the apex angle of the variable apex angle prism is interposed. That is, the transparent flat plate whose vertical angle is changed in the horizontal direction of the variable vertical angle prism is mechanically rotated. If the subject is infinite,
The 21L and 21R objective lenses are in focus at the most retracted position. At that time, the apex angle of the variable apex prism is zero, and the left and right images match each other. On the other hand, when the subject is at a close range, the 21L and 21R objective lenses are in focus in the most extended state. At that time, the apex angle of the variable apex angle prism is controlled so that the left and right optical axes face inward. In this embodiment, since the focus adjustment and the apex angle of the variable apex angle prism are mechanically linked in this way, it is possible to prevent the appearance of an image from being deteriorated due to parallax. In the above-described embodiment, the optical axes are changed for both the left and right optical systems, but the same effect can be obtained even if only one is changed. Further, the present invention can be applied to binoculars having no camera shake compensating means, and instead of the variable apex angle prism, one of the reflecting surfaces of the erecting prism is separated to form a rotating mirror, and even if this is rotated horizontally. good.
【0023】[0023]
【発明の効果】以上述べたように、従来技術ではどうし
ても左右光学系の視差により、近距離側の被写体を見た
ときに瓢箪形の枠形になってしまい違和感があったが、
本発明により、いかなる距離の被写体に対しても、視野
枠形状は円形に保たれ、良好な映像を見る事が出来るよ
うになる。As described above, in the prior art, the parallax of the left and right optical systems inevitably causes a sense of discomfort due to a gourd-shaped frame when a subject at a short distance is seen.
According to the present invention, the visual field frame shape is kept circular for an object at any distance, and a good image can be viewed.
【図1】本発明の実施例を示す光学配置図。FIG. 1 is an optical layout diagram showing an embodiment of the present invention.
【図2】電気系のブロック図。FIG. 2 is a block diagram of an electric system.
【図3】別の実施例を示す光学配置図。FIG. 3 is an optical layout diagram showing another embodiment.
【図4】電気系のブロック図。FIG. 4 is a block diagram of an electric system.
【図5】他の実施例の光学配置図。FIG. 5 is an optical layout diagram of another embodiment.
【図6】従来例を示す光学配置図。FIG. 6 is an optical layout diagram showing a conventional example.
【図7】双眼鏡の視野を示す図。FIG. 7 is a diagram showing a field of view of binoculars.
11 LED 12 投光レンズ 13 受光レンズ 14 受光素子 15 自動焦点調節処理回路 16 焦点調節用モータ 17 エンコーダ 21 対物レンズ 22 正立プリズム 23 接眼レンズ 41 像センサ用結像レンズ 42 センサ 60 手ブレ補正処理回路 68 可変頂角プリズム 70 手ブレ補正並びに焦点調節回路 11 LED 12 Light-projecting lens 13 Light-receiving lens 14 Light-receiving element 15 Automatic focus adjustment processing circuit 16 Focus adjustment motor 17 Encoder 21 Objective lens 22 Upright prism 23 Eyepiece 41 Image sensor imaging lens 42 Sensor 60 Image stabilization processing circuit 68 Variable apex angle prism 70 Image stabilization and focus adjustment circuit
Claims (8)
学系の光軸を変更することが可能な光軸可変光学素子を
各対物光学系毎に設け、また対物光学系の視野ズレを検
出する視野ズレ検出手段と前記視野ズレ検出手段の視野
ズレ検出信号に基づき前記光軸可変光学素子を駆動する
駆動手段を設けて視差による像の不一致を緩和すること
を特徴とする多眼光学装置。1. A plurality of objective optical systems are arranged side by side, an optical axis variable optical element capable of changing an optical axis of the objective optical system is provided for each objective optical system, and a field deviation of the objective optical system is provided. A multi-eye optical device characterized in that a visual field deviation detecting means for detecting and a driving means for driving the optical axis variable optical element based on a visual field deviation detecting signal of the visual field deviation detecting means are provided to alleviate a mismatch of images due to parallax. .
いは超音波を物体へ照射し、物体からの反射を受けて視
野ズレを検出することを特徴とする請求項1の多眼光学
装置。2. The multi-eye optical device according to claim 1, wherein the visual field deviation detection means irradiates an object with invisible light or ultrasonic waves and receives the reflection from the object to detect the visual field deviation.
系の夫々を介して形成した像をセンサにて受光し、セン
サからの像信号により得られる2像の相関を評価するこ
とで視野ズレを検出することを特徴とする請求項1の多
眼光学装置。3. The field-of-view deviation detecting means receives an image formed through each of the objective optical systems by a sensor, and evaluates a correlation between the two images obtained by an image signal from the sensor to detect a field-of-view deviation. The multi-lens optical device according to claim 1, wherein
物光学系の焦点調節を行うことを特徴とする請求項1の
多眼光学装置。4. The multi-eye optical device according to claim 1, wherein the focus of the objective optical system is adjusted based on the field shift detection signal.
より得られる角変位信号に基づいて手ブレを検出し、こ
れにより前記光軸可変光学素子を駆動して手ブレを補償
する請求項1又は2の多眼光学装置。5. The camera according to claim 1, further comprising angular displacement detection means, which detects camera shake based on an angular displacement signal obtained by the means, and thereby drives the optical axis variable optical element to compensate for camera shake. Alternatively, the multi-lens optical device of item 2.
し、これにより前記光軸可変光学手段を駆動して手ブレ
を補償する請求項3の多眼光学装置。6. The multi-eye optical device according to claim 3, wherein a camera shake is detected based on the output of the sensor, and thereby the optical axis variable optical means is driven to compensate the camera shake.
1の多眼光学装置。7. The multi-eye optical device according to claim 1, wherein the multi-eye optical device is binoculars.
学系の光軸を変更することが可能な光軸可変光学素子を
各対物光学系毎に設け、また対物光学系の焦点調節に連
動して前記光軸可変光学素子を駆動する手段を設けたこ
とを特徴とする多眼光学装置。8. A plurality of objective optical systems are arranged side by side, an optical axis variable optical element capable of changing the optical axis of the objective optical system is provided for each objective optical system, and focus adjustment of the objective optical system is performed. A multi-lens optical device comprising means for driving the optical axis variable optical element in conjunction with each other.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22585393A JPH0777659A (en) | 1993-09-10 | 1993-09-10 | Multiple-lens optical device |
US08/280,470 US5672862A (en) | 1993-07-30 | 1994-07-26 | Optical apparatus having image shake preventing function |
EP94111864A EP0636916B1 (en) | 1993-07-30 | 1994-07-29 | Optical apparatus having image shake preventing function |
DE1994626246 DE69426246T2 (en) | 1993-07-30 | 1994-07-29 | Optical device with a jitter prevention function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22585393A JPH0777659A (en) | 1993-09-10 | 1993-09-10 | Multiple-lens optical device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0777659A true JPH0777659A (en) | 1995-03-20 |
Family
ID=16835875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22585393A Pending JPH0777659A (en) | 1993-07-30 | 1993-09-10 | Multiple-lens optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0777659A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0725295A1 (en) * | 1995-01-19 | 1996-08-07 | Canon Kabushiki Kaisha | Binoculars having objectives spaced apart at a fixed distance and adjustable eyepieces |
US6134048A (en) * | 1995-11-08 | 2000-10-17 | Minolta Co., Ltd. | Binoculars with a convergence angle correction mechanism |
JP2005250363A (en) * | 2004-03-08 | 2005-09-15 | Nitto Kogaku Kk | Binocular magnifying glass |
WO2016052419A1 (en) * | 2014-09-29 | 2016-04-07 | 富士フイルム株式会社 | Observation device and method for controlling same |
CN114346433A (en) * | 2022-01-14 | 2022-04-15 | 深圳市优控激光科技有限公司 | Laser welding gun |
-
1993
- 1993-09-10 JP JP22585393A patent/JPH0777659A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0725295A1 (en) * | 1995-01-19 | 1996-08-07 | Canon Kabushiki Kaisha | Binoculars having objectives spaced apart at a fixed distance and adjustable eyepieces |
US6134048A (en) * | 1995-11-08 | 2000-10-17 | Minolta Co., Ltd. | Binoculars with a convergence angle correction mechanism |
JP2005250363A (en) * | 2004-03-08 | 2005-09-15 | Nitto Kogaku Kk | Binocular magnifying glass |
WO2016052419A1 (en) * | 2014-09-29 | 2016-04-07 | 富士フイルム株式会社 | Observation device and method for controlling same |
CN114346433A (en) * | 2022-01-14 | 2022-04-15 | 深圳市优控激光科技有限公司 | Laser welding gun |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5754339A (en) | Vibration compensation device for binocular | |
JP4635403B2 (en) | Stereoscopic image creation method and apparatus | |
EP2753978B1 (en) | Variable 3-dimensional adaptor assembly for camera | |
CN100429559C (en) | Virtual image display apparatus | |
US6862140B2 (en) | Stereoscopic image pickup system | |
EP0811876B1 (en) | Method and apparatus for three-dimensional measurement and imaging having focus-related convergence compensation | |
KR20120105495A (en) | Stereoscopic imaging device | |
JP2973867B2 (en) | View point tracking type stereoscopic display apparatus and viewpoint tracking method | |
JPH1020213A (en) | Binoculars provided with shake correcting mechanism | |
GB2226923A (en) | Automatic convergent stereoscopic machine vision | |
JPH0777659A (en) | Multiple-lens optical device | |
US20090059374A1 (en) | Image stabilizing device | |
JPH08205200A (en) | Three-dimensional image pickup device | |
JPH06105339A (en) | Stereoscopic camera device | |
KR20060022107A (en) | Device and method for taking stereoscopic image | |
JP2000214408A (en) | Picture display device | |
JP3064992B2 (en) | Stereoscopic image display method and device | |
JP6670036B2 (en) | How to shoot a compact 3D image | |
KR100851576B1 (en) | Optical device with triple lenses | |
KR101654686B1 (en) | Apparatus for acquiring image information using concave mirror | |
KR20020026625A (en) | Stereo Camera | |
JPS5884589A (en) | Image pickup system for stereoscopic television | |
US11536982B2 (en) | Anti-vibration optical device | |
JPS6138450B2 (en) | ||
JPH08194189A (en) | Stereoscopic image reproducing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030729 |