JPH0777590A - Fuel cladding pipe for nuclear reactor and manufacture thereof - Google Patents

Fuel cladding pipe for nuclear reactor and manufacture thereof

Info

Publication number
JPH0777590A
JPH0777590A JP5247324A JP24732493A JPH0777590A JP H0777590 A JPH0777590 A JP H0777590A JP 5247324 A JP5247324 A JP 5247324A JP 24732493 A JP24732493 A JP 24732493A JP H0777590 A JPH0777590 A JP H0777590A
Authority
JP
Japan
Prior art keywords
fuel
less
nuclear reactor
cladding tube
fuel cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5247324A
Other languages
Japanese (ja)
Other versions
JP3122782B2 (en
Inventor
Noboru Itagaki
登 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP05247324A priority Critical patent/JP3122782B2/en
Publication of JPH0777590A publication Critical patent/JPH0777590A/en
Application granted granted Critical
Publication of JP3122782B2 publication Critical patent/JP3122782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To obtain a fuel cladding tube for nuclear reactor, and a manufacturing method therefor, in which the stress corrosion crack resistance is enhanced while maintaining restraint against abrupt oxidation of the inner surface. CONSTITUTION:A zirconium inner lining layer provided on the inside of a zirconium alloy cladding tube is composed of high purity zirconium containing at least one trace additive out of tin, iron, chromium, nickel, niobium, vanadium or molybdenum, 1200ppm or less of oxygen, and total 2000ppm or less of other inevitable impurities, wherein the trace additive is deposited as an intermetallic compound having average particle size in the range of 0.07 to 0.3mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子炉用燃料棒に用いら
れる原子炉用燃料被覆管及びその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear reactor fuel cladding tube used for a nuclear reactor fuel rod and a method for producing the same.

【0002】[0002]

【従来の技術】図3は燃料棒の縦断面の構成を示す説明
図である。図4は図3の横断面の構成を示す説明図であ
る。図に示す通り、軽水又は重水冷却型原子炉用燃料棒
には、通常ジルコニウム合金からなる燃料被覆管2が用
いられ、内部に多数の燃料ペレット1とプレナムスプリ
ング3とが装填され、上下部端栓4で密封して燃料棒と
される。
2. Description of the Related Art FIG. 3 is an explanatory view showing the structure of a vertical cross section of a fuel rod. FIG. 4 is an explanatory view showing the configuration of the cross section of FIG. As shown in the figure, a fuel cladding tube 2 usually made of a zirconium alloy is used for a fuel rod for a light water or heavy water cooling type reactor, and a large number of fuel pellets 1 and a plenum spring 3 are loaded in the fuel cladding tube. The fuel rod is sealed with the stopper 4 to form a fuel rod.

【0003】ところで、ジルコニウム合金製の被覆管は
中性子の照射を受けると照射脆化し、応力腐蝕割れによ
る破損が起き易くなる。そこで、図4に示すように、応
力腐蝕割れを防止するために、被覆管2内面にジルカロ
イ合金に比べて軟質な純度の高いジルコニウム5を内張
りすることが知られている。
When a cladding tube made of a zirconium alloy is irradiated with neutrons, it becomes embrittled by irradiation and is easily damaged by stress corrosion cracking. Therefore, as shown in FIG. 4, in order to prevent stress corrosion cracking, it is known to line the inner surface of the cladding tube 2 with zirconium 5, which is softer and has a higher purity than zircaloy alloy.

【0004】米国特許第 4,300,492号によれば、純ジル
コニウムの不純物含有量の合計は 1000ppm以上 5000ppm
以下であり、そのうち酸素含有量は1200ppm 以下であ
る。このようなジルコニウムは所謂「商用の原子炉級ス
ポンジ」であり、その他の不純物量は表1に示す通りで
ある。尚、燃料被覆管は外径8〜20mm、肉厚 0.4〜1.5m
mで上述の内張り厚は0.03〜0.2 mmである。
According to US Pat. No. 4,300,492, the total impurity content of pure zirconium is 1000 ppm or more and 5000 ppm or more.
The oxygen content is 1200 ppm or less. Such zirconium is a so-called "commercial reactor-grade sponge", and the amounts of other impurities are as shown in Table 1. The fuel cladding tube has an outer diameter of 8 to 20 mm and a wall thickness of 0.4 to 1.5 m.
The above-mentioned lining thickness in m is 0.03 to 0.2 mm.

【0005】[0005]

【表1】 [Table 1]

【0006】ところで、このような燃料被覆管では、被
覆管の製造欠陥や異物とのフレッティングにより、被覆
管に水が侵入すると内面のジルコニウム層が急激に酸化
し、燃料の破損が拡大し、燃料棒内の放射能が多量に原
子炉炉水中に放出されるおそれがあった。
By the way, in such a fuel clad tube, due to manufacturing defects of the clad tube and fretting with foreign matter, when water enters the clad tube, the zirconium layer on the inner surface is rapidly oxidized and the damage to the fuel is expanded, A large amount of radioactivity in the fuel rods could be released into the reactor water.

【0007】また、このような燃料被覆管の酸化による
破損拡大を防止するためには内面のジルコニウム層の純
ジルコニウムに錫,鉄,クロム,ニッケル,ニオブ等を
添加することが考えられ、このような元素成分を増やす
ことによって内張りの急激な酸化は抑制されることが予
測される。
In order to prevent the damage from spreading due to the oxidation of the fuel cladding tube, it is considered to add tin, iron, chromium, nickel, niobium or the like to pure zirconium of the zirconium layer on the inner surface. It is expected that the rapid oxidation of the lining will be suppressed by increasing the amount of such elemental components.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、ジルコ
ニウム層として、純ジルコニウムに錫,鉄,クロム,ニ
ッケル,ニオブ等の微量添加物を添加した場合には、応
力腐蝕割れに対する耐性が相対的に低下する新たな欠点
が生じることとなる。
However, when a trace amount of additives such as tin, iron, chromium, nickel and niobium is added to pure zirconium as the zirconium layer, the resistance to stress corrosion cracking is relatively lowered. New drawbacks will arise.

【0009】本発明では、内面の急激な酸化に対する抑
制力を維持しつつ、応力腐蝕割れに対する耐性を向上さ
せた信頼性の高い原子炉用燃料被覆管及びその製造方法
を提供するものである。
[0009] The present invention provides a highly reliable fuel cladding tube for a nuclear reactor, which has improved resistance to stress corrosion cracking while maintaining the ability to suppress rapid oxidation of the inner surface, and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本請求項1に記載の発明
に係る原子炉用燃料被覆管では、内部に核燃料を収納す
るジルコニウム合金製原子炉用燃料被覆管基材と、前記
被覆管基材の内側に前記ジルコニウム合金と冶金的に結
合したジルコニウム製の内張り層とを有した燃料被覆管
において、前記内張り層が、高純度ジルコニウム中に
錫,鉄,クロム,ニッケル,ニオブ,バナジウム,モリ
ブデンのうちの何れか一つ以上の微量添加物と、酸素を
1200ppm 以下と、その他不可避不純物の合計を2000ppm
以下含み、前記微量添加物が、0.07μm以上 0.3μm以
下の平均粒径の金属間化合物として析出されてなるもの
である。
In a fuel cladding for a nuclear reactor according to the present invention, a zirconium alloy fuel cladding for a nuclear reactor containing a nuclear fuel therein and the cladding substrate. In a fuel cladding tube having a zirconium lining layer metallurgically bonded to the zirconium alloy inside the material, the lining layer comprises tin, iron, chromium, nickel, niobium, vanadium, molybdenum in high-purity zirconium. One or more of the trace additives and oxygen
1200ppm or less and 2000ppm total of other unavoidable impurities
The following small amount of additive is deposited as an intermetallic compound having an average particle size of 0.07 μm or more and 0.3 μm or less.

【0011】また、本請求項2に記載の発明に係る原子
炉用燃料被覆管では、請求項1に記載の原子炉用燃料被
覆管において、前記被覆管基材の肉厚が、 0.4mm以上
1.5mm以下であり、前記内張り層の肉厚が0.03mm以上 0.
2mm以下である。
Further, in the fuel cladding for a nuclear reactor according to the invention described in claim 2, in the fuel cladding for a nuclear reactor according to claim 1, the cladding tube base material has a wall thickness of 0.4 mm or more.
1.5mm or less, the thickness of the lining layer is 0.03mm or more 0.
It is 2 mm or less.

【0012】更に、本請求項3に記載の発明に係る原子
炉用燃料被覆管では、請求項1に記載の原子炉用燃料被
覆管において、前記錫,鉄,クロム,ニッケル,ニオ
ブ,バナジウム,モリブデンのうちの何れか一つ以上の
微量添加物の合計を 0.2%以上1%以下含んだものであ
る。
Further, in the fuel cladding for a nuclear reactor according to the invention described in claim 3, in the fuel cladding for a nuclear reactor according to claim 1, the tin, iron, chromium, nickel, niobium, vanadium, It contains 0.2% or more and 1% or less of the total of one or more trace additives of molybdenum.

【0013】また、本請求項4に記載の発明に係る原子
炉用燃料被覆管では、請求項1に記載の原子炉用燃料被
覆管において、前記微量添加物として、鉄のみを 0.2%
以上1%以下含んだものである。
Further, in the fuel cladding for a nuclear reactor according to the invention described in claim 4, in the fuel cladding for a nuclear reactor according to claim 1, only 0.2% of iron is contained as the trace additive.
It is included above 1% or less.

【0014】更に、本請求項5に記載の発明に係る原子
炉用燃料被覆管では、請求項1に記載の原子炉用燃料被
覆管において、前記ジルコニウム製の内張り層が、前記
酸素を 600ppm 以下、その他不可避不純物の合計を1000
ppm 以下含むものである。
Furthermore, in the fuel cladding for a nuclear reactor according to the present invention as defined in claim 5, in the fuel cladding for a nuclear reactor according to claim 1, the zirconium lining layer contains less than 600 ppm of oxygen. , The total of other unavoidable impurities is 1000
It contains less than ppm.

【0015】また、本請求項6に記載の発明に係る原子
炉用燃料被覆管では、請求項1に記載の原子炉用燃料被
覆管において、前記金属間化合物が、 0.1μm 以上 0.2
μm 以下の平均粒径に析出されてなるものである。
Further, in the fuel cladding for a nuclear reactor according to the invention described in claim 6, in the fuel cladding for a nuclear reactor according to claim 1, the intermetallic compound is 0.1 μm or more and 0.2 μm or more.
The average particle size is less than μm.

【0016】更に、本請求項7に記載の発明に係る原子
炉用燃料被覆管の製造方法では、核燃料を装填するため
のジルコニウム合金製被覆管基材部を成型する工程と、
前記基材部の内面に一体に設けられるジルコニウム製内
張り部を成型する工程と、前記基材部と内張り部とを組
合せて外面側に基材部を内面側に内張り部を配置された
二重管体を形成する工程と、前記二重管体の基材部と内
張り部とを冶金的に結合させる工程とを備えた燃料被覆
管の製造方法において、前記ジルコニウム製内張り部と
して、高純度ジルコニウムに錫,鉄,クロム,ニッケ
ル,ニオブ,バナジウム,モリブデンのうちの何れか一
つ以上の微量添加物を含む素材を準備し、前記素材を 9
00℃以上に加熱して冷却した後に、焼き鈍し又は熱間押
出し等の熱処理が、温度,時間を基に下式で定義される
パラメータΣAを1×10-18 以上1×10-16 以下と
する熱処理を行なうものである。
Further, in the method for producing a nuclear reactor fuel cladding tube according to the present invention, a step of molding a zirconium alloy cladding tube base portion for loading nuclear fuel,
A step of molding a zirconium lining portion integrally provided on the inner surface of the base material portion, and a double layer in which the base material portion is arranged on the outer surface side and the inner lining portion is arranged on the inner surface side by combining the base material portion and the inner lining portion. In the method for producing a fuel cladding tube, which comprises a step of forming a tubular body and a step of metallurgically bonding the base material portion and the lining portion of the double tubular body, in the zirconium lining portion, high-purity zirconium is used. In addition, a material containing a trace additive of at least one of tin, iron, chromium, nickel, niobium, vanadium, and molybdenum is prepared.
After heating to 00 ° C or higher and cooling, heat treatment such as annealing or hot extrusion sets the parameter ΣA defined by the following formula based on temperature and time to 1 × 10 -18 or more and 1 × 10 -16 or less. Heat treatment is performed.

【0017】ΣA=t・exp(−Q/ RT) t;温度Tにおける保持時間(時間) T;焼鈍温度(K) Q;活性化エネルギー R;気体定数 Q/R; 40000ΣA = t · exp (-Q / RT) t; holding time at temperature T (hours) T; annealing temperature (K) Q; activation energy R; gas constant Q / R; 40000

【0018】また、本請求項8に記載の発明に係る原子
炉用燃料被覆管の製造方法では、請求項7に記載の燃料
被覆管の製造方法において、前記内張り部と前記基材部
とを組合わせて熱間押出しを行なった後、冷間加工処理
及び焼き鈍し処理を1回以上繰返すものである。
According to the eighth aspect of the present invention, there is provided a method for producing a fuel clad tube for a nuclear reactor, wherein in the method for producing a fuel clad tube according to the seventh aspect, the lining portion and the base material portion are provided. After performing the hot extrusion in combination, the cold working treatment and the annealing treatment are repeated once or more.

【0019】更に、本請求項9に記載の発明に係る原子
炉用燃料被覆管の製造方法では、請求項7に記載の燃料
被覆管の製造方法において、前記基材部と内張り部とを
冶金的に結合させる工程において、前記基材部と内張り
部とを熱間押出しにより二重管体に成型した後、該二重
管体の内面を 100℃以下に冷却しながら、基材部のみを
900℃以上に加熱し、その後、冷間加工及び650℃以下
の焼き鈍しを1回以上繰返すものである。
Further, in the method for producing a fuel cladding tube for a nuclear reactor according to the present invention of claim 9, in the method for producing a fuel cladding tube according to claim 7, the base material portion and the lining portion are metallurgical. In the step of mechanically bonding, after the base material portion and the lining portion are molded into a double pipe body by hot extrusion, only the base material portion is cooled while cooling the inner surface of the double pipe body to 100 ° C or less.
After heating to 900 ° C or higher, cold working and annealing at 650 ° C or lower are repeated once or more.

【0020】また、本請求項10に記載の発明に係る原
子炉用燃料被覆管の製造方法では、請求項8に記載の燃
料被覆管の製造方法において、前記燃料被覆管が、沸騰
水型原子炉用燃料棒の被覆管であって、前記燃料被覆管
の外表面の加熱処理が、前記パラメータΣAを1×10
-19 から5×10-18 の範囲で行なわれるものである。
According to a tenth aspect of the present invention, there is provided a method for producing a fuel clad tube for a nuclear reactor, wherein in the method for producing a fuel clad tube according to the eighth aspect, the fuel clad tube is a boiling water atom. A cladding tube for a fuel rod for a furnace, wherein the heat treatment of the outer surface of the fuel cladding tube sets the parameter ΣA to 1 × 10.
It is performed in the range of -19 to 5 × 10 -18 .

【0021】[0021]

【作用】本発明においては、ジルコニウム合金製被覆管
基材の内側に設けられたジルコニウム製内張り層が、高
純度ジルコニウム中に錫,鉄,クロム,ニッケル,ニオ
ブ,バナジウム,モリブデンのうちの何れか一つ以上の
微量添加物と、酸素を1200ppm 以下と、その他不可避不
純物の合計を2000ppm 以下含み、且つ、前記微量添加物
が、0.07μm以上 0.3μm以下の平均粒径の金属間化合
物として析出されてなるものであるため、内面の急激な
酸化に対する抑制力を維持しつつ、応力腐蝕割れに対す
る耐性を向上させた燃料被覆管を得ることができる。
In the present invention, the zirconium lining layer provided inside the zirconium alloy cladding tube substrate is one of tin, iron, chromium, nickel, niobium, vanadium and molybdenum in high-purity zirconium. One or more trace additives, oxygen of 1200 ppm or less, and total of other unavoidable impurities of 2000 ppm or less, and the trace additives are deposited as an intermetallic compound having an average particle size of 0.07 μm or more and 0.3 μm or less. Therefore, it is possible to obtain a fuel clad tube having improved resistance to stress corrosion cracking while maintaining the suppressing force against rapid oxidation of the inner surface.

【0022】即ち、一般に、高純度ジルコニウム中に
錫、鉄、クロム、ニッケル、ニオブ、バナジウム、モリ
ブデン等の微量添加物を添加すると急激な酸化に対する
耐性が向上し、一方、このような微量添加物により、ジ
ルコニウムが硬くなり応力腐蝕割れに対する耐性が低下
する。
That is, generally, when a small amount of additives such as tin, iron, chromium, nickel, niobium, vanadium, and molybdenum is added to high-purity zirconium, resistance to rapid oxidation is improved, while such small amounts of additives are added. As a result, zirconium becomes hard and the resistance to stress corrosion cracking decreases.

【0023】しかしながら、本発明では、ジルコニウム
中の酸素の含有量が1200ppm 以下、好ましくは酸素が 6
00ppm 以下、その他不可避不純物の合計の含有量が2000
ppm以下、好ましくは1000ppm 以下の場合に、微量添加
物が0.07μm以上 0.3μm以下、好ましくは 0.1μm 以
上 0.2μm以下の平均粒径の金属間化合物として析出さ
れたものは、応力腐蝕割れに対する耐性が低下しないこ
とを見出した。
However, in the present invention, the content of oxygen in zirconium is 1200 ppm or less, preferably 6 ppm or less.
00ppm or less, total content of other unavoidable impurities is 2000
When the amount of trace additives is 0.07 μm or more and 0.3 μm or less, preferably 0.1 μm or more and 0.2 μm or less in the case of ppm or less, preferably 1000 ppm or less, the intermetallic compound is precipitated to have resistance to stress corrosion cracking. It has been found that does not decrease.

【0024】このような酸素の含有量、その他不可避不
純物の合計の含有量、金属間化合物の粒径は、後述の図
1又は図2に示す被覆管の製造工程のうち、1000℃以上
に加熱・急冷する処理(即ち、β処理)、又は、 900℃
以上1000℃以下に加熱・急冷する処理(即ち、α+β処
理)工程以降の熱処理において、温度,時間を基に下式
で与えられるパラメータΣAを1×10-18 以上1×1
-16 以下にすることにより、得ることができる。
The content of oxygen, the total content of other unavoidable impurities, and the particle size of the intermetallic compound are heated to 1000 ° C. or higher in the manufacturing process of the cladding tube shown in FIG. 1 or 2 described later.・ Process for rapid cooling (ie β process) or 900 ℃
The parameter ΣA given by the following formula based on temperature and time is 1 × 10 -18 or more and 1 × 1
It can be obtained by setting it to 0 -16 or less.

【0025】ΣA=t・exp(−Q/RT) t;温度Tにおける保持時間(時間) T;焼鈍温度(K) Q;活性化エネルギー R;気体定数 Q/R; 40000ΣA = t · exp (-Q / RT) t; holding time at temperature T (hours) T; annealing temperature (K) Q; activation energy R; gas constant Q / R; 40000

【0026】この場合、耐性向上のためにジルコニウム
に添加される錫,鉄,クロム,ニッケル,ニオブ,バナ
ジウム,モリブデン等の各元素の微量添加物は単独でも
よいし、各組合せでもよい。但し、急激な酸化を充分に
抑制するためには、これら微量添加物の合計が 0.2%(2
000ppm) 以上1%(10000ppm)以下であることが望まし
く、後述する実施例で示されるように、最も優れた特性
を示すのは鉄のみを2000ppm 以上 10000ppm 以下含むも
のであった。
In this case, the trace additives of tin, iron, chromium, nickel, niobium, vanadium, molybdenum and the like added to zirconium for improving the resistance may be used alone or in combination. However, in order to sufficiently suppress rapid oxidation, the total amount of these trace additives should be 0.2% (2
000 ppm) or more and 1% (10000 ppm) or less is desirable, and as shown in the examples described later, the most excellent properties are those containing only 2000 ppm or more and 10000 ppm or less of iron.

【0027】即ち、急激な酸化に対する耐性を向上させ
るため、高純度ジルコニウムに錫、鉄、クロム、ニッケ
ル、ニオブ、バナジウム、モリブデン等の微量添加物を
添加するのであるが、被覆管の加工特に内張り層の加熱
加工の際に、ΣAパラメータを1×10-18 以上1×1
-16 以下になるように熱を加えると微量添加物が平均
粒径0.07μm以上 0.3μm以下の金属間化合物として析
出し、ジルコニウムが再び軟化して応力腐蝕割れに対す
る耐性が向上する。
That is, in order to improve resistance to rapid oxidation, trace amounts of additives such as tin, iron, chromium, nickel, niobium, vanadium and molybdenum are added to high-purity zirconium. When heating a layer, set the ΣA parameter to 1 × 10 -18 or more and 1 × 1
When heat is applied so as to be 0 -16 or less, a trace amount of additive is precipitated as an intermetallic compound having an average particle size of 0.07 µm or more and 0.3 µm or less, zirconium is softened again, and resistance to stress corrosion cracking is improved.

【0028】即ち、ΣAパラメータを1×10-18 以下
に熱を加えると、内張り層中の金属間化合物の粒径が0.
07μm以下となり、ジルコニウムが硬くなり、応力腐蝕
割れに対する耐性が低くなる。一方、ΣAパラメータを
1×10-16 以上に熱を加えると、金属間化合物が0.00
03mm( 0.3μm)以上に粗大化する他、その結果、ジル
コニウムの耐食性が劣化するだけでなく、応力腐蝕割れ
に対する耐性も劣化することが明らかとなった。
That is, when the ΣA parameter is heated to 1 × 10 -18 or less, the grain size of the intermetallic compound in the lining layer becomes 0.
When it is less than 07 μm, zirconium becomes hard and resistance to stress corrosion cracking becomes low. On the other hand, if heat is applied to the ΣA parameter of 1 × 10 −16 or more, the intermetallic compound is 0.00
In addition to coarsening to more than 03 mm (0.3 μm), it was revealed that as a result, not only the corrosion resistance of zirconium deteriorates, but also the resistance to stress corrosion cracking deteriorates.

【0029】また、基材部と内張り部とを冶金的に結合
させた後、即ち、内張り部と基材部とを組合わせて熱間
押出しを行なった後、冷間加工処理及び焼き鈍し処理等
の別の熱処理を1回以上繰返して行なっても良い。この
場合の内張り部に係る熱処理の温度,時間のΣAパラメ
ータは、当然前述の範囲内に納める。
Further, after the base material portion and the lining portion are metallurgically bonded, that is, after the lining portion and the base material portion are combined and hot extrusion is performed, cold working treatment and annealing treatment, etc. Another heat treatment may be repeated once or more. In this case, the ΣA parameters of the temperature and time of the heat treatment related to the lining portion are naturally within the above range.

【0030】更に、前述のΣAパラメータを1×10
-18 以上1×10-16 以下になるように熱を加えること
は、少くとも内張り部に限るものであるため、基材部と
内張り部とを冶金的に結合させる工程において、基材部
と内張り部とを熱間押出しにより二重管体に成型した
後、該二重管体の内面を 100℃以下に冷却しながら、基
材部のみを 900℃以上に加熱し、その後、冷間加工及び
650℃以下の焼き鈍しを1回以上繰返して、所望の基材
部の構成を得ることも可能である。
Further, the above-mentioned ΣA parameter is set to 1 × 10.
Since the application of heat so as to be not less than -18 and not more than 1 × 10 -16 is limited to at least the lining portion, in the step of metallurgically bonding the base portion and the lining portion to the base portion, After forming the double tubing with the lining part by hot extrusion, while cooling the inner surface of the double tubing to 100 ° C or lower, heat only the base material to 900 ° C or higher, then cold work as well as
It is also possible to obtain a desired structure of the base material portion by repeating annealing at 650 ° C. or less once or more.

【0031】尚、内張り層を施すジルコニウム合金被覆
管において、沸騰水型原子炉に用いられる場合に冷却水
との反応で生成する被覆管外表面の酸化を抑制するため
には、特願平4−73123号に記載の通り、ΣAパラ
メータは1×10-19 以上5×10-18 以下であること
が望ましい。
In order to suppress the oxidation of the outer surface of the zirconium alloy coated tube provided with the lining layer, which is generated by the reaction with cooling water when used in a boiling water reactor, Japanese Patent Application No. As described in -73123, it is desirable that the ΣA parameter is 1 × 10 −19 or more and 5 × 10 −18 or less.

【0032】[0032]

【実施例】図1は被覆管の一実施例の製造工程を示す工
程図、図2は被覆管の別の実施例の製造工程を示す工程
図である。本発明では、図1又は図2に示す製造工程の
うち、1000℃又は 900℃以上に加熱するβ処理又はα+
β処理工程以降の加熱工程において、温度,時間を基に
下式で与えられるパラメータΣAを1×10-18 以上1
×10-16 以下とした。尚、具体的なパラメータΣAと
しては、次の表2に示す温度及び時間で行なった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a process drawing showing a manufacturing process of an embodiment of a covering pipe, and FIG. 2 is a process drawing showing a manufacturing process of another embodiment of a covering pipe. In the present invention, in the manufacturing process shown in FIG. 1 or 2, β treatment or α + heating at 1000 ° C. or 900 ° C. or higher
In the heating process after the β treatment process, the parameter ΣA given by the following formula based on temperature and time is set to 1 × 10 −18 or more 1
It was set to × 10 -16 or less. The specific parameter ΣA was set at the temperature and time shown in Table 2 below.

【0033】ΣA=t・exp(−Q/RT) t;温度Tにおける保持時間(時間) T;焼鈍温度(K) Q;活性化エネルギー R;気体定数 Q/R; 40000ΣA = t · exp (-Q / RT) t; holding time at temperature T (hours) T; annealing temperature (K) Q; activation energy R; gas constant Q / R; 40000

【0034】[0034]

【表2】 [Table 2]

【0035】本実施例では、被覆管の内面に内張りする
ジルコニウム層(内張り層)に添加する元素をパラメー
タとして、図1に示す製造工程及び従来技術により内張
り材を試作し、耐食性及び耐応力腐蝕割れ性(耐SCC
性)を検討した結果を次の表3に示す。
In this embodiment, an inner lining material was manufactured by the manufacturing process shown in FIG. 1 and the conventional technique using the element added to the zirconium layer (lining layer) lining the inner surface of the cladding tube as a parameter, and the corrosion resistance and the stress corrosion resistance were evaluated. Cracking resistance (SCC resistance
The following table 3 shows the results of examination of (sex).

【0036】具体的な被覆管の製造方法は、内張り部は
アーク溶解から熱間加工によって所定の形状に作成した
後、1050℃,30分間のβ処理を行ない、更に 720℃,5
時間の焼き鈍し処理を行なう。尚、従来技術ではこの焼
き鈍し工程がない。また、基材部はアーク溶解から熱間
加工によって所定の形状に作成した後、1050℃,30分間
のβ処理を行なう。
A specific method for manufacturing a cladding tube is as follows. The lining part is formed into a predetermined shape by hot working from arc melting and then subjected to β treatment at 1050 ° C. for 30 minutes, and then at 720 ° C. for 5 minutes.
Anneal for time. It should be noted that the conventional technique does not have this annealing step. Further, the base material is formed into a predetermined shape by hot working from arc melting, and then subjected to β treatment at 1050 ° C. for 30 minutes.

【0037】更に、この内張り部と基材部とを組合せ、
640℃,10分の熱間押出しで加工し、更に、 640℃,2
時間の焼き鈍し工程の後、冷間加工を行なった後、 620
℃,2時間の焼き鈍し工程を行なう。更に、冷間加工後
に 570℃,2時間の別の焼き鈍し工程の後に製品とな
る。尚、従来例は内張り部の焼き鈍し工程がない以外は
全て本製造方法と同じである。
Further, combining this lining portion and the base material portion,
Processed by hot extrusion at 640 ° C for 10 minutes, then at 640 ° C, 2
After the time annealing step, after cold working, 620
Perform an annealing process at ℃ for 2 hours. Further, after cold working, the product becomes a product after another annealing step at 570 ° C. for 2 hours. The conventional example is the same as the present manufacturing method except that there is no annealing process for the lining portion.

【0038】[0038]

【表3】 [Table 3]

【0039】表3に示す通り、本発明により、錫、鉄、
クロム、ニッケル、ニオブ、バナジウム、モリブデンの
うちの何れか一つ、或いは、複数の合計を 0.2%以上1
%以下含む内張り材では耐食性を劣化させることなく、
耐応力腐蝕割れ性(耐SCC性)が向上し、特に鉄を
0.2%以上 1.0%以下含む内張り材(実施例No.5〜
7(Fe単独),及び実施例No.14〜19(Fe+
α))で効果が大きいことが確認された。
As shown in Table 3, according to the present invention, tin, iron,
0.2% or more of any one of chromium, nickel, niobium, vanadium, and molybdenum, or a total of more than 1
% Or less lining material without degrading corrosion resistance,
Improved resistance to stress corrosion cracking (SCC resistance), especially iron
Lining material containing 0.2% or more and 1.0% or less (Example No. 5
7 (Fe alone), and Example No. 14-19 (Fe +
It was confirmed that the effect is large in α)).

【0040】尚、表中、比較例No.1は従来の被覆管
基材であるジルカロイ2(ジルコニウム合金の1つ)、
また比較例No.20は従来の内張り材である純ジルコ
ニウム(Zr)。実施例No.2〜19は従来のNo.
20に比べ、耐食性が向上している。
In the table, Comparative Example No. 1 is Zircaloy 2 (one of zirconium alloy) which is a conventional cladding tube base material,
Comparative example No. 20 is pure zirconium (Zr) which is a conventional lining material. Example No. Nos. 2 to 19 are conventional Nos.
Compared with 20, the corrosion resistance is improved.

【0041】また、製造方法を本発明によるもの(新)
と従来(旧)で、比較すると、実施例No.2〜19に
おいて、本発明による方法では、耐食性は従来と同等を
保っており、耐SCC性は向上している。
The manufacturing method according to the present invention (new)
When compared with the conventional (old), the example No. 2 to 19, in the method according to the present invention, the corrosion resistance is kept the same as the conventional one, and the SCC resistance is improved.

【0042】更に、図1に示した工程のうち、内張り部
のβ処理工程の後の焼き鈍し工程を熱間加工や焼き鈍し
と熱間加工の混合工程とすることも可能である。当然こ
の熱間加工の温度,時間を基に与えられるパラメータΣ
Aを1×10-18 以上1×10-16 以下にする。これに
より、内張り部の寸法調製が可能となり、内張り部を大
きな材料から作成することができる。
Further, among the steps shown in FIG. 1, the annealing step after the β-processing step of the lining portion may be hot working or a mixed step of annealing and hot working. Naturally, the parameter Σ given based on the temperature and time of this hot working
A is set to 1 × 10 −18 or more and 1 × 10 −16 or less. This makes it possible to adjust the size of the lining portion and make the lining portion from a large material.

【0043】尚、図2に示すように内張り部と基材部を
組合せた後に所定の焼き鈍し工程を行なってもよい。図
2は被覆管の別の実施例の製造工程を示す工程図であ
る。本工程では内張り部のβ処理工程の後の焼き鈍し工
程が、基材部と組合せて熱間押出し成型の後に行なわれ
る。当然、この焼き鈍し工程のパラメータΣAは1×1
-18 以上1×10-16 以下とする。
Incidentally, as shown in FIG. 2, a predetermined annealing process may be performed after the lining portion and the base material portion are combined. FIG. 2 is a process drawing showing the manufacturing process of another embodiment of the cladding tube. In this step, the annealing step after the β treatment step of the lining portion is performed after the hot extrusion molding in combination with the base material portion. Naturally, the parameter ΣA of this annealing process is 1 × 1
It should be 0 -18 or more and 1 x 10 -16 or less.

【0044】また、この被覆管に水を封入して二重管体
の内面を 100℃以下に冷却して、内張り部の温度を上げ
ずに、基材部のみを 900℃以上に加熱してα+β処理工
程を行ない、その後、冷間加工及び 650℃以下の焼き鈍
しを1回以上繰返して、所望の基材部の構成を得ること
も可能である。
Further, water was enclosed in this coating pipe to cool the inner surface of the double pipe body to 100 ° C. or lower, and only the base material portion was heated to 900 ° C. or higher without raising the temperature of the lining portion. It is also possible to carry out the α + β treatment step, and then repeat cold working and annealing at 650 ° C. or lower one or more times to obtain a desired base material structure.

【0045】更に、例えば被覆管基材の外面用ビレット
については中心部に穴を有する形状で水焼き入れを行な
い、内張り部に関しては中実ビレットにより水焼き入れ
(焼き鈍し)を行なって、被覆管基材のジルコニウム合
金中に析出される金属間化合物の粒径を、内張り部の金
属間化合物の粒径よりも相対的に小さくすることができ
る。
Further, for example, the billet for the outer surface of the cladding tube base material is water-quenched in a shape having a hole in the center, and the lining portion is water-quenched (annealed) with a solid billet to obtain a cladding tube. The particle size of the intermetallic compound precipitated in the zirconium alloy of the base material can be made relatively smaller than the particle size of the intermetallic compound of the lining portion.

【0046】以上のように、本発明によれば、被覆管の
内張り層の耐食性を劣化させることなく、耐応力腐蝕割
れ性能を向上させることができ、応力腐蝕割れに対する
耐性が高く、且つ万一の破損に対しても、内面が急激に
酸化して破損が拡大することのない、健全性の高い燃料
被覆管を供給することができる。
As described above, according to the present invention, the stress corrosion cracking resistance can be improved without deteriorating the corrosion resistance of the lining layer of the cladding tube, the stress corrosion cracking resistance is high, and by any chance. It is possible to supply a fuel cladding tube with high soundness, which does not cause the inner surface to be rapidly oxidized and the damage to spread even when the fuel cell is damaged.

【0047】[0047]

【発明の効果】本発明は以上説明したとおり、ジルコニ
ウム合金製被覆管基材の内側に設けられたジルコニウム
製内張り層が、高純度ジルコニウム中に錫,鉄,クロ
ム,ニッケル,ニオブ,バナジウム,モリブデンのうち
の何れか一つ以上の微量添加物と、酸素を1200ppm 以下
と、その他不可避不純物の合計を2000ppm 以下含み、且
つ、前記微量添加物が、0.07μm以上 0.3μm以下の平
均粒径の金属間化合物として析出されてなるものである
ため、内面の急激な酸化に対する抑制力を維持しつつ、
応力腐蝕割れに対する耐性を向上させた燃料被覆管を得
ることができるという効果がある。
As described above, according to the present invention, the zirconium lining layer provided inside the cladding tube base material made of zirconium alloy contains tin, iron, chromium, nickel, niobium, vanadium and molybdenum in high purity zirconium. Any one or more of the trace additives, oxygen of 1200ppm or less, and the total of other unavoidable impurities of 2000ppm or less, and the trace additive is a metal having an average particle size of 0.07μm or more and 0.3μm or less. Since it is deposited as an intermetallic compound, while maintaining the ability to suppress rapid oxidation of the inner surface,
There is an effect that a fuel cladding tube having improved resistance to stress corrosion cracking can be obtained.

【0048】また、ジルコニウム製内張り部として、高
純度ジルコニウムに錫,鉄,クロム,ニッケル,ニオ
ブ,バナジウム,モリブデンのうちの何れか一つ以上の
微量添加物を含む素材を準備し、この素材を 900℃以上
に加熱して冷却した後に、焼き鈍し又は熱間押出し等の
熱処理が、温度,時間を基に定義される前述のパラメー
タΣAを1×10-18 以上1×10-16 以下とする熱処
理を行なうことにより、前記燃料被覆管を得ることがで
きる。
As the zirconium lining portion, a material containing high-purity zirconium and a trace additive of at least one of tin, iron, chromium, nickel, niobium, vanadium and molybdenum is prepared. After heating to 900 ° C or higher and cooling, heat treatment such as annealing or hot extrusion is a heat treatment in which the above-mentioned parameter ΣA defined based on temperature and time is set to 1 × 10 -18 or more and 1 × 10 -16 or less. By performing the above, the fuel cladding tube can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】被覆管の一実施例の製造工程を示す工程図であ
る。
FIG. 1 is a process drawing showing a manufacturing process of an embodiment of a cladding tube.

【図2】被覆管の別の実施例の製造工程を示す工程図で
ある。
FIG. 2 is a process drawing showing a manufacturing process of another embodiment of the cladding tube.

【図3】燃料棒の縦断面の構成を示す説明図である。FIG. 3 is an explanatory diagram showing a configuration of a vertical cross section of a fuel rod.

【図4】図3の横断面の構成を示す説明図である。FIG. 4 is an explanatory diagram showing a configuration of a cross section of FIG.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 内部に核燃料を収納するジルコニウム合
金製原子炉用燃料被覆管基材と、前記被覆管基材の内側
に前記ジルコニウム合金と冶金的に結合したジルコニウ
ム製の内張り層とを有した燃料被覆管において、 前記内張り層が、高純度ジルコニウム中に錫,鉄,クロ
ム,ニッケル,ニオブ,バナジウム,モリブデンのうち
の何れか一つ以上の微量添加物と、酸素を1200ppm 以下
と、その他不可避不純物の合計を2000ppm 以下含み、 前記微量添加物が、0.07μm以上 0.3μm以下の平均粒
径の金属間化合物として析出されてなることを特徴とす
る原子炉用燃料被覆管。
1. A fuel cladding tube base made of a zirconium alloy for containing nuclear fuel therein, and a zirconium lining layer metallurgically bonded to the zirconium alloy inside the cladding base. In the fuel cladding tube, the lining layer contains high-purity zirconium, a trace additive of at least one of tin, iron, chromium, nickel, niobium, vanadium, and molybdenum, oxygen of 1200 ppm or less, and other inevitable. A fuel cladding tube for a nuclear reactor, comprising a total amount of impurities of 2000 ppm or less, wherein the trace additive is deposited as an intermetallic compound having an average particle size of 0.07 μm or more and 0.3 μm or less.
【請求項2】 請求項1に記載の原子炉用燃料被覆管に
おいて、 前記被覆管基材の肉厚が、 0.4mm以上 1.5mm以下であ
り、 前記内張り層の肉厚が0.03mm以上 0.2mm以下であること
を特徴とする原子炉用燃料被覆管。
2. The fuel cladding for a nuclear reactor according to claim 1, wherein the cladding tube base material has a wall thickness of 0.4 mm or more and 1.5 mm or less, and the lining layer has a wall thickness of 0.03 mm or more and 0.2 mm or more. A fuel cladding tube for a nuclear reactor, characterized in that:
【請求項3】 請求項1に記載の原子炉用燃料被覆管に
おいて、 前記錫,鉄,クロム,ニッケル,ニオブ,バナジウム,
モリブデンのうちの何れか一つ以上の微量添加物の合計
を 0.2%以上1%以下含んだことを特徴とする原子炉用
燃料被覆管。
3. The fuel cladding tube for a nuclear reactor according to claim 1, wherein the tin, iron, chromium, nickel, niobium, vanadium,
A fuel cladding tube for a nuclear reactor, which contains 0.2% or more and 1% or less of a total of one or more trace additives of molybdenum.
【請求項4】 請求項1に記載の原子炉用燃料被覆管に
おいて、 前記微量添加物として、鉄のみを 0.2%以上1%以下含
んだことを特徴とする原子炉用燃料被覆管。
4. The fuel cladding for a nuclear reactor according to claim 1, wherein only 0.2% or more and 1% or less of iron is contained as the trace additive.
【請求項5】 請求項1に記載の原子炉用燃料被覆管に
おいて、 前記ジルコニウム製の内張り層が、前記酸素を 600ppm
以下、その他不可避不純物の合計を1000ppm 以下含むこ
とを特徴とする原子炉用燃料被覆管。
5. The reactor fuel cladding tube according to claim 1, wherein the zirconium lining layer contains 600 ppm of the oxygen.
Hereinafter, a fuel cladding for a nuclear reactor characterized by containing a total of 1000 ppm or less of other unavoidable impurities.
【請求項6】 請求項1に記載の原子炉用燃料被覆管に
おいて、 前記金属間化合物が、 0.1μm 以上 0.2μm 以下の平均
粒径に析出されてなることを特徴とする原子炉用燃料被
覆管。
6. The fuel cladding for a nuclear reactor according to claim 1, wherein the intermetallic compound is deposited to have an average particle diameter of 0.1 μm or more and 0.2 μm or less. tube.
【請求項7】 核燃料を装填するためのジルコニウム合
金製被覆管基材部を成型する工程と、 前記基材部の内面に一体に設けられるジルコニウム製内
張り部を成型する工程と、 前記基材部と内張り部とを組合せて外面側に基材部を内
面側に内張り部を配置された二重管体を形成する工程
と、 前記二重管体の基材部と内張り部とを冶金的に結合させ
る工程とを備えた燃料被覆管の製造方法において、 前記ジルコニウム製内張り部として、高純度ジルコニウ
ムに錫,鉄,クロム,ニッケル,ニオブ,バナジウム,
モリブデンのうちの何れか一つ以上の微量添加物を含む
素材を準備し、 前記素材を 900℃以上に加熱して冷却した後に、焼き鈍
し又は熱間押出し等の熱処理が、温度,時間を基に下式
で定義されるパラメータΣAを1×10-18 以上1×1
-16 以下とする熱処理を行なうことを特徴とする原子
炉用燃料被覆管の製造方法。 ΣA=t・exp(−Q/ RT) t;温度Tにおける保持時間(時間) T;焼鈍温度(K) Q;活性化エネルギー R;気体定数 Q/R; 40000
7. A step of molding a zirconium alloy cladding tube base material portion for loading nuclear fuel; a step of molding a zirconium lining portion integrally provided on an inner surface of the base material portion; A step of forming a double pipe body in which the base material portion is arranged on the outer surface side and the inner lining portion is arranged on the inner surface side by combining the inner pipe portion and the inner lining portion, and the base material portion and the lining portion of the double pipe body are metallurgically In the method for producing a fuel cladding tube, which comprises a step of bonding, as the zirconium lining portion, tin, iron, chromium, nickel, niobium, vanadium,
After preparing a material containing any one or more trace amounts of molybdenum and heating the material to 900 ° C or higher and cooling it, heat treatment such as annealing or hot extrusion is performed based on temperature and time. Parameter ΣA defined by the following formula is 1 × 10 -18 or more 1 × 1
A method of manufacturing a fuel cladding tube for a nuclear reactor, which comprises performing a heat treatment at 0 -16 or less. ΣA = t · exp (-Q / RT) t; retention time (time) at temperature T T; annealing temperature (K) Q; activation energy R; gas constant Q / R; 40000
【請求項8】 請求項7に記載の燃料被覆管の製造方法
において、 前記内張り部と前記基材部とを組合わせて熱間押出しを
行なった後、冷間加工処理及び焼き鈍し処理を1回以上
繰返すことを特徴とする原子炉用燃料被覆管の製造方
法。
8. The method for manufacturing a fuel clad tube according to claim 7, wherein after hot extrusion is performed by combining the lining portion and the base material portion, cold working treatment and annealing treatment are performed once. A method of manufacturing a fuel cladding tube for a nuclear reactor, characterized by repeating the above.
【請求項9】 請求項7に記載の燃料被覆管の製造方法
において、 前記燃料被覆管が、沸騰水型原子炉用燃料棒の被覆管で
あって、 前記燃料被覆管の外表面に対し、前記パラメータΣAを
1×10-19 から5×10-18 の範囲とした熱処理を行
なうことを特徴とする原子炉用燃料被覆管の製造方法。
9. The method for producing a fuel clad tube according to claim 7, wherein the fuel clad tube is a clad tube for a boiling water reactor fuel rod, and the fuel clad tube has an outer surface with respect to an outer surface of the fuel clad tube. A method of manufacturing a fuel cladding tube for a nuclear reactor, characterized in that heat treatment is performed with the parameter ΣA in the range of 1 × 10 −19 to 5 × 10 −18 .
【請求項10】 請求項7に記載の燃料被覆管の製造方
法において、 前記基材部と内張り部とを冶金的に結合させる工程にお
いて、前記基材部と内張り部とを熱間押出しにより二重
管体に成型した後、該二重管体の内面を 100℃以下に冷
却しながら、基材部のみを 900℃以上に加熱し、その
後、冷間加工及び650℃以下の焼き鈍しを1回以上繰返
すことを特徴とする原子炉用燃料被覆管の製造方法。
10. The method for manufacturing a fuel clad tube according to claim 7, wherein in the step of metallurgically bonding the base material portion and the lining portion, the base material portion and the lining portion are hot-extruded to form two pieces. After molding into a heavy pipe, only the base material is heated to 900 ° C or higher while cooling the inner surface of the double pipe to 100 ° C or less, and then cold working and annealing at 650 ° C or less are performed once. A method of manufacturing a fuel cladding tube for a nuclear reactor, characterized by repeating the above.
JP05247324A 1993-09-09 1993-09-09 Fuel cladding for nuclear reactor and method of manufacturing the same Expired - Lifetime JP3122782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05247324A JP3122782B2 (en) 1993-09-09 1993-09-09 Fuel cladding for nuclear reactor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05247324A JP3122782B2 (en) 1993-09-09 1993-09-09 Fuel cladding for nuclear reactor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0777590A true JPH0777590A (en) 1995-03-20
JP3122782B2 JP3122782B2 (en) 2001-01-09

Family

ID=17161709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05247324A Expired - Lifetime JP3122782B2 (en) 1993-09-09 1993-09-09 Fuel cladding for nuclear reactor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3122782B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838753A (en) * 1997-08-01 1998-11-17 Siemens Power Corporation Method of manufacturing zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
US5844959A (en) * 1997-08-01 1998-12-01 Siemens Power Corporation Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
US8320515B2 (en) 2006-08-24 2012-11-27 Westinghouse Electric Sweden Ab Water reactor fuel cladding tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09179927A (en) 1995-12-26 1997-07-11 Fujitsu Ltd Bar code reader

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838753A (en) * 1997-08-01 1998-11-17 Siemens Power Corporation Method of manufacturing zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
US5844959A (en) * 1997-08-01 1998-12-01 Siemens Power Corporation Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
US8320515B2 (en) 2006-08-24 2012-11-27 Westinghouse Electric Sweden Ab Water reactor fuel cladding tube

Also Published As

Publication number Publication date
JP3122782B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP3512402B2 (en) Method for producing niobium-containing zirconium alloy nuclear fuel cladding with excellent corrosion resistance
JP6787418B2 (en) Titanium material for hot rolling
EP0071193B1 (en) Process for producing zirconium-based alloy
JPWO2017018508A1 (en) Titanium composite and titanium material for hot rolling
JPH08239740A (en) Production of pipe for nuclear fuel aggregate,and pipe obtained thereby
JPH0625389B2 (en) Zirconium based alloy with high corrosion resistance and low hydrogen absorption and method for producing the same
JPH0242387A (en) Fuel assembly for nuclear reactor, its manufacture, and its member
JPS60211388A (en) Coated pipe for nuclear fuel element
JPS58224139A (en) Zirconium alloy with high corrosion resistance
KR101378066B1 (en) Zirconium alloys for nuclear fuel cladding, having a superior corrosion resistance by reducing the amount of alloying elements, and the preparation method of zirconium alloys nuclear fuel claddings using thereof
JPH0843567A (en) Manufacture of coating pipe
JPH08240673A (en) Zirconium-based alloy tube for nuclear fuel aggregate and its manufacture
JPS6234095A (en) Nuclear fuel coated tube
JPH0777590A (en) Fuel cladding pipe for nuclear reactor and manufacture thereof
JP2018514646A (en) Manufacturing method of zirconium parts for nuclear fuel using multi-stage hot rolling
JP4982654B2 (en) Zirconium alloy with improved corrosion resistance and method for producing zirconium alloy with improved corrosion resistance
JP6128289B1 (en) Titanium composite and titanium material for hot rolling
JPH0528357B2 (en)
US4933136A (en) Water reactor fuel cladding
JPS5822365A (en) Preparation of zirconium base alloy
JP2535114B2 (en) Manufacturing method for nuclear power plant members
JP6137423B1 (en) Titanium composite and titanium material for hot rolling
JPH0457237B2 (en)
JP3371303B2 (en) Reactor fuel cladding
JPH1081929A (en) Zirconium alloy and alloy pipe and their production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000919

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 13