JPH0777531A - Magnetic position/rotation detecting element - Google Patents

Magnetic position/rotation detecting element

Info

Publication number
JPH0777531A
JPH0777531A JP5224283A JP22428393A JPH0777531A JP H0777531 A JPH0777531 A JP H0777531A JP 5224283 A JP5224283 A JP 5224283A JP 22428393 A JP22428393 A JP 22428393A JP H0777531 A JPH0777531 A JP H0777531A
Authority
JP
Japan
Prior art keywords
pattern
detected
magnetic
magnetic field
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5224283A
Other languages
Japanese (ja)
Other versions
JP3067484B2 (en
Inventor
Kazuhiro Onaka
和弘 尾中
Shuji Seguchi
修次 瀬口
Hiroshi Sakakima
博 榊間
Mitsuo Satomi
三男 里見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5224283A priority Critical patent/JP3067484B2/en
Publication of JPH0777531A publication Critical patent/JPH0777531A/en
Application granted granted Critical
Publication of JP3067484B2 publication Critical patent/JP3067484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To allow a detecting element to be miniaturized while increasing the output by arranging the signal field from an object to be detected in parallel with the longitudinal direction of a magnetosensitive pattern. CONSTITUTION:A signal field 6 from an object to be detected, a pattern 7 at a magnetosensitive part, a pectinated route 8, etc., are provided. The width W of pattern at the magnetosensitive part is determined according to a formula; Hk=Ha+4piIs.T/W, where Hk: saturation field of element, Ha: essential saturation field of magnetic film, Is: saturation magnetization, T/W: reverse field constant. The pattern width W contributes significantly to HK. When the pattern width W is decreased, the HK decreases and the magnetic sensitivity increase. Consequently, when the sensitivity is increased by decreasing the HK, the magnetosensitive pattern width decreases and the resistance of element increases and thereby, the pattern describing range is limited for the same design resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気抵抗効果を有する人
工格子膜を用いた磁気式位置、検出回転検出用素子関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic position / detection / rotation detecting element using an artificial lattice film having a magnetoresistive effect.

【0002】[0002]

【従来の技術】一般の強磁性金属に於いては、電気抵抗
は磁化方向と電流方向とが平行の時最大、両者が直交し
たとき最小となる。異方性磁気抵抗効果の大きさを表す
量としては、上記の最大と最小の差Δρ=ρ(平行)−
ρ(直交)と印加磁場0のときの抵抗値ρ0との比Δρ
/ρ0が用いられる。室温に於けるΔρ/ρ0が大きい材
料としては、Ni−Co系、Ni−Fe系合金が知られ
ている。これらのΔρ/ρ0は3〜5%程度である。
2. Description of the Related Art In a general ferromagnetic metal, the electric resistance is maximum when the magnetization direction and the current direction are parallel to each other and minimum when both are perpendicular to each other. As a quantity representing the magnitude of the anisotropic magnetoresistive effect, the difference between the maximum and minimum Δρ = ρ (parallel) −
Ratio Δρ between ρ (orthogonal) and the resistance value ρ 0 when the applied magnetic field is 0
/ Ρ 0 is used. Ni-Co-based and Ni-Fe-based alloys are known as materials having a large Δρ / ρ 0 at room temperature. These Δρ / ρ 0 are about 3 to 5%.

【0003】しかしながら、強磁性磁気抵抗素子は飽和
磁界量以上の磁気に対して抵抗値の変化を示さず、また
抵抗値変化の絶対量が最大でも5%と小さいため、出力
電圧が他の検出素子と比較して小さく、センサ面を被検
出体に検出ピッチとほぼ同じ距離(エアギャップ)まで
接近させて使用する必要があり、使用上の大きな障害に
なっている。
However, the ferromagnetic magnetoresistive element does not show a change in the resistance value with respect to magnetism exceeding the saturation magnetic field amount, and the absolute amount of the change in the resistance value is as small as 5% at maximum. It is smaller than the element, and it is necessary to use the sensor surface close to the object to be detected up to a distance (air gap) approximately the same as the detection pitch, which is a major obstacle to use.

【0004】一方、強磁性磁気抵抗素子はガラスまたは
セラミック基板上にニッケル合金からなる膜厚約500
Åの強磁性磁気抵抗薄膜をパターニングし、電極を介し
てリード線に接続されている。強磁性磁気抵抗薄膜の保
護膜は例えばSiNとエポキシ樹脂またはポリイミド樹
脂等をコーティングすることによって構成される。図1
2は従来の強磁性磁気抵抗素子の構造断面図であり、2
8は強磁性磁気抵抗薄膜、29は基板、30は保護膜、
31は電極、32はリード線である。
On the other hand, the ferromagnetic magnetoresistive element has a film thickness of about 500 made of nickel alloy on a glass or ceramic substrate.
The ferromagnetic magnetoresistive thin film of Å is patterned and connected to the lead wire via the electrode. The protective film of the ferromagnetic magnetoresistive thin film is formed by coating SiN and epoxy resin or polyimide resin, for example. Figure 1
2 is a structural sectional view of a conventional ferromagnetic magnetoresistive element.
8 is a ferromagnetic magnetoresistive thin film, 29 is a substrate, 30 is a protective film,
Reference numeral 31 is an electrode, and 32 is a lead wire.

【0005】図13は従来の強磁性磁気抵抗素子の検出
方式の一例を示したものである。被検出体の着磁パター
ンのN極の中心からN極の中心までをλとした場合、パ
ターンエレメントはそれぞれλ/4隔てて配置されてい
る。33Aと33Bはニッケル合金の強磁性磁気抵抗薄
膜の感磁パターン、34は定電圧印加電極(以下VCC
という)、35はグランド電極(以下GNDという)、
36は出力検出電極(以下FGという)を示している。
図14は感磁パターンと被検出体との位置関係を示した
図である。10は被検出体の着磁パターン、6は被検出
体の信号磁界を示す。これによると、パターン33Aは
パターン33Bとλ/4隔てられて配置されており、被
検出体からの信号磁界に依ってパターン33Aには平行
方向の磁束が通過し、抵抗値が約5%低下する。一方、
パターン33Bには磁束が通過しないため、抵抗値は変
化しない。FGとGNDとの電位差を信号として検出す
ると、被検出体と検出素子との相対位置関係の変化に応
じてこの信号となる電位差も変化する。
FIG. 13 shows an example of a conventional detection method of a ferromagnetic magnetoresistive element. When the distance from the center of the N pole to the center of the N pole of the magnetized pattern of the object to be detected is λ, the pattern elements are arranged at λ / 4 intervals. 33A and 33B are magnetic sensitive patterns of a nickel alloy ferromagnetic magnetoresistive thin film, and 34 is a constant voltage applying electrode (hereinafter referred to as VCC).
, 35 is a ground electrode (hereinafter referred to as GND),
Reference numeral 36 denotes an output detection electrode (hereinafter referred to as FG).
FIG. 14 is a diagram showing the positional relationship between the magnetically sensitive pattern and the detected body. Reference numeral 10 denotes a magnetized pattern of the detected object, and 6 denotes a signal magnetic field of the detected object. According to this, the pattern 33A is arranged at a distance of λ / 4 from the pattern 33B, and the magnetic flux in the parallel direction passes through the pattern 33A due to the signal magnetic field from the object to be detected, and the resistance value is reduced by about 5%. To do. on the other hand,
Since the magnetic flux does not pass through the pattern 33B, the resistance value does not change. When the potential difference between FG and GND is detected as a signal, the potential difference that becomes this signal also changes according to the change in the relative positional relationship between the detected object and the detection element.

【0006】図15は図14の構成によって動作させた
際の検出出力波形である。これによって被検出体の着磁
数と同数のパルス数を検出する。図16は前記図14に
よって構成された被検出体に着磁ピッチ幅即ちλ/2が
150μmの着磁ローターを用いた際の素子表面から被
検出体表面までのエアギャップと印加電圧5V時の検出
出力(電圧振幅)の関係を示した図である。これより明
らかなように、出力電圧はエアギャップ幅が着磁ピッチ
とほぼ同じ値で極大値を示す傾向がある。
FIG. 15 shows a detected output waveform when the device is operated by the configuration of FIG. As a result, the same number of pulses as the magnetized number of the object to be detected is detected. FIG. 16 shows an air gap from the element surface to the surface of the object to be detected when a magnetized rotor having a magnetizing pitch width, that is, λ / 2 of 150 μm is used for the object to be detected constructed as shown in FIG. It is a figure showing the relation of detection output (voltage amplitude). As is clear from this, the output voltage tends to have a maximum value when the air gap width is almost the same value as the magnetizing pitch.

【0007】これに対して近年、強磁性層と非強磁性層
とを交互に積層し隣接する強磁性層の磁化が反平行にな
るようにカップリングした人工格子膜では、大きな磁気
抵抗効果が現れることが発見され、注目されている。人
工格子膜は、特開平4−329683号等に示されてい
るごとくNiFeCo等の強磁性層とCu等の非強磁性
金属より成り、RKKY的磁気結合により磁性層が反強
磁性的に結合したとき大きな磁気抵抗効果を示す。
On the other hand, in recent years, a large magnetoresistive effect is obtained in an artificial lattice film in which ferromagnetic layers and non-ferromagnetic layers are alternately stacked and coupled so that the magnetizations of adjacent ferromagnetic layers are antiparallel. It has been discovered that it will appear, and is attracting attention. The artificial lattice film is composed of a ferromagnetic layer such as NiFeCo and a non-ferromagnetic metal such as Cu as shown in JP-A-4-329683 and the like, and the magnetic layer is antiferromagnetically coupled by RKKY magnetic coupling. When it shows a large magnetoresistive effect.

【0008】人工格子膜と従来の強磁性磁気抵抗膜との
違いは、その磁気抵抗変化率の大きさと、磁気異方性と
抵抗値変化の方向にある。磁気抵抗変化率は強磁性磁気
抵抗膜の最大5%に対して人工格子膜では少なくとも1
5%以上である。また磁気異方性と抵抗値変化をする方
向に対しては、強磁性磁気抵抗膜は磁化された方向と電
流方向が垂直の場合抵抗値が小さくなるのに対し、人工
格子膜ではこのような異方性はなく、磁化されると等方
的に抵抗値が小さくなる。このため、磁気抵抗素子の飽
和磁界を計算する際、必要な式は Hk=Ha+4πIs・T/W (1) Hk:素子の飽和磁界 Ha:磁性膜本来の飽和磁界 Is:飽和磁化 T/W:反磁界定数 で表されるが、強磁性膜の場合、電流方向即ちパターン
長手方向に対し磁界が垂直のため T:膜厚、W:パターン幅 として計算可能であり、人工格子膜の場合は、電流方向
即ちパターン長手方向に対し磁界が平行でもよく、この
ときの計算の際の置き換えは、 T:パターン幅、W:パターン長 で示される。
The difference between the artificial lattice film and the conventional ferromagnetic magnetoresistive film lies in the magnitude of the magnetoresistive change rate and the direction of magnetic anisotropy and resistance value change. The rate of change in magnetoresistance is 5% at maximum for ferromagnetic magnetoresistive film, but at least 1 for artificial lattice film.
It is 5% or more. With respect to the direction in which the magnetic anisotropy and the resistance value change, the resistance value decreases in the ferromagnetic magnetoresistive film when the magnetized direction and the current direction are perpendicular, whereas in the artificial lattice film, There is no anisotropy, and the resistance value isotropically decreases when magnetized. Therefore, when calculating the saturation magnetic field of the magnetoresistive element, the necessary formula is Hk = Ha + 4πIs · T / W (1) Hk: Saturation magnetic field of element Ha: Original saturation magnetic field Is of magnetic film: Saturation magnetization T / W: In the case of a ferromagnetic film, the magnetic field is perpendicular to the current direction, that is, the longitudinal direction of the pattern, which can be calculated as T: film thickness, W: pattern width. In the case of an artificial lattice film, The magnetic field may be parallel to the current direction, that is, the pattern longitudinal direction, and the replacement in the calculation at this time is represented by T: pattern width and W: pattern length.

【0009】この為感磁パターン形状も強磁性磁気抵抗
素子と異なった形状にしなければならないが、現在人工
格子膜の物性をふまえた磁気式位置、回転検出方式(被
検出体の着磁方法ならびに位置関係)やパターニング方
法は確立されていない。
For this reason, the shape of the magnetic sensitive pattern must be different from that of the ferromagnetic magnetoresistive element, but at present, a magnetic position / rotation detection method (a method for magnetizing the object to be detected and The positional relationship) and patterning method have not been established.

【0010】[0010]

【発明が解決しようとする課題】従来の強磁性磁気抵抗
素子を用いた磁気式位置、回転検出素子は薄膜を用いた
センサでありながら、移動体である被検出体に極めて接
近させて使用する必要がある。このため移動体である被
検出体との接触によって厚みの薄い保護膜が損傷し、素
子の信頼性が損われることが多かった。
The magnetic position / rotation detecting element using the conventional ferromagnetic magnetoresistive element is a sensor using a thin film, but is used very close to the object to be detected which is a moving body. There is a need. For this reason, the thin protective film is often damaged by the contact with the detection object which is a moving body, and the reliability of the element is often impaired.

【0011】一般に使用されている精密モーターの駆動
電圧5Vに印加した場合、処理回路はスレッショルド電
圧30mV以上なければ動作しない。図16の出力30
mVに注目すると、強磁性磁気抵抗素子が回転または位
置検出を可能とするエアギャップは約180μm以下で
あることが判る。
When applied to a driving voltage of 5V of a commonly used precision motor, the processing circuit does not operate unless the threshold voltage is 30 mV or higher. Output 30 of FIG.
Focusing on mV, it can be seen that the air gap that enables the ferromagnetic magnetoresistive element to detect rotation or position is about 180 μm or less.

【0012】さらに磁気センサとして必要なパターニン
グによる磁気感度の向上は一般に飽和磁界強度(Hk)
を小さくすることにより行う。図11は強磁性磁気抵抗
膜の磁気抵抗変化率と磁界強度の関係を示したものであ
り、48は低感度素子の磁気抵抗特性、49は高感度素
子の磁気抵抗特性を示している。横軸は磁界強度、縦軸
は磁気抵抗変化率を示す。この図より、磁気抵抗特性は
飽和磁界強度(Hk)が小さいほど、低磁界に反応して
抵抗値が変化し、磁界感度が向上する事が判る。
Further, the improvement of the magnetic sensitivity by the patterning required for the magnetic sensor is generally achieved by the saturation magnetic field strength (Hk).
By reducing. FIG. 11 shows the relationship between the magnetoresistive change rate of the ferromagnetic magnetoresistive film and the magnetic field strength, where 48 is the magnetoresistive characteristic of the low-sensitivity element, and 49 is the magnetoresistive characteristic of the high-sensitivity element. The horizontal axis represents the magnetic field strength, and the vertical axis represents the magnetoresistance change rate. From this figure, it is understood that the smaller the saturation magnetic field strength (Hk), the smaller the saturation magnetic field strength (Hk) of the magnetoresistive characteristic, the more the resistance value changes in response to the low magnetic field, and the magnetic field sensitivity is improved.

【0013】強磁性磁気抵抗素子の場合、磁界感度を向
上させるには式(1)より明らかなように、パターン幅
を大きくするか膜厚を薄くしなければならず、この結
果、パターン幅増加により所定の抵抗値を得るためによ
り大きなパターン描画面積が必要となったり、また膜厚
を薄くすることによって磁気抵抗膜の物性値が下がるこ
とによりセンサとしての特性が劣悪になったり、信頼性
が低下したりする。
In the case of a ferromagnetic magnetoresistive element, in order to improve the magnetic field sensitivity, it is necessary to increase the pattern width or reduce the film thickness, as is clear from the equation (1). As a result, the pattern width is increased. Therefore, a larger pattern drawing area is required to obtain a predetermined resistance value, and the physical property value of the magnetoresistive film is lowered by reducing the film thickness, resulting in poor sensor characteristics and reliability. It drops.

【0014】上記のごとく、従来の強磁性磁気抵抗素子
は検出出力電圧が低いために、取付や素子形状に多くの
制約があり、安価に導入することが困難であった。
As described above, since the conventional ferromagnetic magnetoresistive element has a low detection output voltage, there are many restrictions on mounting and element shape, and it has been difficult to introduce it at low cost.

【0015】本発明は以上の問題点を鑑みて、高出力で
小型化が可能な磁気式回転、位置検出素子を提供するも
のである。
In view of the above problems, the present invention provides a magnetic rotation and position detecting element which has a high output and can be miniaturized.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に本発明は、強磁性層と非強磁性層とを交互に積層した
人工格子膜を用いた素子の感磁パターンエレメント形状
において、被検出体からの信号磁界と感磁パターンの長
手方向を平行に配置したものである。
In order to solve the above-mentioned problems, the present invention provides a magnetic sensitive pattern element shape of an element using an artificial lattice film in which ferromagnetic layers and non-ferromagnetic layers are alternately laminated. The signal magnetic field from the detector and the longitudinal direction of the magnetic sensitive pattern are arranged in parallel.

【0017】[0017]

【作用】上記構成によって、強磁性膜にみられるような
感度の向上手段、即ち感磁パターン幅を広くしたり、感
磁膜の膜厚を厚くしたりすることに伴う抵抗パターン領
域の拡大が防げる。故に、感度が良くなり、しかも小さ
なパターン領域で磁界に感じることができるため、微細
な着磁の信号に対しても応答できる素子となる。
With the above structure, the sensitivity pattern is increased as seen in the ferromagnetic film, that is, the resistance pattern region is expanded by widening the magnetosensitive pattern width or increasing the film thickness of the magnetosensitive film. Can be prevented. Therefore, the sensitivity is improved, and the magnetic field can be sensed in a small pattern region, so that the device can respond to a minute magnetization signal.

【0018】[0018]

【実施例】【Example】

(実施例1)以下本発明の一実施例について説明する。
図1は本発明実施例の素子断面図である。1は[Co・
Fe/Cu]Nや[Ni・Fe・Co/Cu]Nまたは
[Ni・Fe・Co/Cu/Co/Cu]N(Nは積層
数)系人工格子膜、2は基板、3は保護膜、4は電極、
5はリード線である。図2は本発明実施例の人工格子膜
のパターニング形状であり、6は被検出体からの信号磁
界、7は感磁部分のパターン、8は引き回しのパター
ン、9は被検出体の着磁ピッチの1/2、つまりλ/4
の距離を示している。またここで感磁パターンは信号磁
界と平行方向に描画される。さらにパターンの感磁部分
のパターン幅は前述の式(1)に示されるごとくHkの
値に大きく寄与する。即ちパターン幅を狭くするとHk
が小さくなり、感磁感度が向上する。このため感度を向
上させる(Hkを小さくする)と、感磁パターン幅が狭
くなるため素子の抵抗値が大きくなり、同一の抵抗値で
設計した場合、パターン描画範囲は小さくなる。
(Embodiment 1) An embodiment of the present invention will be described below.
FIG. 1 is a sectional view of an element according to an embodiment of the present invention. 1 is [Co
Fe / Cu] N or [Ni.Fe.Co/Cu] N or [Ni.Fe.Co/Cu/Co/Cu] N (N is the number of laminated layers) based artificial lattice film, 2 is a substrate, 3 is a protective film 4 is an electrode,
5 is a lead wire. FIG. 2 is a patterning shape of the artificial lattice film of the embodiment of the present invention, 6 is a signal magnetic field from the object to be detected, 7 is a pattern of a magnetically sensitive portion, 8 is a pattern of routing, and 9 is a magnetizing pitch of the object to be detected. 1/2 of λ / 4
Shows the distance. Further, here, the magnetic sensitive pattern is drawn in a direction parallel to the signal magnetic field. Further, the pattern width of the magnetically sensitive portion of the pattern greatly contributes to the value of Hk as shown in the above equation (1). That is, if the pattern width is narrowed, Hk
Is reduced, and the magnetic sensitivity is improved. For this reason, if the sensitivity is improved (Hk is decreased), the width of the magneto-sensitive pattern is narrowed, and the resistance value of the element is increased. When the resistors are designed with the same resistance value, the pattern drawing range is reduced.

【0019】図3は図2のパターン形状で構成された検
出素子を用いた本発明実施例の出力検出方式である。1
0は被検出体、11A,11Bは人工格子膜の感磁パタ
ーン、12はVCC、13はGND、14はFGであ
る。これによると、パターンAはパターンBとλ/4隔
てられて配置されており、被検出体からの信号磁界に依
ってパターン11Aには平行方向の磁束が通過し、抵抗
値が約15%低下する。一方、パターン11Bには磁束
が通過しないため、抵抗値は変化しない。従来例と同様
にFGとGNDとの電位差を信号として検出する。
FIG. 3 shows an output detection system according to an embodiment of the present invention using a detection element having the pattern shape shown in FIG. 1
Reference numeral 0 is an object to be detected, 11A and 11B are magnetic sensing patterns of the artificial lattice film, 12 is VCC, 13 is GND, and 14 is FG. According to this, the pattern A is arranged so as to be separated from the pattern B by λ / 4, and the magnetic flux in the parallel direction passes through the pattern 11A due to the signal magnetic field from the detected object, and the resistance value is reduced by about 15%. To do. On the other hand, since the magnetic flux does not pass through the pattern 11B, the resistance value does not change. Similar to the conventional example, the potential difference between FG and GND is detected as a signal.

【0020】図4は図3の構成によって動作させた際の
検出出力波形である。これによって従来の強磁性磁気抵
抗素子のλ/4配置の検出出力パルス数と同数のパルス
数が得られる。図5は前記図3の構成での素子表面から
被検出体表面までのエアギャップと印加電圧5V時の検
出出力の関係を示した図である。これより明らかなよう
に、従来例と比較して人工格子膜を用いた位置、回転検
出素子は4倍以上の出力が検出できる。
FIG. 4 shows detected output waveforms when the device is operated with the configuration of FIG. As a result, the same number of pulses as the number of detection output pulses of the conventional ferromagnetic magnetoresistive element in the λ / 4 arrangement can be obtained. FIG. 5 is a diagram showing the relationship between the air gap from the element surface to the surface of the object to be detected and the detection output at an applied voltage of 5 V in the configuration of FIG. As is clear from this, as compared with the conventional example, the position and rotation detection element using the artificial lattice film can detect an output four times or more.

【0021】(実施例2)以下本発明の第2の実施例に
ついて説明する。図1は本発明の第2の実施例の素子断
面図で、実施例1と同じである。
(Second Embodiment) The second embodiment of the present invention will be described below. FIG. 1 is a sectional view of an element of the second embodiment of the present invention, which is the same as the first embodiment.

【0022】図6は本発明の第2の実施例の人工格子膜
のパターニング形状である。図6において、15A,1
5Bは本発明実施例の人工格子膜のパターニング形状で
ある。パターン15Aと15Bの距離は被検出体の着磁
ピッチであるλ/2に相当する。この場合、実施例1の
ようなλ/4のパターン形状とは異なり、感磁パターン
は強磁性磁気抵抗素子の場合と同様に被検出体の移動方
向に対して垂直に配しても差し支えない。ただし、Hk
の計算式は(1)に従い、Tはパターン幅、Wはパター
ン長に相当する。図7は図6のパターン形状で構成され
た検出素子を用いた本発明実施例の出力検出方式であ
る。10は被検出体、15A,15Bは人工格子膜の感
磁パターン、19はVCC、20はGND、21はF
G、22a,22bはバイアス磁石からの印加磁界であ
る。これによると、パターン15Aはパターン15Bと
はλ/2隔てられて配置されており、被検出体からの信
号磁界aに依ってパターン15A付近のバイアス磁界は
a1の位置に移動する。これによってパターン15Aは
抵抗値が約15%低下する。一方、被検出体からの信号
磁界bによってパターン15B付近のバイアス磁界はb
1の位置に移動する。この磁界はパターン15Bに垂直
であるためにパターンBの抵抗値は変化しない。以上よ
り、パターン15Aと15B間の電位差に変化が生じ
る。この変化をFG21から信号として検出する。この
検出方式の場合、バイアス磁界を感磁パターン上に設け
ているが、これによって人工格子膜が持つヒステリシス
が除去される。このため、ヒステリシスが大きい材料も
使用が可能となり、材料選択の範囲が大きくなる。
FIG. 6 shows the patterning shape of the artificial lattice film of the second embodiment of the present invention. In FIG. 6, 15A, 1
5B is a patterning shape of the artificial lattice film of the embodiment of the present invention. The distance between the patterns 15A and 15B corresponds to λ / 2, which is the magnetization pitch of the object to be detected. In this case, unlike the pattern shape of λ / 4 as in the first embodiment, the magnetic sensitive pattern may be arranged perpendicularly to the moving direction of the detected object as in the case of the ferromagnetic magnetoresistive element. . However, Hk
The calculation formula of is according to (1), T corresponds to the pattern width, and W corresponds to the pattern length. FIG. 7 shows an output detection method according to an embodiment of the present invention using a detection element having the pattern shape shown in FIG. Reference numeral 10 is an object to be detected, 15A and 15B are magnetic sensing patterns of the artificial lattice film, 19 is VCC, 20 is GND, and 21 is F.
G, 22a and 22b are magnetic fields applied from the bias magnet. According to this, the pattern 15A is arranged at a distance of λ / 2 from the pattern 15B, and the bias magnetic field near the pattern 15A moves to the position a1 due to the signal magnetic field a from the detection object. As a result, the resistance value of the pattern 15A is reduced by about 15%. On the other hand, the bias magnetic field near the pattern 15B is b due to the signal magnetic field b from the detected object.
Move to position 1. Since this magnetic field is perpendicular to the pattern 15B, the resistance value of the pattern B does not change. As described above, the potential difference between the patterns 15A and 15B changes. This change is detected as a signal from the FG 21. In the case of this detection method, the bias magnetic field is provided on the magnetic sensitive pattern, but this eliminates the hysteresis of the artificial lattice film. For this reason, a material having a large hysteresis can be used, and the range of material selection is expanded.

【0023】図8は図7の構成によって動作させた際の
検出出力波形である。図9は前記図7の構成での素子表
面から被検出体表面までのエアギャップと印加電圧5V
時の検出出力の関係を示した図である。これより明らか
なように、従来例と比較して人工格子膜を用いた位置、
回転検出素子は4倍以上の出力が検出できる。
FIG. 8 shows a detection output waveform when the device is operated with the configuration of FIG. FIG. 9 shows the air gap from the element surface to the surface of the object to be detected and the applied voltage of 5 V in the structure of FIG.
It is a figure showing the relation of the detection output at the time. As is clear from this, compared with the conventional example, the position using the artificial lattice film,
The rotation detecting element can detect an output four times or more.

【0024】図10はキャプスタンモータに組み込んだ
際のFg出力波形に及ぼすモータの駆動用マグネットの
漏洩磁界の影響を調べたものである。横軸は素子表面か
ら被検出体までの距離、縦軸は出力電圧のAM変調率
(モータの回転子が一回転した時の(最大出力−最小出
力)/最小出力の百分率であり値の小さい方が良い)を
示す。これによると、本発明実施例は従来例と比較し
て、1/5以下の影響しか受けていないことがわかる。
FIG. 10 shows the effect of the leakage magnetic field of the drive magnet of the motor on the Fg output waveform when the motor is incorporated in the capstan motor. The horizontal axis is the distance from the element surface to the object to be detected, and the vertical axis is the AM modulation rate of the output voltage (percentage of (maximum output-minimum output) / minimum output when the rotor of the motor makes one rotation), which is a small value. Is better). According to this, it can be seen that the embodiment of the present invention is affected only by 1/5 or less as compared with the conventional example.

【0025】[0025]

【発明の効果】以上のように、本発明によれば以下のよ
うな効果が得られる。 1.検出出力が約4倍以上の向上できるため、出力波形
上にあるノイズなどの影響を受け難くなる。また被検出
体と素子面との距離(エアギャップ)を大きくとれるの
で、素子の実装が容易になり、実装コストが低減でき、
さらに被検出体と素子表面との接触により感磁パターン
が損傷する確率が低くなる。 2.上述のごとく、被検出体からの磁場に対して平行方
向にパターニングすることにより、高感度にする際、パ
ターン幅を小さくするため、抵抗値は上がる方向になる
ので、パターン描画部分を小さくできる。 3.キャプスタンモータ等に実装された際に観察される
Fg出力のAM変調率が小さくなる。
As described above, according to the present invention, the following effects can be obtained. 1. Since the detection output can be improved about four times or more, it is less likely to be affected by noise on the output waveform. In addition, since the distance (air gap) between the object to be detected and the element surface can be increased, the element can be easily mounted and the mounting cost can be reduced.
Furthermore, the probability that the magnetic sensitive pattern will be damaged due to the contact between the object to be detected and the element surface is reduced. 2. As described above, when the patterning is performed in the direction parallel to the magnetic field from the object to be detected, the pattern width is reduced when the sensitivity is increased, and the resistance value is increased. Therefore, the pattern drawing portion can be reduced. 3. The AM modulation rate of the Fg output observed when mounted on a capstan motor or the like becomes small.

【0026】以上より、高出力で実装コストが安価で、
小型化が可能な磁気抵抗素子が提供できる。
From the above, high output and low mounting cost,
A magnetoresistive element that can be downsized can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の第1の実施例のパターン図FIG. 2 is a pattern diagram of the first embodiment of the present invention.

【図3】本発明の第1の実施例の出力検出方式図FIG. 3 is a diagram of an output detection method according to the first embodiment of the present invention.

【図4】本発明の第1の実施例の検出出力波形図FIG. 4 is a detection output waveform diagram of the first embodiment of the present invention.

【図5】本発明の第1の実施例のエアギャップと検出出
力の関係図
FIG. 5 is a diagram showing the relationship between the air gap and the detection output according to the first embodiment of this invention.

【図6】本発明の第2の実施例のパターン図FIG. 6 is a pattern diagram of a second embodiment of the present invention.

【図7】本発明の第2の実施例の出力検出方式図FIG. 7 is an output detection system diagram of the second embodiment of the present invention.

【図8】本発明の第2の実施例の検出出力波形図FIG. 8 is a detection output waveform diagram of the second embodiment of the present invention.

【図9】本発明の第2の実施例のエアギャップと検出出
力の関係図
FIG. 9 is a relationship diagram of the air gap and the detection output according to the second embodiment of the present invention.

【図10】本発明の第2の実施例のエアギャップとAM
変調率の関係図
FIG. 10 is an air gap and AM of the second embodiment of the present invention.
Modulation rate relationship diagram

【図11】強磁性磁気抵抗膜の磁気抵抗変化率と磁界強
度の関係図
FIG. 11 is a diagram showing the relationship between the magnetoresistance change rate and the magnetic field strength of the ferromagnetic magnetoresistive film.

【図12】従来例の断面図FIG. 12 is a sectional view of a conventional example.

【図13】従来例のパターン図FIG. 13 is a pattern diagram of a conventional example.

【図14】従来例の出力検出方式図FIG. 14 is an output detection method diagram of a conventional example.

【図15】従来例の検出出力波形図FIG. 15 is a detection output waveform diagram of a conventional example.

【図16】従来例のエアギャップと検出出力の関係図FIG. 16 is a relational diagram of air gap and detection output of a conventional example.

【符号の説明】[Explanation of symbols]

1 人工格子膜 6 信号磁界 7 感磁部分のパターン 1 Artificial lattice film 6 Signal magnetic field 7 Magnetic field pattern

───────────────────────────────────────────────────── フロントページの続き (72)発明者 里見 三男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuo Satomi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 強磁性層と非強磁性層とを交互に積層し
た人工格子膜を用いた素子の感磁パターンエレメント形
状において、被検出体からの信号磁界と感磁パターンの
長手方向を平行に配置したことを特徴とする磁気式位
置、回転検出素子。
1. In a magneto-sensitive pattern element shape of an element using an artificial lattice film in which ferromagnetic layers and non-ferromagnetic layers are alternately laminated, the signal magnetic field from the object to be detected is parallel to the longitudinal direction of the magneto-sensitive pattern. A magnetic position / rotation detecting element, which is characterized in that
【請求項2】 感磁材料に強磁性層と非強磁性層とを交
互に積層した人工格子膜を用いた磁気抵抗素子におい
て、感磁材料が持つヒステリシスをバイアス磁界によっ
て除去したことを特徴とする磁気式位置、回転検出素
子。
2. A magnetoresistive element using an artificial lattice film in which a ferromagnetic layer and a non-ferromagnetic layer are alternately laminated as a magnetic sensitive material, wherein hysteresis of the magnetic sensitive material is removed by a bias magnetic field. Magnetic position / rotation detecting element.
JP5224283A 1993-09-09 1993-09-09 Magnetic position and rotation detection element Expired - Fee Related JP3067484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5224283A JP3067484B2 (en) 1993-09-09 1993-09-09 Magnetic position and rotation detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5224283A JP3067484B2 (en) 1993-09-09 1993-09-09 Magnetic position and rotation detection element

Publications (2)

Publication Number Publication Date
JPH0777531A true JPH0777531A (en) 1995-03-20
JP3067484B2 JP3067484B2 (en) 2000-07-17

Family

ID=16811349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5224283A Expired - Fee Related JP3067484B2 (en) 1993-09-09 1993-09-09 Magnetic position and rotation detection element

Country Status (1)

Country Link
JP (1) JP3067484B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107765A1 (en) * 2020-11-23 2022-05-27 パナソニックIpマネジメント株式会社 Magnetic sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107765A1 (en) * 2020-11-23 2022-05-27 パナソニックIpマネジメント株式会社 Magnetic sensor

Also Published As

Publication number Publication date
JP3067484B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
US7112957B2 (en) GMR sensor with flux concentrators
US6988414B2 (en) Sensor device having a magnetostrictive force sensor
US7924534B2 (en) Magnetic sensor
JP5151551B2 (en) Thin film magnetic sensor
US20020149358A1 (en) Angle sensor and method of increasing the anisotropic field strength of a sensor unit of an angle sensor
WO2000010022A1 (en) Magnetic field sensor with perpendicular to layer sensitivity, comprising a giant magnetoresistance material or a spin tunnel junction
US7064649B2 (en) Magneto-resistive layer arrangement and gradiometer with said layer arrangement
JP2018179776A (en) Thin film magnetic sensor
JPH10233146A (en) Ferromagnet passage sensor
EP1041391A2 (en) Magneto-impedance element made of thin film magnetic material
KR20180035701A (en) Thin-film magnetic sensor
JP2006029890A (en) Magnetism detector
JP2000193407A (en) Magnetic positioning device
JP2000180524A (en) Magnetic field sensor
JPH0870148A (en) Magnetoresistance element
JP3341036B2 (en) Magnetic sensor
JP3067484B2 (en) Magnetic position and rotation detection element
JP3282444B2 (en) Magnetoresistive element
JP3064293B2 (en) Rotation sensor
JP2003315091A (en) Rotation angle sensor
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JPH11287669A (en) Magnetic field sensor
JPH0738173A (en) Magnetic position, rotation detecting element
JP4237855B2 (en) Magnetic field sensor
JP2003282995A (en) Magnetic field detecting element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees