JPH0777603A - Omnidirectional reflecting body - Google Patents

Omnidirectional reflecting body

Info

Publication number
JPH0777603A
JPH0777603A JP24643993A JP24643993A JPH0777603A JP H0777603 A JPH0777603 A JP H0777603A JP 24643993 A JP24643993 A JP 24643993A JP 24643993 A JP24643993 A JP 24643993A JP H0777603 A JPH0777603 A JP H0777603A
Authority
JP
Japan
Prior art keywords
plane
point
incident
parallel
omnidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24643993A
Other languages
Japanese (ja)
Inventor
Takashi Morita
隆 盛田
Masaaki Yuzaki
雅朗 勇崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP24643993A priority Critical patent/JPH0777603A/en
Publication of JPH0777603A publication Critical patent/JPH0777603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To provide the omnidirectional reflecting body which returns a reflected light which is parallel to even an incident wave from any direction to one point on a plane and is easily installed when a distance is measured. CONSTITUTION:The omnidirectional reflecting body 10 is constituted by providing four reflection systems 12, each formed of three mutually right-angled planes reflecting an incident wave of <=90 deg. in solid angle in parallel, at one point Q on the plane so that the vertexes Q of them meet together. Consequently, waves made incident on one point Q on the plane 11 from all directions of 360 deg. in solid angle can be reflected in parallel to the incidence directions. Therefore, the distance can be measured only by installing the plane 11 of the omnidirectional reflecting body 10 opposite the side of a range finder without considering the angle, and the installation of the reflecting body is facilitated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、全方向反射体に関
し、光などの電磁波を用いて距離測定など行う場合の測
定点に設置して好適なものであり、あらゆる方向から平
面上の1点に対して入射する入射波を平行に反射できる
ようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an omnidirectional reflector, which is suitable for being installed at a measurement point when distance measurement is performed using electromagnetic waves such as light. The incident wave incident on is reflected in parallel.

【0002】[0002]

【従来の技術】数10メートル以上の比較的長距離を高
精度に測定するため光を用いる距離測定が行われてお
り、測定点に設置した反射体に光を入射し、反射体から
反射してくる光の位相差を検出して距離をはかるように
している。
2. Description of the Related Art Distance measurement using light is performed to measure a relatively long distance of several tens of meters or more with high accuracy. Light is incident on a reflector installed at a measurement point and reflected from the reflector. The phase difference of the incoming light is detected to measure the distance.

【0003】このような距離測定技術を応用すること
で、大型構造物の形状や各点の位置の測定ができ、たと
えば図3に示すように、船体ブロック建造の際のブロッ
ク1の主要接合点を測定点Pとして、これに向けて距離
計2から光を照射し、反射する光を距離計2で受けるこ
とによって各測定点Pまでの距離と角度を求め、これに
よりブロック1の形状を把握することなどに利用されて
おり、これに限らず形状把握や距離測定など幅広い分野
への応用が期待されている。
By applying such a distance measuring technique, the shape of a large structure and the position of each point can be measured. For example, as shown in FIG. 3, the main joint points of the block 1 at the time of building a hull block. Is set as a measurement point P, light is emitted from the rangefinder 2 toward the measurement point P, and the distance and angle to each measurement point P are obtained by receiving the reflected light by the rangefinder 2, thereby grasping the shape of the block 1. It is used in various fields such as shape grasping and distance measurement.

【0004】この距離測定のためには、測定点Pに光を
反射する反射体3を設置する必要があり、通常の平面鏡
では、距離計2の方向と平面鏡とを正対させなければな
らないことから、図4に示すように、入射方向の許容範
囲がある程度広いコーナキューブプリズム4(同図
(a)参照)や三面鏡5(同図(b)参照)を用いた
り、コーナキューブプリズム6aをシート状に平面的に
並べた集合反射体6(同図(c)参照)を用いるように
している。
For this distance measurement, it is necessary to install a reflector 3 that reflects light at the measurement point P, and in a normal plane mirror, the direction of the rangefinder 2 and the plane mirror must be made to face each other. Therefore, as shown in FIG. 4, a corner cube prism 4 (see FIG. 4 (a)) or a three-sided mirror 5 (see FIG. 4 (b)) having a wide allowable range in the incident direction is used, or a corner cube prism 6a is used. A collective reflector 6 (see FIG. 7C) arranged in a sheet shape in a plane is used.

【0005】このような反射体3を用いることで、コー
ナキューブプリズム4や三面鏡5の頂点に対して立体角
で90度以内の方向から入射する光を入射方向と平行に
反射することができ、しかも光路も常に正確に頂点まで
の光路となり、これら反射体3によって距離測定が可能
となる。
By using such a reflector 3, it is possible to reflect light incident from a direction within a solid angle of 90 degrees with respect to the vertexes of the corner cube prism 4 and the three-sided mirror 5 in parallel with the incident direction. Moreover, the optical path is always exactly the optical path to the apex, and these reflectors 3 enable distance measurement.

【0006】[0006]

【発明が解決しようとする課題】ところが、距離測定対
象が大型構造物の場合などでは、測定点Pが多く、距離
計2を一箇所に固定して測定しようとすると、立体角が
90度以内の測定点Pが少なく、距離計2をたびたび移
動しながら測定しなければならなくなったり、測定点P
に取付ける反射体4の向きを距離計2に対して立体角で
90度以内となるように傾けた状態で設置しなければな
らず、距離測定が繁雑になるという問題がある。
However, when the distance measurement object is a large structure, the number of measurement points P is large, and if the distance meter 2 is fixed at one location and the measurement is performed, the solid angle is within 90 degrees. There are few measurement points P in the
There is a problem that the distance measurement becomes complicated because the reflector 4 to be attached to must be installed so as to be tilted with respect to the rangefinder 2 so that the solid angle is within 90 degrees.

【0007】この発明はかかる従来技術の問題点に鑑み
てなされたもので、平面上の1点に対してどの方向から
の入射波に対しても平行な反射波をかえすことができ、
距離測定などの際の設置が容易な全方向反射体を提供し
ようとするものである。
The present invention has been made in view of the above problems of the prior art, and it is possible to return a reflected wave parallel to an incident wave from any direction with respect to one point on a plane,
It is intended to provide an omnidirectional reflector that can be easily installed when measuring a distance.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
めこの発明の全方向反射体は、平面上の1点に対してあ
らゆる方向から入射する入射波を入射方向と平行に反射
する全方向反射体であって、立体角90度以内の入射波
を平行に反射する互いに直角な3平面で形成される反射
系をその頂点を合わせて前記平面上の1点に4個設けて
構成したことを特徴とするものである。
In order to solve the above-mentioned problems, an omnidirectional reflector of the present invention is an omnidirectional reflector that reflects an incident wave incident from any direction on one point on a plane in parallel with the incident direction. A reflector, which is configured by providing four reflection systems formed by three mutually perpendicular planes that reflect incident waves within a solid angle of 90 degrees in parallel at one point on the plane with their apexes aligned. It is characterized by.

【0009】[0009]

【作用】この全方向反射体によれば、立体角90度以内
の入射波を平行に反射する互いに直角な3平面で形成さ
れる反射系をその頂点を合わせて前記平面上の1点に4
個設けて構成するようにしており、平面上の1点に対し
て立体角で360度のあらゆる方向からの入射波を入射
方向と平行に反射することができるようにしている。
According to this omnidirectional reflector, a reflection system formed by three planes orthogonal to each other, which reflect incident waves within a solid angle of 90 degrees in parallel, has four vertices at one point on the plane with their vertices aligned.
It is configured to be provided individually, so that an incident wave from any direction with a solid angle of 360 degrees with respect to one point on a plane can be reflected in parallel to the incident direction.

【0010】これにより、全方向反射体の平面を、角度
を考慮すること無く距離計側に向けて設置するだけで良
く、設置の容易化を図ることができるようになる。
As a result, the plane of the omnidirectional reflector need only be installed facing the rangefinder side without considering the angle, and the installation can be facilitated.

【0011】[0011]

【実施例】以下、この発明の実施例を図面に基づき詳細
に説明する。図1はこの発明の全方向反射体の一実施例
にかかる分解斜視図である。この全方向反射体10は、
平面上の1点Qに対してあらゆる方向から入射する入射
波を入射方向と平行に反射する反射体であり、1点Qが
位置する平面を水平面11とし、水平面11の上面にあ
らゆる方向から入射する入射波を反射するようになって
いる。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is an exploded perspective view of an embodiment of the omnidirectional reflector of the present invention. This omnidirectional reflector 10
It is a reflector that reflects an incident wave incident from any direction to a point Q on a plane in parallel to the incident direction. A plane on which the point Q is located is a horizontal plane 11, and is incident on an upper surface of the horizontal plane 11 from any direction. It is designed to reflect the incident wave.

【0012】この全方向反射体10は、4つの反射系1
2で構成されている。各反射系12は3つの平面鏡を反
射面13が内側となり、しかも反射面13が1つの点を
頂点Qとして互いに直角となるように配置されて構成さ
れている。そして、これらは4つの反射系12がその頂
点Qを1点で合わせて密着するように配置されて全方向
反射体10が構成されている。
This omnidirectional reflector 10 comprises four reflection systems 1
It is composed of two. Each reflection system 12 is configured by arranging three plane mirrors so that the reflection surface 13 is inside and the reflection surface 13 is perpendicular to each other with one point as the vertex Q. The four reflection systems 12 are arranged so that their apexes Q are aligned at one point and are in close contact with each other to form the omnidirectional reflector 10.

【0013】すなわち、この全方向反射体10をX−Y
−Zの直角座標で見ると、1点Qを原点とし、平面11
をX−Y平面とすると、この平面11の上面が反射面1
3とされるとともに、Z−X平面およびY−Z平面の表
裏両面がそれぞれ反射面13としてあるのである。
That is, the omnidirectional reflector 10 is arranged in the XY direction.
-When viewed in the Cartesian coordinate system of Z, one point Q is the origin and the plane 11
Is the XY plane, the upper surface of this plane 11 is the reflection surface 1.
3, and both the front and back surfaces of the Z-X plane and the Y-Z plane are reflection surfaces 13.

【0014】このように構成した全方向反射体10で
は、平面11の1点Qに向かって入射する光はその入射
方向にかかわらず全てが入射方向と平行に反射される。
すなわち、図1に示す全方向反射体10では、X−Y面
に上方から入射する光がその入射方向と平行に反射さ
れ、しかも光路がQ点までの光路と同一となる。
In the omnidirectional reflector 10 having such a structure, all the light incident on one point Q on the plane 11 is reflected parallel to the incident direction regardless of the incident direction.
That is, in the omnidirectional reflector 10 shown in FIG. 1, light incident on the XY plane from above is reflected parallel to the incident direction, and the optical path is the same as the optical path up to the point Q.

【0015】したがって、この全方向反射体10を、た
とえば図3に示した船体ブロック建造の際のブロック1
の接合点などの測定点Pに、Q点を一致させて平面11
がほぼ垂直となり、反射面13が距離計2側を向くよう
に取付ける。
Therefore, this omnidirectional reflector 10 is used as the block 1 in the construction of the hull block shown in FIG. 3, for example.
Match the point Q with the measurement point P such as the junction point of
Is almost vertical, and the reflecting surface 13 is attached so as to face the rangefinder 2 side.

【0016】すると、これまでの反射体のように立体角
が90度の範囲内からの入射でなくとも、Q点に向けて
入射するどの方向からの入射波も入射方向と平行に反射
され、反射波を距離計2で受けることができ、距離を測
定することができる。
Then, even if the incident angle is not within the range of a solid angle of 90 degrees as in the conventional reflectors, the incident wave from any direction incident toward the point Q is reflected in parallel with the incident direction, The reflected wave can be received by the rangefinder 2, and the distance can be measured.

【0017】次に、この発明の他の一実施例について、
図2により説明する。この実施例の全方向反射体20は
コーナキューブプリズムを反射系21とするものであ
り、4つのコーナキューブプリズム22の頂点Rを平面
23上の1点Rに密着するように組み合わせて配置して
構成してある。
Next, regarding another embodiment of the present invention,
This will be described with reference to FIG. The omnidirectional reflector 20 of this embodiment uses a corner cube prism as the reflection system 21, and the vertexes R of the four corner cube prisms 22 are arranged so as to be in close contact with one point R on the plane 23. Configured.

【0018】このように反射系21として立体角が90
度以内の入射波を平行に反射するコーナキューブプリズ
ム22を4個組み合わせる場合にも、平面23上の1点
Rに対してどの方向からの入射光も平行に反射すること
ができ、距離測定の反射体として用いて有効である。
As described above, the reflection system 21 has a solid angle of 90.
Even when four corner cube prisms 22 that reflect incident waves within a degree in parallel are combined, incident light from any direction with respect to one point R on the plane 23 can be reflected in parallel. It is effective when used as a reflector.

【0019】以上のように、この発明の全方向反射体1
0,20によれば、平面11,23上の点Q,Rへのど
の方向からの入射波に対しても平行に反射波をかえすこ
とができる。
As described above, the omnidirectional reflector 1 of the present invention
According to 0 and 20, the reflected wave can be returned in parallel to the incident wave from any direction to the points Q and R on the planes 11 and 23.

【0020】また、光などの電磁波発振器から測定点P
に合わせて設置した全方向反射体10,20で反射して
戻された電磁波は、電磁波発振器と測定点Pとの間の光
路を往復したことになり、これを利用して測定点Pまで
の距離を高精度に求めることができる。
In addition, from the electromagnetic wave oscillator such as light, a measuring point P
The electromagnetic waves reflected and returned by the omnidirectional reflectors 10 and 20 installed in accordance with the above reciprocate the optical path between the electromagnetic wave oscillator and the measurement point P, and use this to reach the measurement point P. The distance can be obtained with high accuracy.

【0021】この全方向反射体10,20を測定点Pに
取付ける場合に、立体角が90度以内となるように向け
る必要がなく、P点に点Q,Rが一致するようにするだ
けで良く、取付作業が大幅に簡素化され、短時間に行う
ことができる。
When the omnidirectional reflectors 10 and 20 are attached to the measuring point P, it is not necessary to direct them so that the solid angle is within 90 degrees, and only the points Q and R need to coincide with the point P. Good, installation work is greatly simplified and can be done in a short time.

【0022】なお、上記実施例では、4つ組み合わせる
反射系として3面鏡とコーナキューブプリズムを用いる
場合で説明したが、これに限らず、互いに直角な3平面
で形成されると光学的に同等のものであればよい。
In the above embodiment, the case where the three-sided mirror and the corner cube prism are used as the reflection system to be combined with four has been described, but the present invention is not limited to this, and it is optically equivalent when formed by three planes orthogonal to each other. Anything will do.

【0023】また、この発明は、上記実施例に限定する
ものでなく、この発明の要旨を変更しない範囲で各構成
要素に変更を加えるようにしても良い。
Further, the present invention is not limited to the above-mentioned embodiment, and each constituent element may be modified within a range not changing the gist of the present invention.

【0024】[0024]

【発明の効果】以上、実施例とともに具体的に説明した
ようにこの発明の全方向反射体によれば、立体角90度
以内の入射波を平行に反射する互いに直角な3平面で形
成される反射系をその頂点を合わせて前記平面上の1点
に4個設けて構成するようにしたので、平面上の1点に
対して立体角で360度のあらゆる方向からの入射波を
入射方向と平行に反射することができる。
As described above in detail with reference to the embodiments, the omnidirectional reflector of the present invention is formed by three planes perpendicular to each other that reflect incident waves within a solid angle of 90 degrees in parallel. Since the reflection system is constructed by providing four apexes at one point on the plane by matching the vertices, incident waves from all directions of a solid angle of 360 degrees with respect to one point on the plane are defined as the incident direction. Can be reflected in parallel.

【0025】これにより、全方向反射体の平面を、角度
を考慮すること無く距離計側に向けて設置するだけで良
く、設置の容易化を図ることができる。
With this arrangement, the plane of the omnidirectional reflector need only be installed facing the rangefinder side without considering the angle, and the installation can be facilitated.

【0026】また、距離計の設置点についても限定され
なくなり、移動させる必要がなくなり、より狭い空間で
の測定も可能となった。
Further, the installation point of the range finder is not limited, and it is not necessary to move the range finder, and measurement in a narrower space is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の全方向反射体の一実施例にかかる分
解斜視図である。
FIG. 1 is an exploded perspective view of an embodiment of an omnidirectional reflector of the present invention.

【図2】この発明の全方向反射体の他の一実施例にかか
る分解斜視図である。
FIG. 2 is an exploded perspective view of another embodiment of the omnidirectional reflector of the present invention.

【図3】この発明の全方向反射体の適用例にかかる距離
測定の概略説明図である。
FIG. 3 is a schematic explanatory diagram of distance measurement according to an application example of the omnidirectional reflector of the present invention.

【図4】従来の距離測定に用いていた反射体の概略説明
図である。
FIG. 4 is a schematic explanatory diagram of a reflector used for conventional distance measurement.

【符号の説明】[Explanation of symbols]

10 全方向反射体 11 平面(X−Y面) 12 反射系(三面鏡) 13 反射面(Y−Z面、Z−X面) 20 全方向反射体 21 反射系(コーナキューブプリズム) 22 コーナキューブプリズム 23 平面 P 測定点 Q,R 平面上の1点 10 Omnidirectional Reflector 11 Plane (XY Surface) 12 Reflective System (Trihedral Mirror) 13 Reflective Surface (YZ Surface, ZX Surface) 20 Omnidirectional Reflector 21 Reflective System (Corner Cube Prism) 22 Corner Cube Prism 23 Plane P Measurement point Q, R One point on plane

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平面上の1点に対してあらゆる方向から
入射する入射波を入射方向と平行に反射する全方向反射
体であって、立体角90度以内の入射波を平行に反射す
る互いに直角な3平面で形成される反射系をその頂点を
合わせて前記平面上の1点に4個設けて構成したことを
特徴とする全方向反射体。
1. An omnidirectional reflector that reflects an incident wave incident from any direction on one point on a plane parallel to the incident direction, and mutually reflects incident waves within a solid angle of 90 degrees in parallel. An omnidirectional reflector, characterized in that four reflection systems formed by three planes at right angles are provided at one point on the plane with their apexes aligned.
JP24643993A 1993-09-07 1993-09-07 Omnidirectional reflecting body Pending JPH0777603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24643993A JPH0777603A (en) 1993-09-07 1993-09-07 Omnidirectional reflecting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24643993A JPH0777603A (en) 1993-09-07 1993-09-07 Omnidirectional reflecting body

Publications (1)

Publication Number Publication Date
JPH0777603A true JPH0777603A (en) 1995-03-20

Family

ID=17148484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24643993A Pending JPH0777603A (en) 1993-09-07 1993-09-07 Omnidirectional reflecting body

Country Status (1)

Country Link
JP (1) JPH0777603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280039A (en) * 2001-02-13 2008-11-20 Campagnolo Spa Rim of bicycle wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280039A (en) * 2001-02-13 2008-11-20 Campagnolo Spa Rim of bicycle wheel

Similar Documents

Publication Publication Date Title
US6327090B1 (en) Multiple laser beam generation
JP2020181160A5 (en)
EP2793042B1 (en) Positioning device comprising a light beam
EP0357262A1 (en) Constant-deviation reflector
JPH08507366A (en) Spatial positioning system
JPH06229715A (en) Three-dimensional coordinate measuring apparatus
JPH0777603A (en) Omnidirectional reflecting body
US3574466A (en) Angular measurement apparatus
US20190235055A1 (en) Enclosure for light detection and ranging unit and related methods
US11486969B2 (en) Protection of a monostatic or quasi-monostatic laser rangefinder
US4281896A (en) Shared aperture separator for reciprocal path optical beams
JP2563141B2 (en) Scanning method and scanning device for a plurality of optical metrology reflectors
JP2579234Y2 (en) Reflector device
SU1748109A1 (en) Corner reflector
CN219285407U (en) Transmitting module and laser radar
US20240146013A1 (en) Method and arrangement for increasing the beam quality and stability of an optical resonator
JPH0718210U (en) Reflection target for surveying instrument
US4482208A (en) Lateral transfer system for an optical beam
JPH11218608A (en) Multi-mirror device rotating polarized wave of electromagnetic signal
SU1603985A1 (en) Method of measuring atmospheric refraction
Somerstein et al. Retroreflector field of view properties for open and solid cube corners
JP3492406B2 (en) 3D coordinate measuring device
JPS6336288Y2 (en)
SU1767461A1 (en) Optical reflector
JPS61149882A (en) Light wave system surveying method