JPH0777364A - Freezer - Google Patents

Freezer

Info

Publication number
JPH0777364A
JPH0777364A JP5221746A JP22174693A JPH0777364A JP H0777364 A JPH0777364 A JP H0777364A JP 5221746 A JP5221746 A JP 5221746A JP 22174693 A JP22174693 A JP 22174693A JP H0777364 A JPH0777364 A JP H0777364A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
evaporator
compressor
alkylbenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5221746A
Other languages
Japanese (ja)
Inventor
Masao Mangyo
政男 萬行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP5221746A priority Critical patent/JPH0777364A/en
Publication of JPH0777364A publication Critical patent/JPH0777364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To provide a freezer in which refrigerant and a freezer oil having no compatibility with the refrigerant are used, and which can easily be manufactured to maintain a low price. CONSTITUTION:In a freezer system in which refrigerant of HFC-134a and freezer oil composed of alkylbenzene and naphthene mineral oil having no compatibility with the refrigerant are enclosed in correspondence with full elimination of CFC, the refrigerant and oil are mixed to each other and the mixture substance enters from a capillary tube 53 into an upper part 60 of an evaporator coil. The refrigerant evaporates and the evaporated refrigerant and oil are moved downward in sequence and reach the lowest point 61 of the evaporator coil. Accordingly, alkylbenzene, and naphthene mineral oil not compatible with the refrigerant can be used without any shortage of oil in a compressor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気冷蔵庫等に使用され
る冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating device used in an electric refrigerator or the like.

【0002】[0002]

【従来の技術】オゾン層保護条約の「オゾン層破壊物質
に関するモントリオール議定書」改正に関する会合にお
いて、クロロフルオロカーボン(CFC)の1996年
全廃が合意された。1994年より対1986年比25
%以下への大幅削減が実施される運びとなり、規制にい
っそう拍車がかかっている。4〜5年前からCFC全廃
に対応する研究開発は冷媒メーカ、冷凍機メーカ、オイ
ルメーカで活発に行なわれてきて代替に関する技術がほ
ぼ完成域に達している。以下図面を参照しながら上述し
た従来の冷凍装置の一例について説明する。
2. Description of the Related Art In a meeting on the revision of the "Montreal Protocol on Ozone Depleting Substances" of the Ozone Layer Conservation Treaty, the 1996 abolition of chlorofluorocarbons (CFCs) was agreed. 25 years since 1994 compared to 1986
Regulations are becoming more and more spurred, with a significant reduction to less than%. Research and development to deal with the abolition of CFCs have been actively carried out by refrigerant manufacturers, refrigerator manufacturers, and oil manufacturers for four to five years, and the technology for substitution has almost reached the completion area. An example of the conventional refrigeration system described above will be described below with reference to the drawings.

【0003】図3は特開平4−183788に示されて
いる冷凍装置で図に示されている冷凍サイクル46の内
部には、塩素を含まないフッ化炭素系冷媒を主成分とす
る冷媒たとえばHFC−134aと、前記の冷媒と相溶
性のあるエステル油を基油とした冷凍機油を封入してい
る。
FIG. 3 shows a refrigerating apparatus disclosed in Japanese Unexamined Patent Publication No. 4-183788. In the refrigerating cycle 46 shown in the figure, a refrigerant containing chlorine-free fluorocarbon-based refrigerant as a main component, for example, HFC. -134a and a refrigerating machine oil containing an ester oil compatible with the refrigerant as a base oil are enclosed.

【0004】図4は同じく特開平4−183788に示
されているもので、横軸にロータリ型圧縮機に貯溜する
冷凍機油の実粘度を、縦軸に圧縮機の成績係数(相対値
で表示)を目盛り、封入しているエステル油が40℃に
おける粘度が5〜56cStのもの、フロン12を使用
した時のアルキルベンゼン油(スニソZ−300A)に
ついて、冷凍機油実粘度と成績係数(COP)との関係
を表わしたものである。これによるとフロン12と40
℃の時の粘度が56cStのZ−300A(アルキルベ
ンゼン油)の成績計数を1.0として相対比較すると、
40℃の時の粘度が56.6cStのエステル油は0.
906と良好な結果を示している。
FIG. 4 is also shown in Japanese Unexamined Patent Publication No. 4-183788, in which the horizontal axis represents the actual viscosity of the refrigerating machine oil stored in the rotary compressor, and the vertical axis represents the coefficient of performance of the compressor (displayed as a relative value. ), The encapsulated ester oil has a viscosity of 5 to 56 cSt at 40 ° C., and the alkylbenzene oil (SUNISO Z-300A) when CFC 12 is used, the actual viscosity of the refrigerator oil and the coefficient of performance (COP). It represents the relationship of. According to this, Freon 12 and 40
When Z-300A (alkylbenzene oil) having a viscosity of 56 cSt at 0 ° C. is set to 1.0 and the relative comparison is made,
The ester oil having a viscosity of 56.6 cSt at 40 ° C. is 0.
906 shows a good result.

【0005】このようにHFC−134aの冷媒と、こ
れと相溶性のあるエステル油を組み合わせることにより
ほぼ完成域に達し、成績係数でも目途を得たことを示し
ている。
As described above, the combination of the HFC-134a refrigerant and the ester oil compatible with the HFC-134a has almost reached the completion range, and the coefficient of performance indicates that the target is achieved.

【0006】図5は従来の蒸発器の配置説明図である。
図5において冷凍サイクルに封入された冷媒と冷凍機油
はお互いに混じりあって膨張機構であるキャピラリーチ
ューブ20から蒸発器の上方21へ入る。
FIG. 5 is an explanatory view of the layout of a conventional evaporator.
In FIG. 5, the refrigerant and the refrigerating machine oil sealed in the refrigeration cycle mix with each other and enter the upper part 21 of the evaporator from the capillary tube 20 which is the expansion mechanism.

【0007】ここで冷媒は、蒸発し冷媒とこれに混った
油は順次下へ移動して蒸発器の最下点22に達し、その
次には順次上方へ移動して終端23は上に位置してい
る。終端23からアキュムレータ24に入りサクション
の配管25に入りその後冷媒圧縮機へ戻る。
Here, the refrigerant evaporates, and the refrigerant and the oil mixed therewith sequentially move downward to reach the lowest point 22 of the evaporator, and then sequentially move upward, and the terminal end 23 moves upward. positioned. The terminal 23 enters the accumulator 24, the suction pipe 25, and then the refrigerant compressor.

【0008】従来の冷凍サイクルに封入されていたCF
C−134aの冷媒とエステル油は相溶性がよいためよ
く溶けあっているので蒸発器コイルの最下点22に油が
溜まるようなことはない。
CF enclosed in a conventional refrigeration cycle
Since the refrigerant of C-134a and the ester oil have good compatibility with each other, they are well melted, so that the oil does not accumulate at the lowest point 22 of the evaporator coil.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、エステルは加水分解安定性と吸湿性が著
しく劣るため水分を排除するために特別の設備投資が必
要となる。エステルはナフテン鉱油やアルキルベンゼン
と比較して3〜4倍高価。
However, in the above-mentioned constitution, the ester is remarkably inferior in hydrolysis stability and hygroscopicity, so that a special capital investment is required to remove water. Esters are 3 to 4 times more expensive than naphthene mineral oil and alkylbenzenes.

【0010】エステルを使用すると冷凍システムのキャ
ピラリーチューブに汚染物質が詰まりやすく、その予防
のため冷凍サイクルの構成部品を特別の方法で洗滌しな
ければならずコストがかかるという課題を有していた。
When the ester is used, the capillary tube of the refrigeration system tends to be clogged with pollutants, and in order to prevent the contaminants, the refrigeration cycle components must be washed by a special method, which is costly.

【0011】本発明は上記課題に鑑み、CFC全廃に対
応してHFC−134a冷媒を使用して、従来とは異発
想で、この冷媒に相溶しないアルキルベンゼン、ナフテ
ン鉱油を使い、相溶しなくて困る点を工夫して解消して
製作しやすくて低価格を維持できる冷凍装置を提供する
ものである。
In view of the above problems, the present invention uses the HFC-134a refrigerant in response to the total abolition of CFCs, and, unlike the conventional method, uses alkylbenzene and naphthene mineral oil, which are incompatible with the refrigerant, and is incompatible. The refrigeration system is easy to manufacture and can be maintained at a low price by devising a solution to the problems.

【0012】[0012]

【課題を解決するための手段】以上のような課題を解決
するために本発明の冷凍装置は冷媒圧縮機,凝縮器,膨
張機構,蒸発器を具備して一連の冷媒流路を形成し、H
FC−134a等の塩素を含まないフッ化炭素系化合物
を主成分とする冷媒と、前記冷媒と相溶しない冷凍機油
を封入したことを特徴とする冷凍装置で冷媒圧縮機,凝
縮器,膨張機構,蒸発器を具備して一連の冷媒流路を形
成し、塩素を含まないフッ化炭素系化合物を主成分とす
る冷媒と、前記冷媒と相溶しないアルキルベンゼン又は
ナフテン鉱油を主成分とする冷凍機油を封入すると共に
前記蒸発器の上方に前記膨張機構を接続して冷媒と冷媒
に混った油を吐出し蒸発器の上方から下方へ順次冷媒と
油を導き、蒸発器の下方から前記蒸発器の下方に配設さ
れた冷媒圧縮機へ配管接続した構成を備えたものであ
る。
In order to solve the above problems, the refrigerating apparatus of the present invention comprises a refrigerant compressor, a condenser, an expansion mechanism, and an evaporator to form a series of refrigerant flow paths. H
Refrigerant compressor, condenser, expansion mechanism in a refrigerating apparatus characterized in that a refrigerant containing a fluorocarbon-based compound containing no chlorine such as FC-134a as a main component and a refrigerating machine oil incompatible with the refrigerant are enclosed. , A refrigerant having an evaporator to form a series of refrigerant channels, a refrigerant containing a fluorocarbon-based compound containing no chlorine as a main component, and a refrigerating machine oil containing an alkylbenzene or naphthene mineral oil which is incompatible with the refrigerant as a main component The expansion mechanism is connected above the evaporator and the refrigerant and the oil mixed with the refrigerant are discharged to sequentially guide the refrigerant and the oil from the upper side to the lower side of the evaporator, and the evaporator from the lower side of the evaporator. It has a configuration in which it is connected by piping to a refrigerant compressor arranged below.

【0013】[0013]

【作用】本発明は上記した構成によりHFC−134a
等塩素を含まないフッ化炭素系化合物を主成分とする冷
媒と、これに相溶しないアルキルベンゼン、又はナフテ
ン鉱油が冷媒と油が混った状態で膨張機構であるキャピ
ラリーチューブから蒸発器上方のコイル内へ吐出され
る。前記蒸発器のコイルでは上方から下方へ順次冷媒と
油が移動する。従来の蒸発器のように上方から下方へ下
がって再び上方へあがる部分はないので油は溜まらな
い。
The present invention has the above-described structure and is capable of producing HFC-134a.
Coil above the evaporator from the capillary tube that is the expansion mechanism in the state where the refrigerant mainly containing a fluorocarbon compound that does not contain equal chlorine and the alkylbenzene or naphthene mineral oil that is incompatible with the refrigerant and the oil are mixed. Is discharged inside. In the coil of the evaporator, the refrigerant and the oil move sequentially from the upper side to the lower side. There is no part that goes down from the top and goes up again like a conventional evaporator, so oil does not accumulate.

【0014】従って、冷媒は蒸発して周囲から熱を奪い
冷媒と相溶しない油は重力で下方へ落下する。このよう
にして蒸発器の下方に達した油は、その位置よりも更に
下方に配設された冷媒圧縮機へ重力で落下してゆき最下
点の冷媒圧縮機に溜る。このようにして冷媒と油が相溶
しなくても冷媒圧縮機への油戻りは達成されることとな
る。
Therefore, the refrigerant evaporates and takes heat from the surroundings, and the oil that is incompatible with the refrigerant falls downward due to gravity. The oil reaching the lower side of the evaporator in this way falls by gravity to the refrigerant compressor disposed further below the position and accumulates in the refrigerant compressor at the lowest point. In this way, even if the refrigerant and the oil are not compatible with each other, the oil return to the refrigerant compressor is achieved.

【0015】[0015]

【実施例】以下本発明の一実施例の冷凍装置について図
面を参照しながら説明する。尚、従来例と同一部品は同
一符号を用いて説明し、構成、動作の同じところは省略
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A refrigeration system according to an embodiment of the present invention will be described below with reference to the drawings. The same parts as those of the conventional example will be described using the same reference numerals, and the same parts of the configuration and the operation will be omitted.

【0016】図1において冷凍装置50の内部にHFC
−134aの冷媒と、この冷媒と相溶しない冷凍機油で
あるアルキルベンゼン、又はナフテン鉱油を封入し冷媒
圧縮機51と凝縮器52,膨張機構53,蒸発器54,
ドライヤー55,サクションの配管56が一連の冷媒流
路を形成している。
In FIG. 1, the HFC is installed inside the refrigeration system 50.
Refrigerant compressor 51 and condenser 52, expansion mechanism 53, evaporator 54, and -134a refrigerant, and alkylbenzene or naphthene mineral oil, which is refrigerating machine oil that is not compatible with this refrigerant, are enclosed.
The dryer 55 and the suction pipe 56 form a series of refrigerant flow paths.

【0017】各構成部品の位置関係は蒸発器54の下部
に冷媒圧縮機51が配設され、蒸発器54から下方にむ
かってサクションの配管56で接続されている。
As for the positional relationship among the respective components, a refrigerant compressor 51 is arranged below the evaporator 54, and is connected to the evaporator 54 downward by a suction pipe 56.

【0018】図5は従来の蒸発器の配置説明図である。
図5において冷凍サイクルに封入された冷媒と冷凍機油
はお互いに混じりあって膨張機構であるキャピラリーチ
ューブ20から蒸発器の上方21へ入る。
FIG. 5 is a diagram showing the layout of a conventional evaporator.
In FIG. 5, the refrigerant and the refrigerating machine oil sealed in the refrigeration cycle mix with each other and enter the upper part 21 of the evaporator from the capillary tube 20 which is the expansion mechanism.

【0019】ここで冷媒は、蒸発し冷媒とこれに混った
油は順次下へ移動して蒸発器の最下点22に達し、その
次には順次上方へ移動して終端23は上に位置してい
る。終端23からアキュムレータ24に入りサクション
の配管25に入りその後冷媒圧縮機へ戻る。
Here, the refrigerant evaporates, and the refrigerant and the oil mixed therewith sequentially move downward to reach the lowest point 22 of the evaporator, and then sequentially move upward, and the terminal end 23 goes upward. positioned. The terminal 23 enters the accumulator 24, the suction pipe 25, and then the refrigerant compressor.

【0020】従来の冷凍サイクルに封入されていたCF
C−134aの冷媒とエステル油は相溶性がよいためよ
く溶けあっているので蒸発器コイルの最下点22に油が
溜まるようなことはない。
CF enclosed in a conventional refrigeration cycle
Since the refrigerant of C-134a and the ester oil have good compatibility with each other, they are well melted, so that the oil does not accumulate at the lowest point 22 of the evaporator coil.

【0021】図2は、蒸発器の配置説明図で冷凍サイク
ルにHFC−134a冷媒とこの冷媒に相溶しないアル
キンベンゼン、又はナフテン鉱油を封入している。前記
冷媒と冷凍機油は相溶しないがお互いに混じりあってキ
ャピラリーチューブ53から蒸発器の上方60へ入る。
ここで冷媒は、蒸発して冷媒とこれに混った油は順次下
へ移動して蒸発器の最下点61に達する。次にこの位置
よりも下方に配設されたサクションの配管56からアキ
ュムレータ62を通って最下位置の冷媒圧縮機に戻る。
FIG. 2 is an illustration of the layout of the evaporator, in which the refrigeration cycle is filled with HFC-134a refrigerant and alkynebenzene or naphthene mineral oil which is incompatible with this refrigerant. The refrigerant and the refrigerating machine oil are incompatible with each other, but they are mixed with each other and enter the upper portion 60 of the evaporator through the capillary tube 53.
Here, the refrigerant evaporates, and the refrigerant and the oil mixed therewith sequentially move downward and reach the lowest point 61 of the evaporator. Next, it returns from the suction pipe 56 disposed below this position to the refrigerant compressor at the lowest position through the accumulator 62.

【0022】従って前記冷媒に相溶しない冷凍機油であ
っても冷凍サイクル中に冷凍機油の滞留する空間がない
ため冷凍機油は冷媒圧縮機51に戻る。このことは冷凍
機油が低温の蒸発器に滞留して圧縮機が油切れを起すと
いう点が解消されることとなり冷媒と冷凍機油が相溶し
なくても冷凍機に支障なく使用できるので、課題である
エステルを使うことによる特別の設備投資は不要、冷凍
機油も安価なものが使えるので低価格を維持した冷凍装
置を提供できる。
Therefore, even if the refrigerating machine oil is not compatible with the refrigerant, the refrigerating machine oil returns to the refrigerant compressor 51 because there is no space for the refrigerating machine oil to stay in the refrigeration cycle. This means that the problem that the refrigerating machine oil stays in the low-temperature evaporator and causes the compressor to run out of oil will be eliminated, and even if the refrigerating machine oil and the refrigerating machine oil are incompatible, the refrigerator can be used without any problems, No special capital investment is required by using the ester, and cheap refrigerating machine oil can be used, so it is possible to provide a refrigerating apparatus that maintains a low price.

【0023】[0023]

【発明の効果】以上のように本発明は冷媒圧縮機,凝縮
器,膨張機構,蒸発器を具備して一連の冷媒流路を形成
し、HFC−134a等の塩素を含まないフッ化炭素系
化合物を主成分とする冷媒と、前記冷媒と相溶しない冷
凍機油を封入したことを特徴とするもので冷媒圧縮機,
凝縮器,膨張機構,蒸発器を具備して一連の冷媒流路を
形成し、塩素を含まないフッ化炭素系化合物を主成分と
する冷媒と、前記冷媒と相溶しないアルキルベンゼン又
はナフテン鉱油を主成分とする冷凍機油を封入すると共
に前記蒸発器の上方のコイルに前記膨張機構を接続して
冷媒と冷媒に混った油を吐出し蒸発器コイルの上方から
下方へ順次冷媒と油を導き、蒸発器コイルの下方から前
記蒸発器の下方に配設された冷媒圧縮機へ配管接続し
た。
As described above, the present invention is provided with a refrigerant compressor, a condenser, an expansion mechanism, and an evaporator to form a series of refrigerant passages, and is a fluorocarbon system such as HFC-134a containing no chlorine. A refrigerant compressor, characterized in that a refrigerant containing a compound as a main component and a refrigerating machine oil that is incompatible with the refrigerant are enclosed.
A refrigerant having a condenser, an expansion mechanism and an evaporator to form a series of refrigerant passages, which mainly contains a fluorocarbon-based compound containing no chlorine and an alkylbenzene or naphthene mineral oil which is incompatible with the refrigerant are mainly used. Refrigerant and oil are sequentially introduced from the upper side to the lower side of the evaporator coil by sealing the refrigerator oil as a component and connecting the expansion mechanism to the coil above the evaporator to discharge the oil mixed with the refrigerant, A pipe was connected from below the evaporator coil to a refrigerant compressor arranged below the evaporator.

【0024】本発明は上記した構成によりHFC−13
4a冷媒と、これと相溶しないアルキルベンゼン、又は
ナフテン鉱油が冷媒と油が混った状態で膨張機構である
キャピラリーチューブから蒸発器の上方コイル内へ吐出
される。蒸発器コイルでは上方から下方へ順次冷媒と油
が移動する。従来の蒸発器のように上方から下方へ下が
って再び上方へあがる部分はないので油は溜まらない。
According to the present invention, the HFC-13 having the above-mentioned configuration is used.
4a Refrigerant and alkylbenzene or naphthene mineral oil which is incompatible with the refrigerant are discharged from the capillary tube which is the expansion mechanism into the upper coil of the evaporator in a state where the refrigerant and the oil are mixed. In the evaporator coil, the refrigerant and the oil move sequentially from the top to the bottom. There is no part that goes down from the top and goes up again like a conventional evaporator, so oil does not accumulate.

【0025】従って冷媒は蒸発して周囲から熱を奪い冷
媒と相溶しない油は重力で下方へ落下する。このように
して蒸発器コイルの下方に達した油は、その位置よりも
更に下方に配設された冷媒圧縮機へ重力で落下してゆき
最下点の冷媒圧縮機に溜る。このようにして冷媒と油が
相溶しなくても冷媒圧縮機への油戻りは達成されること
となるので次に掲げる効果がある。 1.請求項2の冷凍機油がアルキルベンゼンの場合 水分を排除するために特別の設備が不要で、エステル油
に比較して安価である。又、冷凍サイクル構成部品の特
別の方法による洗滌が不要である。 2.請求項2の冷凍機油がナフテン鉱油の場合 鉱油は前記した合成油のアルキルベンゼンよりもさら
に、HFC−134aと相溶しないことから低い粘度
〔例えば日本サン石油社製スニソIGS,動粘度(cS
t)はJISK2283の試験方法により40℃で1
1.0〜13.0cSt.100℃で2.60〜3.1
0cStのもの〕の鉱油を使用すれば冷凍システム内で
その粘度が冷媒との相溶による変化を起こさない、即ち
油の粘度変化による影響を受けずエネルギー効率(EE
R)又は、成績係数(COP)のバラツキの少ない、省
エネルギーの安定した冷凍装置となる。
Therefore, the refrigerant evaporates, takes heat from the surroundings, and the oil that is incompatible with the refrigerant falls downward due to gravity. The oil thus reaching the lower side of the evaporator coil falls by gravity to the refrigerant compressor disposed below the position of the evaporator coil and accumulates in the refrigerant compressor at the lowest point. In this way, even if the refrigerant and the oil are not compatible with each other, the oil can be returned to the refrigerant compressor, so that the following effects can be obtained. 1. When the refrigerating machine oil of claim 2 is alkylbenzene, no special equipment is required to remove water, and the cost is lower than that of ester oil. Also, there is no need to clean the refrigeration cycle components by a special method. 2. When the refrigerating machine oil according to claim 2 is naphthene mineral oil, the viscosity of the mineral oil is lower than that of the above-mentioned synthetic alkylbenzene, which is incompatible with HFC-134a (for example, Suniso IGS manufactured by Nippon San Oil Co., Ltd., kinematic viscosity (cS).
t) is 1 at 40 ° C according to the test method of JISK2283.
1.0-13.0 cSt. 2.60-3.1 at 100 ° C
0 cSt of mineral oil] does not cause a change in its viscosity in the refrigeration system due to compatibility with the refrigerant, that is, it is not affected by the change in oil viscosity, and energy efficiency (EE
R) or the coefficient of performance (COP) is small, and the energy-saving stable refrigeration system is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における冷凍装置の斜視図FIG. 1 is a perspective view of a refrigerating apparatus according to an embodiment of the present invention.

【図2】図1の蒸発器コイルの配置説明図FIG. 2 is an explanatory view of the arrangement of the evaporator coil shown in FIG.

【図3】従来の冷凍装置の冷凍サイクル図FIG. 3 is a refrigeration cycle diagram of a conventional refrigeration system.

【図4】従来のロータリ圧縮機の定格運転時に於る冷凍
機の実粘度と成績係数との関係を示す図
FIG. 4 is a diagram showing the relationship between the actual viscosity of the refrigerator and the coefficient of performance during the rated operation of the conventional rotary compressor.

【図5】従来の蒸発器のコイル配置説明図FIG. 5 is an explanatory view of coil arrangement of a conventional evaporator.

【符号の説明】[Explanation of symbols]

50 冷凍装置 51 冷媒圧縮機 52 凝縮器 53 膨張機構 54 蒸発器 56 配管 60 蒸発器コイルの上方 61 蒸発器コイルの最下点 50 Refrigerator 51 Refrigerant Compressor 52 Condenser 53 Expansion Mechanism 54 Evaporator 56 Piping 60 Above Evaporator Coil 61 Bottom Point of Evaporator Coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒圧縮機,凝縮器,膨張機構,蒸発器
を具備して一連の冷媒流路を形成し、塩素を含まないフ
ッ化炭素系化合物を主成分とする冷媒と、前記冷媒と相
溶しない冷凍機油を封入したことを特徴とする冷凍装
置。
1. A refrigerant comprising a refrigerant compressor, a condenser, an expansion mechanism, and an evaporator to form a series of refrigerant passages and containing a fluorocarbon-based compound containing no chlorine as a main component, and the refrigerant. A refrigeration system characterized by enclosing a refrigerating machine oil that is incompatible.
【請求項2】 冷媒圧縮機,凝縮器,膨張機構,蒸発器
を具備して一連の冷媒流路を形成し、塩素を含まないフ
ッ化炭素系化合物を主成分とする冷媒と、前記冷媒と相
溶しないアルキルベンゼン又はナフテン鉱油を主成分と
する冷凍機油を封入すると共に前記蒸発器の上方に前記
膨張機構を接続して冷媒と冷媒に混った油を吐出し蒸発
器の上方から下方へ順次冷媒と油を導き、蒸発器の下方
から前記蒸発器の下方に配設された冷媒圧縮機へ配管接
続した冷凍装置。
2. A refrigerant comprising a refrigerant compressor, a condenser, an expansion mechanism, and an evaporator to form a series of refrigerant passages and containing a fluorocarbon-based compound containing no chlorine as a main component, and the refrigerant. Refrigerating machine oil mainly composed of incompatible alkylbenzene or naphthene mineral oil is enclosed, and the expansion mechanism is connected to the upper side of the evaporator to discharge the refrigerant and the oil mixed with the refrigerant and sequentially from the upper side to the lower side of the evaporator. A refrigerating device in which a refrigerant and oil are introduced and connected by piping from below the evaporator to a refrigerant compressor arranged below the evaporator.
JP5221746A 1993-09-07 1993-09-07 Freezer Pending JPH0777364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5221746A JPH0777364A (en) 1993-09-07 1993-09-07 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5221746A JPH0777364A (en) 1993-09-07 1993-09-07 Freezer

Publications (1)

Publication Number Publication Date
JPH0777364A true JPH0777364A (en) 1995-03-20

Family

ID=16771580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5221746A Pending JPH0777364A (en) 1993-09-07 1993-09-07 Freezer

Country Status (1)

Country Link
JP (1) JPH0777364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174465A (en) * 2000-12-08 2002-06-21 Daikin Ind Ltd Refrigerating apparatus
US6516837B2 (en) 2000-09-27 2003-02-11 Honeywell International Inc. Method of introducing refrigerants into refrigeration systems
JP2009103436A (en) * 2007-10-04 2009-05-14 Orion Mach Co Ltd Precise temperature adjusting device
JP2010151390A (en) * 2008-12-25 2010-07-08 Orion Mach Co Ltd Temperature adjusting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6516837B2 (en) 2000-09-27 2003-02-11 Honeywell International Inc. Method of introducing refrigerants into refrigeration systems
US6640841B2 (en) 2000-09-27 2003-11-04 Honeywell International Inc. Method of introducing refrigerants into refrigeration systems
JP2002174465A (en) * 2000-12-08 2002-06-21 Daikin Ind Ltd Refrigerating apparatus
JP2009103436A (en) * 2007-10-04 2009-05-14 Orion Mach Co Ltd Precise temperature adjusting device
JP2010151390A (en) * 2008-12-25 2010-07-08 Orion Mach Co Ltd Temperature adjusting device

Similar Documents

Publication Publication Date Title
US7234310B2 (en) Very low temperature refrigeration system having a scroll compressor with liquid injection
KR920010228A (en) Refrigeration unit and refrigerant compressor
JP2803451B2 (en) Refrigerant compressor, refrigerator, refrigerating air conditioner, and method of assembling refrigerant compressor
US6216476B1 (en) Apparatus having refrigeration cycle
JP3327197B2 (en) Refrigeration air conditioner
KR19980070270A (en) Refrigerant circulation device, refrigerant circuit assembly method
CA2441605A1 (en) Heating and refrigeration systems using refrigerant mass flow
JPH0777364A (en) Freezer
JPH07174439A (en) Refrigerating cycle
CN114051525A (en) Refrigerant-containing composition, use thereof, refrigerator having the composition, method for operating the refrigerator, and refrigeration cycle device having the refrigerator
JPH10160293A (en) Freezer and accumulator
JP2000146369A (en) Air conditioner
KR100481798B1 (en) Refrigerating apparatus
JPH085204A (en) Refrigerating cycle equipment
JP3093295B2 (en) Refrigeration system
Randles Refrigeration lubricants
JP4023726B2 (en) Lubricating oil composition for refrigerator
JPH10246521A (en) Freezer, air conditioner and method for assembling refrigerant circuit
JPH11294873A (en) Refrigeration cycle device
JPH10205936A (en) Drier and refrigerating device equipped with the same
WO2023058643A1 (en) Refrigeration cycle device
JPH10338891A (en) Refrigerating apparatus
Kawaguchi et al. Development of HFC-134a rotary compressor for household refrigerator
JPH10339526A (en) Retrofit method of refrigerating system
JP2002303456A (en) Refrigeration air conditioner