JPH0777490B2 - Reactive power compensation method by optimal control of stochastic system - Google Patents

Reactive power compensation method by optimal control of stochastic system

Info

Publication number
JPH0777490B2
JPH0777490B2 JP62116945A JP11694587A JPH0777490B2 JP H0777490 B2 JPH0777490 B2 JP H0777490B2 JP 62116945 A JP62116945 A JP 62116945A JP 11694587 A JP11694587 A JP 11694587A JP H0777490 B2 JPH0777490 B2 JP H0777490B2
Authority
JP
Japan
Prior art keywords
reactive power
tcr
optimal control
signal
compensation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62116945A
Other languages
Japanese (ja)
Other versions
JPS63283431A (en
Inventor
浩幸 壹岐
勝久 亀谷
茂雄 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62116945A priority Critical patent/JPH0777490B2/en
Publication of JPS63283431A publication Critical patent/JPS63283431A/en
Publication of JPH0777490B2 publication Critical patent/JPH0777490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、変動負荷から発生する、特に10Hz近傍の電
圧変動(フリッカ)を、少なくともサイリスタ位相制御
リアクトル方式の無効電力補償装置(TCR)と、自励式
の静止形電力変換器からなるアクティブフィルタ(AF)
とを用い、公知の確率システムの最適制御理論を適用
し、無効電力で補償する補償方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a voltage fluctuation (flicker) generated from a fluctuating load, particularly in the vicinity of 10 Hz, by using at least a thyristor phase control reactor reactive power compensator (TCR). , Active filter (AF) consisting of a self-excited static power converter
The present invention relates to a compensation method for compensating with reactive power by applying the well-known optimal control theory of a stochastic system using and.

なお、この公知の確率システムの最適制御理論について
は、「自動制御ハンドブック基礎編」(昭和58年10月30
日第1版,社団法人 計測自動制御学会編,オーム社出
版)のP553〜557,「7.6確率システムの最適制御」に記
載されている。
For the optimal control theory of this known stochastic system, refer to "Basic Manual for Automatic Control Handbook" (October 30, 1983).
P.553-557, "7.6 Optimal control of stochastic systems", published by Ohmsha, Japan, First Edition, Japan Society of Instrument and Control Engineers.

〔従来の技術〕[Conventional technology]

一般に、アーク炉や圧延機の如く変動が大きな負荷によ
って電圧変動、特に10Hz近傍の電圧変動(以下、電圧変
動をΔV、10Hz近傍の電圧変動をΔV10とも略記す
る。)が確率的に生起し、これが電力系統の一般需要家
に波及する。
Generally, a voltage fluctuation, especially a voltage fluctuation in the vicinity of 10 Hz (hereinafter, the voltage fluctuation is abbreviated as ΔV and a voltage fluctuation in the vicinity of 10 Hz is also abbreviated as ΔV 10 ), is probabilistically generated by a load having a large fluctuation such as an arc furnace or a rolling mill. , This spreads to general consumers of the electric power system.

このため、従来は例えば第3図の如く、TCR2の出力信号
ΔQTCRによって変動負荷1からの外乱信号(以下、単に
ΔQFとも略記する。)を除去しΔV、特にΔV10信号を
抑制する、いわゆるフィードフォワード制御方式が採ら
れている。なお、同図において、3は系統リアクタン
ス、4は並列負荷、5は視感度係数関数、6は加減算器
である。
Therefore, conventionally, as shown in FIG. 3, for example, the output signal ΔQ TCR of the TCR 2 removes the disturbance signal from the variable load 1 (hereinafter, also simply referred to as ΔQ F ) to suppress ΔV, particularly the ΔV 10 signal. A so-called feedforward control method is adopted. In the figure, 3 is a system reactance, 4 is a parallel load, 5 is a visibility coefficient function, and 6 is an adder / subtractor.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上述の如き方式では無効電力補償装置と
してTCRを用いており、これは入力から出力までに遅れ
時間を持つため、外乱信号ΔQFとTCRの出力信号ΔQTCR
との間に誤差信号を生じ易くなる。特にフィードフォワ
ード制御方式では、微分性の高い制御特性を持つために
ノイズ信号に敏感となり、誤差信号が生じてΔV、特に
ΔV10の抑制効果が低いと云う問題がある。
However, in the method as described above, TCR is used as a reactive power compensator, and this has a delay time from the input to the output, so the disturbance signal ΔQ F and the output signal ΔQ TCR of TCR are
An error signal is likely to occur between and. In particular, the feed-forward control method has a problem that it has a control characteristic with high differential property and thus becomes sensitive to a noise signal, and an error signal is generated, so that the effect of suppressing ΔV, particularly ΔV 10 , is low.

したがって、この発明はΔV,特にΔV10成分を従来より
も大幅に抑制し得る無効電力補償方式を提供することを
目的とする。
Therefore, it is an object of the present invention to provide a reactive power compensation method capable of significantly reducing ΔV, particularly ΔV 10 component, as compared with the prior art.

〔問題点を解決するための手段〕[Means for solving problems]

変動の大きな負荷によって系統に生じる無効電力変動に
対し、少なくともサイリスタ位相制御リアクトル方式の
無効電力補償装置(TCR)とアクティブフィルタ(AF)
とによって無効電力を補償すべく、急激な確率的無効電
力変動を外乱信号(ΔQF)とし、TCRの出力信号
(QTCR),変動負荷以外の並列負荷の無効電力信号(Δ
QL),AFによる無効電力信号(ΔQAF),および10Hz近傍
の電圧変動信号(ΔV10)を評価するための視感度係数
曲線の特性,すべての信号系を状態方程式で表現し、Δ
V10の抑制とTCRへの無効電力操作指令値(UTCR)および
AFへの無効電力操作指令値(UAF)の低減に着目した2
次形式評価関数により、TCR補償量およびAF補償量との
分担が適正となるよう確率システムの最適制御演算をし
てUTCRおよびUAFを求め、それぞれTCRおよびAFに与えて
総合的に無効電力補償を行なう。
At least thyristor phase control reactor reactive power compensator (TCR) and active filter (AF) against reactive power fluctuations generated in the grid due to large fluctuation load
In order to compensate reactive power by and, sudden stochastic reactive power fluctuation is used as disturbance signal (ΔQ F ), output signal of TCR (Q TCR ), reactive power signal of parallel load other than variable load (ΔQ F ).
Q L ), the reactive power signal due to AF (ΔQ AF ), the characteristics of the visibility coefficient curve for evaluating the voltage fluctuation signal (ΔV 10 ) near 10 Hz, and all signal systems are expressed by the state equation, and Δ
Suppression and reactive power operation command value to the TCR of the V 10 (U TCR) and
Focusing on the reduction of reactive power operation command value (U AF ) to AF 2
Using the next-form evaluation function, the optimal control calculation of the stochastic system is performed so that the TCR compensation amount and the AF compensation amount are properly shared, and U TCR and U AF are obtained. Make compensation.

〔作用〕[Action]

確率システムの最適制御理論にもとづきTCRおよびAFに
対する無効電力操作指令値UTCRおよびUAFを求め、TCRと
AFの補償量を調整しながらΔV、特にΔV10信号を抑制
する。
Based on the optimal control theory of the stochastic system, the reactive power operation command values U TCR and U AF for TCR and AF are calculated and calculated as TCR and
The ΔV, especially the ΔV 10 signal is suppressed while adjusting the AF compensation amount.

〔発明の実施例〕Example of Invention

第1図はこの発明の実施例を示すシステム構成図であ
る。本システムは変動負荷1、TCR2、系統リアクタンス
3、並列負荷4、視感度係数関数5、確率システムの最
適ゲイン演算部7、アクティブフィルタ8および加減算
器9からなり、演算部7における入,出力の関係は、次
の(1)式に示す確率微分方程式で表現できる。
FIG. 1 is a system configuration diagram showing an embodiment of the present invention. This system consists of variable load 1, TCR 2, system reactance 3, parallel load 4, luminosity factor function 5, optimal gain calculator 7 of the stochastic system, active filter 8 and adder / subtractor 9, and the input and output of calculator 7 The relationship can be expressed by the stochastic differential equation shown in the following equation (1).

次に、ディジタル制御の立場から、(1)式を連続系か
ら離散系に変換すると、(2)式になる。
Next, from the standpoint of digital control, the equation (1) is converted from the continuous system to the discrete system to obtain the equation (2).

こゝに、 x(k);離散形状態変数マトリックス であり、「*」印を付してマトリックスを示す。 Here, x (k): discrete state variable matrix, which is indicated by a mark "*".

(2)式から、TCR、アクティブフィルタ最適操作量を
求めるための最適ゲインは、(3)式の評価関数Jを最
小化することによって得られる。
From the equation (2), the optimum gain for obtaining the TCR and the active filter optimal manipulated variable is obtained by minimizing the evaluation function J of the equation (3).

ここに、 E;期待値 Q;荷重行列 R;荷重行列 u(k);離散形操作変数ベクトル であり、Tを付して転置行列を示す。 Here, E is an expected value Q; a weight matrix R; a weight matrix u (k); a discrete manipulated variable vector, and T is attached to indicate a transposed matrix.

(3)式において、荷重行列QとRを調整する事によ
り、電圧変動ΔVとΔV10信号を抑制するような、TCR操
作量とアクティブフィルタ操作量が適正に分担される。
確率システムの最適制御理論により、リカッチ方程式で
ある次の(4)式を反復法で演算して最適ゲインFを示
す(5)式が得られる。
By adjusting the load matrices Q and R in the equation (3), the TCR operation amount and the active filter operation amount that suppress the voltage fluctuation ΔV and ΔV 10 signals are appropriately shared.
According to the optimal control theory of the stochastic system, the following equation (4), which is a Riccati equation, is calculated by the iterative method to obtain equation (5) indicating the optimal gain F.

(5)式を用いたTCRとアクティブフィルタの最適操作
信号は、 となる。(4),(5)式に基づく確率システムの最適
ゲインFを求めて、(6)式の演算を行うためのブロッ
ク図を第2図に示す。
The optimum operation signal of TCR and active filter using equation (5) is Becomes FIG. 2 shows a block diagram for obtaining the optimum gain F of the stochastic system based on the expressions (4) and (5) and performing the operation of the expression (6).

第2図において、71はフィードバックゲイン行列,72A〜
72G,73A〜73Gは加減算器,74A,74Bは極性反転器、72は
(4),(5)式による最適ゲインFの演算部、76は制
御のための操作量演算部である。71のフィードバックゲ
イン行列は演算部75において(5)式により求められた
最適ゲインにより与えられる。
In FIG. 2, 71 is a feedback gain matrix, 72A-
72G, 73A to 73G are adder / subtractors, 74A, 74B are polarity reversals, 72 is an optimum gain F calculation unit according to equations (4) and (5), and 76 is a manipulated variable calculation unit for control. The feedback gain matrix of 71 is given by the optimum gain obtained by the calculation unit 75 by the equation (5).

第2図の状態変数ベクトルx(k)は次のとおりである
が、第1図に示すように与えられる。そして、第2図に
おいて演算された無効電力操作指令値UTCR,UAFがTCR,AF
へ出力される。
The state variable vector x (k) in FIG. 2 is as follows, and is given as shown in FIG. Then, the reactive power operation command values U TCR , U AF calculated in FIG. 2 are TCR, AF
Is output to.

x1(k);TCR内部変数 x2(k);TCR内部変数 x3(k);TCR出力信号(ΔQTCR) x4(k);電圧変数(ΔV) x5(k);視感度係数の内部変数 x6(k);視感度係数出力信号(ΔV10) x7(k);外乱信号(ΔQF) x8(k);アクティブフィルタ出力信号(ΔQAF) なお、以上ではAFとTCRを用いるようにしたが、TCRのか
わりにTCRと固定コンデンサ、またはTCRとコンデンサ開
閉式無効電力補償装置(TSC)を用いることができる。
また、こゝでは系統に並列負荷が設けられている場合に
ついて説明したが、設けられない場合はその無効電力信
号ΔQLは無視されることになる。
x 1 (k); TCR internal variable x 2 (k); TCR internal variable x 3 (k); TCR output signal (ΔQ TCR ) x 4 (k); Voltage variable (ΔV) x 5 (k); Visual sensitivity Internal variable of coefficient x 6 (k); Luminous coefficient output signal (ΔV 10 ) x 7 (k); Disturbance signal (ΔQ F ) x 8 (k); Active filter output signal (ΔQ AF ). Although TCR and TCR are used, TCR and fixed capacitor or TCR and capacitor switching reactive power compensator (TSC) can be used instead of TCR.
Further, although the case where the parallel load is provided in the system has been described here, when the parallel load is not provided, the reactive power signal ΔQ L is ignored.

〔発明の効果〕〔The invention's effect〕

この発明によれば、UTCR、UAF、ΔV10を評価関数にした
確率システムの最適制御方式としたので、TCRとアクテ
ィブフィルタの容量分担が適正となり、電圧変動ΔVの
うち特にΔV10を従来より大幅に抑制することができる
効果が得られる。
According to the present invention, since the optimal control method of the stochastic system in which U TCR , U AF , and ΔV 10 are used as the evaluation functions, the TCR and the active filter have an appropriate capacity sharing, and among the voltage fluctuations ΔV, especially ΔV 10 is conventionally used. The effect that it can be suppressed to a greater extent is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例を示すシステム構成図、第2
図は第1図の確率システムの最適制御方式によるTCR操
作量およびアクティブフィルタ操作量の演算部を示すブ
ロック図、第3図は従来のフィードフォワード制御方式
を示すシステム構成図である。 符号説明 1……変動負荷、2……TCR、3……系統リアクタン
ス、4……並列負荷、5……視感度係数関数、6,9,72A
〜72G,73A〜73G……加減算器、7……確率システムのた
めの最適制御演算部、8……アクティブフィルタ(A
F)、71……フィードバックゲイン行列、74A,74B……極
性反転器、75……最適ゲイン演算部、76……操作量演算
部。
FIG. 1 is a system configuration diagram showing an embodiment of the present invention, and FIG.
FIG. 1 is a block diagram showing a calculation unit of the TCR manipulated variable and the active filter manipulated variable according to the optimal control system of the stochastic system of FIG. 1, and FIG. 3 is a system configuration diagram showing a conventional feedforward control system. Explanation of code 1 …… Variable load, 2 ... TCR, 3 ... System reactance, 4 ... Parallel load, 5 ... Visibility coefficient function, 6,9,72A
〜72G, 73A〜73G …… adder / subtractor, 7 …… optimal control arithmetic unit for stochastic system, 8 …… active filter (A
F), 71 ... Feedback gain matrix, 74A, 74B ... Polarity inverter, 75 ... Optimal gain calculation unit, 76 ... Manipulated amount calculation unit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】変動の大きな負荷によって系統に生じる無
効電力変動に対し、少なくともサイリスタ位相制御リア
クトル方式の無効電力補償装置(TCR)とアクティブフ
ィルタ(AF)とによって無効電力を補償すべく、 急激な勝率的無効電力変動を外乱信号(ΔQF)とし、前
記TCRの出力信号(ΔQTCR),該変動負荷以外の並列負
荷の無効電力信号(ΔQL),前記AFによる無効電力信号
(ΔQAF),および10Hz近傍の電圧変動信号(ΔV10)を
評価するための視感度係数曲線の特性,すべての信号系
を状態方程式で表現し、ΔV10の抑制とTCRへの無効電力
操作指令値(UTCR)およびAFへの無効電力操作指令値
(UAF)の低減に着目した2次形式評価関数により、TCR
補償容量およびAF補償容量との分担が適正となるよう確
率システムの最適制御演算をしてUTCRおよびUAFを求
め、それぞれTCRおよびAFに与えて総合的に無効電力補
償を行なうことを特徴とする確率システムの最適制御に
よる無効電力補償方式。
Claims: 1. A reactive power compensator (TCR) of a thyristor phase control reactor method and an active filter (AF) are used at least to compensate reactive power fluctuations generated in a grid due to a large fluctuation load, in order to compensate the reactive power. The random reactive power fluctuation is taken as the disturbance signal (ΔQ F ), the output signal of the TCR (ΔQ TCR ), the reactive power signal of the parallel load other than the variable load (ΔQ L ), the reactive power signal by the AF (ΔQ AF ) , And the characteristics of the visibility coefficient curve for evaluating the voltage fluctuation signal (ΔV 10 ) near 10 Hz, all signal systems are expressed by a state equation, and ΔV 10 is suppressed and reactive power operation command value (U TCR ) and a quadratic form evaluation function focusing on reduction of reactive power operation command value (U AF ) to AF
The optimal control calculation of the stochastic system is performed so that the share with the compensation capacity and the AF compensation capacity is appropriate, and U TCR and U AF are obtained, and they are given to TCR and AF, respectively, to perform comprehensive reactive power compensation. Reactive Power Compensation Method by Optimal Control of Stochastic Systems.
【請求項2】特許請求の範囲第1項に記載の確率システ
ムの最適制御による無効電力補償方式において、前記TC
RのかわりにTCRと固定コンデンサまたはTCRとコンデン
サ開閉式無効電力補償装置を用いることを特徴とする確
率システムの最適制御による無効電力補償方式。
2. The reactive power compensation method by optimal control of a stochastic system according to claim 1, wherein the TC
A reactive power compensation method by optimal control of a stochastic system characterized by using TCR and a fixed capacitor or TCR and a capacitor switching type reactive power compensator instead of R.
【請求項3】特許請求の範囲第1項または第2項に記載
の確率システムの最適制御による無効電力補償方式にお
いて、系統に並列負荷が設けられないときはその無効電
力信号(ΔQL)を無視することを特徴とする確率システ
ムの最適制御による無効電力補償方式。
3. In the reactive power compensation method by the optimal control of the stochastic system according to claim 1 or 2, when the parallel load is not provided in the system, the reactive power signal (ΔQ L ) is set. A reactive power compensation method by optimal control of a stochastic system characterized by ignoring.
JP62116945A 1987-05-15 1987-05-15 Reactive power compensation method by optimal control of stochastic system Expired - Fee Related JPH0777490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62116945A JPH0777490B2 (en) 1987-05-15 1987-05-15 Reactive power compensation method by optimal control of stochastic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62116945A JPH0777490B2 (en) 1987-05-15 1987-05-15 Reactive power compensation method by optimal control of stochastic system

Publications (2)

Publication Number Publication Date
JPS63283431A JPS63283431A (en) 1988-11-21
JPH0777490B2 true JPH0777490B2 (en) 1995-08-16

Family

ID=14699613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62116945A Expired - Fee Related JPH0777490B2 (en) 1987-05-15 1987-05-15 Reactive power compensation method by optimal control of stochastic system

Country Status (1)

Country Link
JP (1) JPH0777490B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843519B2 (en) * 2007-02-09 2011-12-21 財団法人電力中央研究所 Voltage analysis method, apparatus and program
CN103746390B (en) * 2014-02-07 2016-03-02 国家电网公司 The method and system of distribution low-voltage reactive-load compensation equipment state estimation
CN104810834B (en) * 2015-04-14 2017-09-15 国家电网公司 Many section 500kV electric network reactive compensations switching strategy optimization methods based on voltage sensibility

Also Published As

Publication number Publication date
JPS63283431A (en) 1988-11-21

Similar Documents

Publication Publication Date Title
US8120302B2 (en) Servo control apparatus
WO2009125834A1 (en) System stabilization device
JPH0738128B2 (en) Control device
WO2018173654A1 (en) Method for designing filter of delay compensator, feedback control method using same, and motor control device
JPH0779530B2 (en) Reactive power compensator for power system
JP3130694B2 (en) Voltage fluctuation and harmonic suppression device
JPH0777490B2 (en) Reactive power compensation method by optimal control of stochastic system
JPH0433114A (en) Reactive power compensator
JP5077431B2 (en) System stabilization device
JPH0330161B2 (en)
CN111142390B (en) Channel weighting structure repetitive controller and control method
JP2959270B2 (en) Disturbance estimation compensator
CN114374346A (en) High-performance control method for permanent magnet synchronous motor
JP3400504B2 (en) Method for suppressing input vibration of semiconductor power converter
JPS63283430A (en) Reactive power compensation system by stochastic optimal control
JP5050622B2 (en) Voltage fluctuation compensator control method
JPH06225457A (en) Abnormal vibration preventing system for power system
JPS61264416A (en) Control system for reactive power compensating device
JPH047960B2 (en)
JPH0192801A (en) Method for controlling application of plant
JPH07177778A (en) Motor controller
JPH0524756B2 (en)
CN114629401A (en) Model reference self-adaptive asynchronous motor speed sensorless vector control system establishment method
JPH04245312A (en) Reactive power compensative device
JP2793095B2 (en) Parallel converter for cycloconverter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees