JPH0777643A - Glass fiber for light transmission and its production - Google Patents

Glass fiber for light transmission and its production

Info

Publication number
JPH0777643A
JPH0777643A JP5224542A JP22454293A JPH0777643A JP H0777643 A JPH0777643 A JP H0777643A JP 5224542 A JP5224542 A JP 5224542A JP 22454293 A JP22454293 A JP 22454293A JP H0777643 A JPH0777643 A JP H0777643A
Authority
JP
Japan
Prior art keywords
glass fiber
coating
innermost layer
layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5224542A
Other languages
Japanese (ja)
Other versions
JP3303460B2 (en
Inventor
Nobuhiro Akasaka
伸宏 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22454293A priority Critical patent/JP3303460B2/en
Publication of JPH0777643A publication Critical patent/JPH0777643A/en
Application granted granted Critical
Publication of JP3303460B2 publication Critical patent/JP3303460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To provide the glass fiber for light transmission having an excellent side pressure characteristic and transmission characteristic and the process for production of such glass fiber. CONSTITUTION:This glass fiber for light transmission which has at least >=2 layers of coatings on the outer periphery of the glass fiber 1 has a gap 1' between the glass fiber side innermost layer coating 2 and the glass fiber. The length in the outer peripheral direction of the glass fiber in the gap part at the section is 10 to 50% of the outer peripheral length of the glass fiber. A gap 1' is formable in the innermost coating layer 2' of the coating by applying and curing a resin or resin compsn. contg. 5 to 20% volatile or migratable non-gel component. The film thickness of the coating layer is particularly preferably made uneven to prevent the generation of the gap 1' uniform over the entire periphery of the glass fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信等に利用される光
伝送用ガラスファイバに関し、詳しくは特に優れた側圧
特性および伝送特性を有する光伝送用ガラスファイバに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmission glass fiber used for optical communication and the like, and more particularly to an optical transmission glass fiber having excellent lateral pressure characteristics and transmission characteristics.

【0002】[0002]

【従来の技術】光伝送用ガラスファイバは線引されたま
までの状態では機械的強度や伝送特性を維持していく上
で問題がある。すなわち、光ファイバに外力によってマ
イクロベンディングと呼ばれる曲げが加わると、光伝送
特性が劣化する。そこで、ガラスファイバ外周に高分子
材料の被覆を設けて機械的強度と耐マイクロベンディン
グ性を向上させる。この耐マイクロベンディング特性を
一般に側圧特性と呼んでいる。上記被覆は一般に2層構
造が主流で、内層としては比較的柔らかい緩衝層が、更
にその外周には硬い保護層が施されている。そしてその
被覆材料としては、高速硬化が実現でき、生産性に優れ
る紫外線硬化型樹脂(UV樹脂とも略称する)が用いら
れている。図2に光ファイバを線引後UV樹脂被覆をタ
ンデムに形成する一連の装置構成を示す。図2において
線引炉5において加熱溶融された光ファイバ母材4を線
引してガラス光ファイバ1とし、直ちに樹脂塗布装置6
で内層被覆用の樹脂(組成物)を塗布され続いて紫外線
照射装置9にて該被覆層を硬化させる。更に樹脂塗布装
置6′と紫外線照射装置9′に導入されて外層被覆層を
形成した後、樹脂被覆光ファイバ11を巻取機12にて
巻き取る。なお7は紫外線照射ランプ、8は筒状体、1
0は反射鏡を示す。また、図示は省略したが内層被覆用
樹脂と外層被覆用樹脂をガラス光ファイバの外周に同時
に塗布して被覆層を形成し続いて両層を紫外線照射によ
り硬化させる二層同時塗布硬化方法によっても複層被覆
を有する光伝送用ガラスファイバを製造できる。今後更
に光ケーブルの高密度化を図る上で、ファイバ被覆の薄
膜化が要求されるが、被覆の薄膜化は側圧特性を維持し
ていく上では大きな障害となる。この背反する要求を両
立させる対策として、例えば特開昭63−168610
号公報にはガラスファイバと被覆層間に空隙のような応
力緩和層を設けることが提案されている。
2. Description of the Related Art A glass fiber for optical transmission has a problem in maintaining mechanical strength and transmission characteristics in a state of being drawn. That is, when a bending called microbending is applied to the optical fiber by an external force, the optical transmission characteristics deteriorate. Therefore, a coating of a polymer material is provided on the outer circumference of the glass fiber to improve mechanical strength and microbending resistance. This anti-micro-bending property is generally called lateral pressure property. The above-mentioned coating generally has a two-layer structure, and a relatively soft buffer layer is provided as an inner layer, and a hard protective layer is provided on the outer periphery thereof. As the coating material, an ultraviolet curable resin (abbreviated as UV resin) that can realize high-speed curing and is excellent in productivity is used. FIG. 2 shows a series of apparatus configurations for forming a UV resin coating in tandem after drawing an optical fiber. In FIG. 2, the optical fiber preform 4 heated and melted in the drawing furnace 5 is drawn into the glass optical fiber 1, and the resin coating device 6 is immediately added.
Then, the resin (composition) for coating the inner layer is applied, and then the coating layer is cured by the ultraviolet irradiation device 9. Further, after being introduced into the resin coating device 6 ′ and the ultraviolet irradiation device 9 ′ to form the outer coating layer, the resin coated optical fiber 11 is wound by the winding machine 12. In addition, 7 is an ultraviolet irradiation lamp, 8 is a cylindrical body, 1
0 indicates a reflecting mirror. Although not shown, a two-layer simultaneous coating and curing method in which the inner layer coating resin and the outer layer coating resin are simultaneously applied to the outer periphery of the glass optical fiber to form a coating layer, and then both layers are cured by UV irradiation may also be used. Glass fibers for optical transmission having a multilayer coating can be manufactured. In order to further increase the density of optical cables in the future, thinning of the fiber coating is required, but thinning of the coating is a major obstacle to maintaining lateral pressure characteristics. As a measure for satisfying these conflicting requirements, for example, Japanese Patent Laid-Open No. 63-168610.
It is proposed in the publication that a stress relaxation layer such as a void is provided between the glass fiber and the coating layer.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記公報に
提案される方法のように空隙を存在させるとガラスと被
覆層との密着力が低下する場合があることがわかった。
ガラスと被覆の密着力がなくなると、例えばガラスが被
覆から突出したり、コネクター内でガラスが破損したり
する。また、例えば文献(1992 IWCS Proceeding p.428
〜434, " Designand qualification of optical fiber
coating for ribbon fiber " )に報告されているよう
に、このようなファイバをテープ心線に用いた場合には
ガラスファイバがちょっとしたことで移動してファイバ
間距離等がバラバラになり(ガラスファイバ間のいわゆ
る「不揃い」)、一括融着接続ができなくなる、という
問題が生じる。本発明はこのような問題を解消した新規
な被覆層構造を開発し、側圧特性および伝送特性が共に
優れた光伝送用ガラスファイバを提供しようとするもの
である。
However, it has been found that the presence of voids, as in the method proposed in the above publication, may reduce the adhesion between the glass and the coating layer.
When the adhesion between the glass and the coating is lost, for example, the glass may protrude from the coating or the glass may be broken in the connector. In addition, for example, the literature (1992 IWCS Proceeding p.428
~ 434, "Designand qualification of optical fiber
As described in "coating for ribbon fiber"), when such a fiber is used as a tape core wire, the glass fiber is moved by a small amount and the inter-fiber distance and the like are scattered ( There is a problem that a so-called "misalignment") and a batch fusion connection cannot be performed. The present invention intends to develop a novel coating layer structure that solves such a problem, and to provide a glass fiber for optical transmission which has excellent lateral pressure characteristics and transmission characteristics.

【0004】[0004]

【課題を解決するための手段】上記課題を解決する本発
明の第一は、ガラスファイバ外周に少なくとも2層以上
の被覆を有してなる光伝送用ガラスファイバにおいて、
ガラスファイバ側最内層被覆とガラスファイバの間に空
隙を有し、断面における該空隙部分のガラスファイバ外
周方向長さがガラスファイバ外周長さの10〜50%で
あることを特徴とする光伝送用ガラスファイバに関す
る。本発明において、上記空隙はガラスファイバ側最内
層被覆として揮発性または移行性未ゲル成分を5〜20
重量%含有するものを被覆することによりガラスと該最
内層被覆の間に生じるようにされたものであることが特
に好ましい。また本発明の第二は、ガラスファイバ外周
に2層以上の被覆を形成するにあたり、被覆の最内層は
樹脂または樹脂組成物を塗布後硬化させて硬化直後の該
最内層中の揮発性または移行性未ゲル成分を5〜20重
量%含有するように形成し、該最内層の形成と同時にあ
るいは最内層の形成に続いて第二層目以降の被覆を形成
しておき、その後の該最内層の体積変化により該最内層
とガラスファイバとの間に空隙を発生させて、断面にお
ける該空隙部分のガラスファイバ外周方向長さがガラス
ファイバ外周長さの10〜50%とすることを特徴とす
る光ファイバ伝送用ガラスファイバの製造方法に関す
る。
The first object of the present invention for solving the above-mentioned problems is to provide a glass fiber for optical transmission which has a coating of at least two layers on the outer circumference of the glass fiber.
An optical transmission characterized by having a gap between the innermost layer coating on the glass fiber side and the glass fiber, and the length of the gap in the cross section in the glass fiber outer peripheral direction is 10 to 50% of the glass fiber outer peripheral length. Regarding glass fiber. In the present invention, the voids contain 5 to 20 volatile or migrating ungelled components as the innermost layer coating on the glass fiber side.
It is particularly preferable that the coating is formed between the glass and the innermost layer by coating the coating containing the content by weight. A second aspect of the present invention is that, when forming two or more layers of coating on the outer circumference of the glass fiber, the innermost layer of the coating is volatile or migrating in the innermost layer immediately after curing by applying a resin or a resin composition and then curing. Non-gel component is contained in an amount of 5 to 20% by weight, and a coating for the second and subsequent layers is formed simultaneously with the formation of the innermost layer or subsequent to the formation of the innermost layer, and then the innermost layer is formed. A void is generated between the innermost layer and the glass fiber by the volume change of the glass fiber, and the length of the void portion in the cross section in the glass fiber outer peripheral direction is 10 to 50% of the glass fiber outer peripheral length. The present invention relates to a method for manufacturing a glass fiber for optical fiber transmission.

【0005】[0005]

【作用】本発明者はガラスと被覆層の間の空隙発生をガ
ラス外周の10〜50%の範囲内として、残りは被覆層
と密着力を維持させることにより応力緩衝性と密着性を
両立できると考えついた。そしてその手法として、硬化
直後に最内層が移行性、揮発性未ゲル成分を一定量含有
するものとすることによりその後最内層に起こる体積変
化、すなわち体積減少あるいは膨潤を利用し、さらには
被覆層を故意に偏肉させて空隙が均一に発生するのを防
ぎ、その偏肉率を5〜25%にすることにより、常にガ
ラス外周の50%以内でのみ発生するようにできること
を見出し、本発明に至った。
The present inventor can achieve both stress buffering property and adhesiveness by keeping the generation of voids between the glass and the coating layer within the range of 10 to 50% of the outer circumference of the glass and maintaining the adhesiveness with the coating layer for the rest. I thought. And as the method, the innermost layer is migrating immediately after curing, the volume change that occurs in the innermost layer after that by containing a certain amount of the volatile ungelled component, that is, volume reduction or swelling is used, and further the coating layer It was found that it is possible to always generate only within 50% of the outer circumference of the glass by intentionally deviating the thickness of the glass to prevent uniform generation of voids, and by setting the uneven thickness ratio to 5 to 25%. Came to.

【0006】図1を用いて本発明を具体的に説明する。
上記の「空隙がガラス外周の10〜50%の範囲内で発
生」とは、光伝送用ガラスファイバの断面においてガラ
スファイバの全外周長さをL0 とし、該ガラスファイバ
と最内層との間で空隙が発生している部分のガラス外周
方向長さをLとするとき、 10≦〔L/L0 〕×100 ≦50(%) であることを意味する。50%を超える空隙が発生する
と、ガラスと被覆の間の密着力が低下し、前記したガラ
スの突き出しやテープ心線での接続不良を起こす。また
10%未満の空隙ではガラスと被覆樹脂層間で期待され
た応力緩衝層として機能しなくなる。従って本発明にお
ける空隙は好ましくは10〜50%より好ましくは20
〜40%とする
The present invention will be specifically described with reference to FIG.
The above-mentioned "voids occur within the range of 10 to 50% of the glass outer circumference" means that the total outer circumference length of the glass fiber is L0 in the cross section of the glass fiber for optical transmission, and the length between the glass fiber and the innermost layer is When the length of the glass outer peripheral direction of the portion in which voids are generated is L, it means that 10≤ [L / L0] × 100≤50 (%). When the voids exceeding 50% are generated, the adhesion between the glass and the coating is lowered, and the above-mentioned glass protrusion and connection failure at the tape core wire occur. Further, if the void is less than 10%, the stress buffer layer expected between the glass and the coating resin layer does not function. Therefore, the voids in the present invention are preferably 10 to 50%, more preferably 20%.
~ 40%

【0007】本発明の空隙がガラス外周で10〜50%
発生している被覆ファイバを得るには、まず最内層被覆
用の樹脂または樹脂組成物として、塗布後硬化させた直
後での揮発性または移行性未ゲル成分含有量(未ゲル分
率)が5〜20%であるような樹脂または樹脂組成物を
用いて最内層を形成する。ここで、本発明における揮発
性または移行性未ゲル成分とは、液状樹脂組成物が硬化
反応により固化する最外周、樹脂骨格に取り込まれない
低分子量化合物を意味する。未ゲル成分が5%未満では
空隙の発生が本発明範囲に入らないし、また20%を超
えると樹脂の硬化が不十分となり、樹脂の弾性率や伸び
等の機械的強度を維持できず、最悪の場合には光伝送用
ガラスファイバに重大な欠陥を生じさせてしまう。未ゲ
ル成分のとりわけ好ましい範囲は7〜15%である。被
覆層の未ゲル分率の測定は、光伝送用ガラスファイバ被
覆を60℃のメチルエチルケトン溶剤に16時間浸漬
し、いわゆる未ゲル成分を溶剤抽出し、取り出した後に
試料被覆重量(W)を測定する。試料の初期重量をW0
とするとき、未ゲル分は次式で示される。 未ゲル分率=〔(W0 −W)/W0 〕×100(%)
The voids of the present invention are 10% to 50% on the outer circumference of the glass.
In order to obtain the generated coated fiber, first, as the resin or resin composition for coating the innermost layer, the volatile or migrating ungelled component content (ungelled fraction) immediately after coating and curing is 5 The innermost layer is formed using a resin or resin composition having a content of ˜20%. Here, the volatile or migratory non-gel component in the present invention means a low molecular weight compound which is not incorporated into the outermost periphery where the liquid resin composition is solidified by the curing reaction and the resin skeleton. If the ungelled component is less than 5%, the generation of voids does not fall within the scope of the present invention, and if it exceeds 20%, the curing of the resin becomes insufficient and the mechanical strength such as elastic modulus and elongation of the resin cannot be maintained, which is the worst case. In this case, a serious defect will occur in the glass fiber for optical transmission. A particularly preferred range of ungelled component is 7-15%. The ungelled fraction of the coating layer is measured by immersing the glass fiber coating for optical transmission in a methyl ethyl ketone solvent at 60 ° C. for 16 hours, extracting the so-called ungelled component with a solvent, and measuring the coating weight (W) of the sample. . Initial weight of sample is W0
Where, the ungelled portion is represented by the following equation. Ungelled fraction = [(W0-W) / W0] x 100 (%)

【0008】また、本発明では被覆層を均一な厚さとせ
ずに故意に5〜25%の範囲内で偏肉させることにより
空隙がガラスファイバ外周の最内層との間に均一に発生
してしまうことを防止でき、〔L/L0 〕を10〜50
%とすることができる。本発明にいう「偏肉率」とは、
図3に示すように各部位の最大被覆厚をt1 、最小被覆
厚をt2 とするとき、 偏肉率=〔(t1 −t2 )/t1 〕×100(%) で定義される。本発明において、偏肉率が5%未満であ
ると均一に空隙が発生してしまい、また50%以内の空
隙に制御することが困難になる。また偏肉率が25%を
超えると内層あるいは外層に極端に薄い部分が生じ、伝
送特性やガラス強度に悪影響を及ぼす。
Further, in the present invention, the coating layer is not made to have a uniform thickness but is intentionally made uneven in thickness within the range of 5 to 25% so that voids are uniformly generated between the coating layer and the innermost layer on the outer periphery of the glass fiber. Can be prevented, and [L / L0] is 10 to 50
It can be%. The "uneven wall thickness ratio" in the present invention means
As shown in FIG. 3, when the maximum coating thickness of each portion is t1 and the minimum coating thickness is t2, the uneven thickness ratio = [(t1-t2) / t1] .times.100 (%). In the present invention, when the uneven thickness ratio is less than 5%, voids are uniformly generated, and it becomes difficult to control the voids to be within 50%. On the other hand, when the uneven thickness ratio exceeds 25%, extremely thin portions are formed in the inner layer or the outer layer, which adversely affects the transmission characteristics and the glass strength.

【0009】このような構造にすることによる作用を更
に詳細に説明する。図2に示すような線引装置で線引さ
れたガラスファイバに、揮発性や移行性を有する光開始
剤や光重合性モノマーあるいは比較的低分子量オイル等
を混合した軟質樹脂を最内層として塗布、硬化し、さら
にその上層に保護層としてより硬質の樹脂を塗布硬化さ
せる。その際、故意に被覆を偏肉させるために、各々の
樹脂塗布装置をガラス母材(ガラスファイバ)の中心か
らずらした位置に配置したり、塗布装置のダイスを非円
にする方法により、本発明の構造の被覆ガラスファイバ
が得られる。すなわち、最内層に含まれる未ゲル成分
が、上層に移行し揮発すると最内層の体積減少が生じ
る。この場合、有機層である最内層の両側の層に対する
接着性を比較すると、内側は無機物のガラスであり、他
方の外層は最内層同様に有機層であるため、前者のガラ
スとの接着性の方が圧倒的に低いため、ガラスと最内層
との間に優先的に隙間が発生する。その際、各層が周方
向に厚みが異なるため、空隙の生じる場所に偏りがで
き、一旦空隙が生じると、その位置を中心に空隙は広が
る。ところで、空隙発生の原動力は、最内層部の体積減
少あるいは外層部の膨潤力のいずれであっても、現象と
しては元来密着していたガラスとの界面に部分的な剥離
が生じることになる。このことから推測して一旦剥離が
生じると、その残留応力は剥離した部分から開放され、
密着して残っている部分までをこれ以上入りする応力で
はなくなる。これを「空隙発生による樹脂の(応力)緩
和」と呼び、この樹脂の緩和により空隙の拡大は止ま
る。そして、本発明に限定した条件つまり偏肉率を5〜
25%とすることにより本発明のガラス外周の10〜5
0%の範囲内の空隙に抑えることが可能である。また、
空隙発生のメカニズムは前記したように最内層の体積減
少以外に、最内層の移行性未ゲル成分が外層に移行し、
該外層が未ゲル成分によって膨潤し、この膨潤の際に該
外層は最内層をガラスから剥離させるように外側に広が
ることが挙げられる。最内層と比較して外層のヤング率
は通常2〜3桁大きいためこの剥離の力は大きい。従っ
て、外層が偏肉しているとその膨潤力が偏在し、剥離が
生じ易くなる領域が存在することになる。よって、3層
以上の被覆層構造の場合、最内層以外に偏肉しているこ
とが好ましい層は最内層に接する層であると言える。
The operation of this structure will be described in more detail. A glass fiber drawn by a drawing device as shown in FIG. 2 is coated with a soft resin mixed with a volatile or migrating photoinitiator, a photopolymerizable monomer, or a relatively low molecular weight oil as an innermost layer. Then, the resin is cured, and a harder resin is applied and cured as a protective layer on the upper layer. At that time, in order to intentionally make the coating uneven in thickness, each resin coating device is arranged at a position displaced from the center of the glass base material (glass fiber), or the die of the coating device is made noncircular. A coated glass fiber of the inventive structure is obtained. That is, when the ungelled component contained in the innermost layer is transferred to the upper layer and volatilized, the volume of the innermost layer is reduced. In this case, comparing the adhesiveness to the layers on both sides of the innermost layer that is an organic layer, the inner side is an inorganic glass, and the other outer layer is an organic layer as well as the innermost layer, so the adhesiveness of the former glass Since it is overwhelmingly low, a gap is preferentially generated between the glass and the innermost layer. At that time, since the thickness of each layer is different in the circumferential direction, the locations where the voids are formed are biased, and once the voids are formed, the voids expand around the position. By the way, regardless of whether the driving force of the void generation is the volume decrease of the innermost layer or the swelling force of the outer layer, the phenomenon is that partial peeling occurs at the interface with the glass that was originally adhered. . From this fact, once delamination occurs, the residual stress is released from the delaminated part,
There is no more stress to enter the part that remains in close contact. This is called "relaxation of resin (stress) due to generation of voids", and the relaxation of the resin stops the expansion of voids. And, the condition limited to the present invention, that is, the uneven thickness ratio is 5 to
By setting the content to 25%, the outer circumference of the glass of the present invention is 10 to 5
It is possible to suppress the voids within the range of 0%. Also,
The mechanism of void generation is, as described above, in addition to the volume reduction of the innermost layer, the migrating ungelled component of the innermost layer migrates to the outer layer,
The outer layer is swollen by the ungelled component, and the outer layer spreads outward so as to separate the innermost layer from the glass during the swelling. Since the Young's modulus of the outer layer is usually 2 to 3 orders of magnitude higher than that of the innermost layer, the peeling force is large. Therefore, if the outer layer has uneven thickness, the swelling force is unevenly distributed, and there is a region where peeling easily occurs. Therefore, in the case of a coating layer structure of three or more layers, it can be said that a layer having a nonuniform thickness other than the innermost layer is a layer in contact with the innermost layer.

【0010】本発明のこのような被覆構造に適した最内
層の被覆樹脂または樹脂組成物に用いる樹脂としては、
紫外線硬化型樹脂が好ましく、例えばウレタンアクリレ
ート樹脂、エポキシアクリレート樹脂、シリコンアクリ
レート樹脂、ブタジエン系アクリレート樹脂等が挙げら
れる。また該樹脂または樹脂組成物のヤング率は0.0
5〜0.20kg/mm2 であることが好ましい。
The resin used for the coating resin or resin composition of the innermost layer suitable for such a coating structure of the present invention is
An ultraviolet curable resin is preferable, and examples thereof include urethane acrylate resin, epoxy acrylate resin, silicon acrylate resin, and butadiene acrylate resin. The Young's modulus of the resin or resin composition is 0.0
It is preferably 5 to 0.20 kg / mm 2 .

【0011】本発明の最内層の被覆樹脂または樹脂組成
物に含有させておく未ゲル成分としてはとしては、例え
ばアセトフェノン系、ベンジルケタール系等の光開始
剤、例えばN−ビニルピロリドン、ジメチルアクリルア
ミド、テトラエチレングリコールジアクリレート等の光
重合性モノマー、例えばシリコンオイル、鉱油等の分子
量5000以下の低分子量のオイル等が挙げられる。最
内層の厚さは10〜50μm程度が一般的である。
Examples of the ungelled component to be contained in the coating resin or resin composition for the innermost layer of the present invention include photoinitiators such as acetophenone type and benzyl ketal type, such as N-vinylpyrrolidone and dimethylacrylamide. Examples thereof include photopolymerizable monomers such as tetraethylene glycol diacrylate, and low molecular weight oils having a molecular weight of 5000 or less such as silicone oil and mineral oil. The thickness of the innermost layer is generally about 10 to 50 μm.

【0012】外周の保護被覆層の被覆樹脂または樹脂組
成物に用いる樹脂としては、紫外線硬化型樹脂が好まし
く、例えばウレタンアクリレート樹脂、エポキシアクリ
レート樹脂、シリコンアクリレート樹脂、ブタジエン系
アクリレート樹脂等が挙げられる。また該樹脂または樹
脂組成物のヤング率は10〜200kg/mm2 であること
が好ましい。外層の厚さは10〜50μm程度が一般的
である。
The resin used for the coating resin of the outer peripheral protective coating layer or the resin composition is preferably an ultraviolet curable resin, and examples thereof include urethane acrylate resin, epoxy acrylate resin, silicon acrylate resin and butadiene acrylate resin. The Young's modulus of the resin or resin composition is preferably 10 to 200 kg / mm 2 . The thickness of the outer layer is generally about 10 to 50 μm.

【0013】[0013]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。 〔実施例1〜3および比較例1〜3〕図2に示す線引装
置を用いて光ファイバ母材1を線引炉5で線引してガラ
ス光ファイバ1とし、該ガラス光ファイバ1を樹脂塗布
装置6により被覆を施した。その後紫外線照射装置9に
より該被覆樹脂を硬化させて光伝送用ガラスファイバを
得る。このとき内層2には、硬化後に移行性、揮発性を
有する未ゲル成分が夫々6%または10%となるヤング
率0.1kg/cm2の紫外線硬化型ウレタンアクリレート樹
脂を用い、外層にはヤング率80kg/cm2の紫外線硬化型
ウレタンアクリレート樹脂を用いて、内層が外径190
μm、外層が外径250μmとなるように被覆した。そ
の際、各層の偏肉率を表1に示すように変化させた(実
施例1〜実施例3および比較例1)。線引より1日後の
空隙発生状況を顕微鏡により観察した。その結果も併せ
て表1に示す。また比較例2,比較例3として内層2に
硬化後の移行性、揮発性の未ゲル成分が4%となるヤン
グ率0.1kg/cm2の紫外線硬化型ウレタンアクリレート
樹脂を用いた他は実施例1と同様にして被覆を形成し
た。この比較例2のものには空隙は発生しなかった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. [Examples 1 to 3 and Comparative Examples 1 to 3] Using the drawing apparatus shown in FIG. 2, the optical fiber preform 1 was drawn in the drawing furnace 5 to form the glass optical fiber 1. The coating was performed by the resin coating device 6. Then, the coating resin is cured by the ultraviolet irradiation device 9 to obtain a glass fiber for optical transmission. At this time, a UV-curable urethane acrylate resin having a Young's modulus of 0.1 kg / cm 2 that makes the non-gel component having migration property and volatility 6% or 10% after curing is used for the inner layer 2 and the Young layer is used for the outer layer. The outer diameter of the inner layer is 190 using UV-curable urethane acrylate resin with a rate of 80 kg / cm 2.
μm, and the outer layer was coated so that the outer diameter was 250 μm. At that time, the uneven thickness ratio of each layer was changed as shown in Table 1 (Examples 1 to 3 and Comparative Example 1). The state of void formation one day after drawing was observed with a microscope. The results are also shown in Table 1. Also, as Comparative Examples 2 and 3, except that the inner layer 2 was made of a UV-curable urethane acrylate resin having a Young's modulus of 0.1 kg / cm 2 , which had a migration-resistant and volatile ungelled component of 4% after curing. A coating was formed as in Example 1. No void was generated in the sample of Comparative Example 2.

【0014】[0014]

【表1】 [Table 1]

【0015】以上の各被覆光ファイバについて側圧特性
の良否を調べた。本発明ではファイバ長:5km、ボビ
ン胴径:280mmφ、張力100gでボビンに巻き付
け、巻き付け後30分以内に測定したときの伝送損失の
大小で判定した。なお、ガラスファイバはガラス外径1
25μm、MFDが9.5μm、カットオフ波長1.2
μmのシングルモードファイバである。測定結果を表2
に示すが、空隙発生のない比較例2のものでは1.55
μmにおける伝送損失0.45dB/kmと本発明の実
施例1,2と比べて非常に劣っていた。
The quality of the lateral pressure characteristics of each of the above coated optical fibers was examined. In the present invention, the fiber length was 5 km, the bobbin barrel diameter was 280 mmφ, and the tension was 100 g, and it was wound around the bobbin, and it was judged by the size of the transmission loss when measured within 30 minutes after the winding. The glass fiber has a glass outer diameter of 1
25 μm, MFD 9.5 μm, cutoff wavelength 1.2
It is a μm single mode fiber. Table 2 shows the measurement results
However, in the case of Comparative Example 2 in which no void is generated, 1.55
The transmission loss in μm was 0.45 dB / km, which was extremely inferior to the first and second embodiments of the present invention.

【0016】実施例1〜3および比較例1〜3の各被覆
光ファイバを用いて4心のテープ心線を製造し、一括融
着接続が可能か否かを調べた。その結果を表2にあわせ
て示すが、比較例2のものは不可であった。
Using each of the coated optical fibers of Examples 1 to 3 and Comparative Examples 1 to 3, a 4-fiber ribbon was manufactured, and whether or not batch fusion splicing was possible was examined. The results are also shown in Table 2, but Comparative Example 2 was not acceptable.

【0017】[0017]

【表2】 [Table 2]

【0018】上記の各実施例及び比較例では被覆を内層
から順次形成してゆくタンデム法による例を挙げたが、
本発明の光伝送用ガラスファイバは複層同時塗布硬化す
る方法によっても製造することができることは言うまで
もない。
In each of the above Examples and Comparative Examples, the tandem method in which the coating is sequentially formed from the inner layer has been described.
It goes without saying that the glass fiber for optical transmission of the present invention can also be manufactured by a method of simultaneously coating and curing multiple layers.

【0019】以上説明したように、本発明の光伝送用ガ
ラスファイバは、伝送特性に優れしかもガラスと被覆と
の密着力が大幅に低下した際に生じる種々の問題点を同
時に解決でき、側圧特性、伝送特性ともに優れたもので
あり、産業上非常に有利である。
As explained above, the glass fiber for optical transmission of the present invention has excellent transmission characteristics, and at the same time can solve various problems caused when the adhesion between the glass and the coating is greatly reduced, and the lateral pressure characteristics can be solved. It has excellent transmission characteristics and is very advantageous in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明の一実施態様を説明する概略断面図で
ある。
FIG. 1 is a schematic sectional view illustrating an embodiment of the present invention.

【図2】は本発明および従来の被覆ガラス光ファイバ
(光伝送用ガラスファイバ)を製造する方法の概略説明
図である。
FIG. 2 is a schematic explanatory view of the method of manufacturing the coated glass optical fiber (glass fiber for optical transmission) according to the present invention.

【図3】は本発明における被覆の偏肉率を説明するため
の概略断面図である。
FIG. 3 is a schematic cross-sectional view for explaining the uneven thickness ratio of the coating in the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス光ファイバ、 1′ 空隙、 2 内
層、 3 外層、4 光ファイバ母材、 5 線引
炉、 6 樹脂塗布装置、 6′ 樹脂塗布装置、
7 紫外線ランプ、 8 筒状体、 9 紫外
線照射装置、9′ 紫外線照射装置、 10 反射
鏡、 11 樹脂被覆光ファイバ、 12巻取機。
1 glass optical fiber, 1'void, 2 inner layer, 3 outer layer, 4 optical fiber base material, 5 drawing furnace, 6 resin coating device, 6'resin coating device,
7 ultraviolet lamp, 8 cylindrical body, 9 ultraviolet irradiation device, 9'ultraviolet irradiation device, 10 reflecting mirror, 11 resin coated optical fiber, 12 winding machine.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ガラスファイバ外周に少なくとも2層以
上の被覆を有してなる光伝送用ガラスファイバにおい
て、ガラスファイバ側最内層被覆とガラスファイバの間
に空隙を有し、断面における該空隙部分のガラスファイ
バ外周方向長さがガラスファイバ外周長さの10〜50
%であることを特徴とする光伝送用ガラスファイバ。
1. A glass fiber for optical transmission, which has a coating of at least two layers on the outer circumference of the glass fiber, has a gap between the glass fiber innermost layer coating and the glass fiber, The glass fiber outer peripheral length is 10 to 50 of the glass fiber outer peripheral length.
% Glass fiber for optical transmission.
【請求項2】 上記空隙はガラスファイバ側最内層被覆
として揮発性または移行性未ゲル成分を5〜20重量%
含有するものを被覆することによりガラスファイバと該
最内層被覆の間に生じるようにされたものであることを
特徴とする請求項1記載の光伝送用ガラスファイバ。
2. The voids, as an innermost layer coating on the glass fiber side, contain 5 to 20% by weight of a volatile or migrating ungelled component.
2. The glass fiber for optical transmission according to claim 1, wherein the glass fiber is produced between the glass fiber and the innermost layer coating by coating the contained glass.
【請求項3】 上記ガラスファイバ側最内層の偏肉率が
5〜25%であることを特徴とする請求項1または請求
項2記載の光伝送用ガラスファイバ。
3. The glass fiber for optical transmission according to claim 1, wherein the thickness deviation of the innermost layer on the glass fiber side is 5 to 25%.
【請求項4】 上記ガラスファイバ側最内層の外側の被
覆の少なくとも1層の偏肉率が5〜25%であることを
特徴とする請求項1ないし請求項3のいずれかに記載の
光伝送用ガラスファイバ。
4. The optical transmission according to claim 1, wherein at least one layer of the outermost coating on the glass fiber side innermost layer has an uneven thickness ratio of 5 to 25%. For glass fiber.
【請求項5】 上記2層以上の被覆が紫外線硬化型樹脂
または紫外線硬化型樹脂組成物からなることを特徴とす
る請求項1ないし請求項4のいずれかに記載される光伝
送用ガラスファイバ。
5. The glass fiber for optical transmission according to claim 1, wherein the coating of two or more layers is made of an ultraviolet curable resin or an ultraviolet curable resin composition.
【請求項6】 ガラスファイバ外周に2層以上の被覆を
形成するにあたり、被覆の最内層は樹脂または樹脂組成
物を塗布後硬化させて硬化直後の該最内層中の揮発性ま
たは移行性未ゲル成分を5〜20重量%含有するように
形成し、該最内層の形成と同時にあるいは最内層の形成
に続いて第二層目以降の被覆を形成しておき、その後の
該最内層の体積変化により該最内層とガラスファイバと
の間に空隙を発生させて、断面における該空隙部分のガ
ラスファイバ外周方向長さがガラスファイバ外周長さの
10〜50%とすることを特徴とする光ファイバ伝送用
ガラスファイバの製造方法。
6. When forming a coating of two or more layers on the outer periphery of a glass fiber, the innermost layer of the coating is a volatile or migrating non-gel in the innermost layer immediately after curing by applying a resin or a resin composition and then curing it. The composition is formed so as to contain 5 to 20% by weight of the components, and a coating for the second layer and subsequent layers is formed at the same time as the formation of the innermost layer or subsequent to the formation of the innermost layer, and the volume change of the innermost layer thereafter. To generate a gap between the innermost layer and the glass fiber, and the length of the gap in the cross section in the glass fiber outer peripheral direction is 10 to 50% of the glass fiber outer peripheral length. Of manufacturing glass fiber for automobiles.
【請求項7】 被覆用の樹脂または樹脂組成物の塗布を
ガラスファイバの位置をダイス中心からはずして行なう
あるいは偏心ダイスにより行なうことにより被覆層を偏
肉させ、これにより空隙の発生を制御することを特徴と
する請求項6記載の光伝送用ガラスファイバの製造方
法。
7. A coating resin or a resin composition is applied by removing the position of the glass fiber from the center of the die or by using an eccentric die to make the coating layer uneven in thickness and thereby control the generation of voids. The method for producing a glass fiber for optical transmission according to claim 6.
JP22454293A 1993-09-09 1993-09-09 Glass fiber for optical transmission and method of manufacturing the same Expired - Fee Related JP3303460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22454293A JP3303460B2 (en) 1993-09-09 1993-09-09 Glass fiber for optical transmission and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22454293A JP3303460B2 (en) 1993-09-09 1993-09-09 Glass fiber for optical transmission and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0777643A true JPH0777643A (en) 1995-03-20
JP3303460B2 JP3303460B2 (en) 2002-07-22

Family

ID=16815432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22454293A Expired - Fee Related JP3303460B2 (en) 1993-09-09 1993-09-09 Glass fiber for optical transmission and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3303460B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074713A1 (en) * 2001-03-16 2002-09-26 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacturing the optical fiber
JP2019184596A (en) * 2018-03-30 2019-10-24 宇部エクシモ株式会社 Distortion detecting optical fiber cable

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002074713A1 (en) * 2001-03-16 2002-09-26 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacturing the optical fiber
EP1386892A1 (en) * 2001-03-16 2004-02-04 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacturing the optical fiber
CN100351195C (en) * 2001-03-16 2007-11-28 住友电气工业株式会社 Optical fiber and method of manufacturing optical fiber
US7366383B2 (en) 2001-03-16 2008-04-29 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacturing the optical fiber
EP1386892A4 (en) * 2001-03-16 2008-05-07 Sumitomo Electric Industries Optical fiber and method of manufacturing the optical fiber
JP2019184596A (en) * 2018-03-30 2019-10-24 宇部エクシモ株式会社 Distortion detecting optical fiber cable

Also Published As

Publication number Publication date
JP3303460B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
JP4049154B2 (en) Optical fiber ribbon
JP4134724B2 (en) Coated optical fiber, optical fiber ribbon and optical fiber unit using the same
US6253013B1 (en) Optical fiber arrays
KR100460366B1 (en) Coated optical fiber and its manufacturing method
JPH085879A (en) Optical fiber ribbon
JP2950264B2 (en) Manufacturing method of optical fiber ribbon
US6535673B1 (en) Optical fiber arrays having an interface characteristic
JP3303460B2 (en) Glass fiber for optical transmission and method of manufacturing the same
KR20000070289A (en) Optical fiber equipped with cladding and method of manufacturing the same
CN115728860A (en) Optical fiber
CN112654908A (en) Optical fiber core wire and optical fiber cable
CN118159887A (en) Optical fiber
JP3084702B2 (en) Glass fiber for optical transmission
JP2001240433A (en) Coated optical fiber
JP2001083381A (en) Coated optical fiber
US20240116808A1 (en) Colored optical fiber, optical fiber ribbon, optical fiber ribbon cable and method for manufacturing the same
WO2022092089A1 (en) Colored optical fiber core wire, optical fiber ribbon, single-core fiber assembly cable, ribbon cable, and method for producing same
EP4306494A1 (en) Colored optical fiber core wire, optical fiber ribbon, single-core fiber assembly cable, optical fiber ribbon cable, and method for producing same
EP4390477A1 (en) Optical fiber
JPH03163505A (en) Coated optical fiber
JPH11116283A (en) Production of coated optical fiber
JP2002341153A (en) Optical fiber coil and method for manufacturing the same
JP2023146629A (en) Screening method and manufacturing method for optical fiber strand
JP3392991B2 (en) Recoating method of fusion spliced part of optical fiber
JP2001264606A (en) Method for manufacturing coated optical fiber ribbon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees