JPH0777232A - Vibro-energy absorber for structure - Google Patents

Vibro-energy absorber for structure

Info

Publication number
JPH0777232A
JPH0777232A JP24608393A JP24608393A JPH0777232A JP H0777232 A JPH0777232 A JP H0777232A JP 24608393 A JP24608393 A JP 24608393A JP 24608393 A JP24608393 A JP 24608393A JP H0777232 A JPH0777232 A JP H0777232A
Authority
JP
Japan
Prior art keywords
iron
deformation
based alloy
steel
martensitic transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24608393A
Other languages
Japanese (ja)
Inventor
Mitsuru Sugisawa
充 杉沢
Hiroyuki Tanahashi
浩之 棚橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24608393A priority Critical patent/JPH0777232A/en
Publication of JPH0777232A publication Critical patent/JPH0777232A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

PURPOSE:To stop any vibration in a structure speedily insofar as possible by absorbing the vibro-energy of this structure effectively with a simple means. CONSTITUTION:In a vibro-energy absorber being interposed between two sections in a structure, and damping the extent of accelerating force to be produced by an earthquake and a typhoon, such a ferreous alloyed member 4 as producing a stress-induced martensitic transformation by way of deformation after being added with external force, is interposed between a first member 2 to be connected to one side part and a second member 3 to be connected to the other part of the structure 1, or the ferreous alloy member producing this stress- induced martensitic transformation by being added with shearing deformation is interposed between them otherwise. Further differently, the ferreous alloy member producing the said martensitic transformation by way of adding bending deformation is interposed, whereby respective these ferreous alloy members and both these first and second members 2 and 3 are all engaged with one another.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、構造物における2つの
部分の間に介在させ、そのままでは2つの部材の間で力
の伝達が行なわれ、また周期的に移動するエネルギー、
例えば地震の際に生じるようなエネルギーを吸収する構
造物用振動エネルギー吸収装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention interposes between two parts of a structure, and as it is, energy is transmitted between two members, and energy that moves cyclically,
For example, the present invention relates to a vibration energy absorbing device for a structure that absorbs energy generated during an earthquake.

【0002】[0002]

【従来の技術】従来、構造物の制振・耐震を目的とし
て、構造物の2つの部分間にエネルギー吸収装置(ダン
パー)を兼ねて鋼製部材を設置する場合がある。例とし
て、図27に示すように、鋼製柱7と鋼製梁8とからな
る鋼製構造物1における上下の梁8の間に、垂直H形部
材フランジ52と垂直H形部材ウエブ材51とからなる
鋼製部材13を介在固定し、地震発生時に、前記構造物
1が水平方向に振動することにより、前記垂直H形部材
ウエブ材51がせん断変形を生じて、エネルギーを吸収
する装置が知られており、また、図28に示すように、
構造物1の上下の梁8の間に、梁長手方向に延長するリ
ブ付き鋼板からなる鋼製部材11を介在固定し、地震発
生時に、前記鋼製部材11がせん断変形を生じてエネル
ギーを吸収する装置も知られている。 さらに図29に
示すように、上下の梁8の長手方向の中間部に、上下方
向に延長するH形断面の鋼製部材11を介在固定し、構
造物1が水平方向に振動することにより、鋼製部材11
のウエッブがせん断変形を生じて、エネルギーを吸収す
る装置も知られており、さらにまた、図30に示すよう
に、上方の梁8の中央部と下方の梁8の長手方向の両側
とにわたって、一対の鋼製部材11を介在固定し、地震
発生時に、前記鋼製部材11を軸方向変形させてエネル
ギーを吸収する装置も知られている。
2. Description of the Related Art Conventionally, for the purpose of damping and earthquake-proofing a structure, a steel member may be installed between two parts of the structure also as an energy absorbing device (damper). As an example, as shown in FIG. 27, a vertical H-shaped member flange 52 and a vertical H-shaped member web member 51 are provided between the upper and lower beams 8 in the steel structure 1 including the steel columns 7 and the steel beams 8. A steel member 13 made of and is interposed and fixed, and when the structure 1 vibrates in the horizontal direction at the time of occurrence of an earthquake, the vertical H-shaped member web material 51 undergoes shear deformation to absorb energy. Known, and as shown in FIG.
A steel member 11 made of a steel plate with ribs extending in the beam longitudinal direction is interposed and fixed between the upper and lower beams 8 of the structure 1, and the steel member 11 undergoes shear deformation and absorbs energy when an earthquake occurs. Devices that do this are also known. Further, as shown in FIG. 29, a steel member 11 having an H-shaped cross section that extends in the vertical direction is interposed and fixed to the middle portion of the upper and lower beams 8 in the longitudinal direction, and the structure 1 vibrates in the horizontal direction. Steel member 11
There is also known a device for absorbing energy by causing shear deformation of the web of the above, and further, as shown in FIG. 30, over the central portion of the upper beam 8 and both sides of the lower beam 8 in the longitudinal direction, There is also known a device in which a pair of steel members 11 are interposed and fixed, and when an earthquake occurs, the steel members 11 are axially deformed to absorb energy.

【0003】[0003]

【発明が解決しようとする課題】前述の各エネルギー吸
収装置の場合は、地震や台風時において、構造物1が振
動を生じると周期的な繰り返し荷重を受けることになる
が、その耐久性および繰り返し性能はダンパーとして使
用される鋼材の特性に依存するため、耐久性すなわち破
断にいたる繰り返し性能については、通常の鋼材の疲労
破壊と同じ傾向を持つ場合が多い。すなわち鋼材の変形
歪が大きくなるほど破断にいたる繰り返し回数は少なく
なり、変形歪が進んで塑性域に入った場合においては、
通常その繰り返し回数の低下は著しくなる。この関係を
図31に示す。図31はSS400の疲労試験の結果に
よる破壊までの繰り返し数と歪範囲の関係を示してい
る。従って、例えば、これらのエネルギー吸収装置のダ
ンパー部分が、塑性化開始時期を発生頻度の多い小地震
時に設定した場合には、エネルギーの吸収は小地震に対
応して効率的に行われることになるが、その反面、塑性
域における繰り返し荷重を受けることにより部材の疲労
破壊が問題になる。また同時に、大地震時においては、
変形歪が極めて大きくなり、そのため鋼材が疲労破壊す
る可能性が生じ、構造物1の安全性確保が難しいことに
なる。また反対に、前記各エネルギー吸収装置のダンパ
ー部分が、塑性化を開始する時期を発生する可能性の少
ない大地震時に設定した場合には、疲労破壊の可能性は
少なくなる反面、エネルギー吸収が小地震時には、行わ
れないことになるので、ダンパーとしての効率が悪くな
る。
In the case of each of the energy absorbing devices described above, when the structure 1 vibrates during an earthquake or a typhoon, the structure 1 is subjected to cyclic repetitive loads. Since the performance depends on the characteristics of the steel material used as a damper, the durability, that is, the repeated performance up to fracture often has the same tendency as the fatigue fracture of ordinary steel materials. That is, as the deformation strain of the steel material increases, the number of repetitions leading to fracture decreases, and when the deformation strain advances and enters the plastic region,
Usually, the number of repetitions is significantly reduced. This relationship is shown in FIG. FIG. 31 shows the relationship between the number of repetitions until the fracture and the strain range as a result of the fatigue test of SS400. Therefore, for example, when the damper part of these energy absorbing devices sets the plasticization start time at the time of a small earthquake with a high frequency of occurrence, the energy absorption will be performed efficiently in response to the small earthquake. However, on the other hand, fatigue failure of the member becomes a problem due to repeated loading in the plastic region. At the same time, during a major earthquake,
Deformation strain becomes extremely large, which may cause fatigue fracture of the steel material, which makes it difficult to secure the safety of the structure 1. On the contrary, when the damper part of each energy absorbing device is set at the time of a large earthquake that is unlikely to cause the time to start plasticization, the possibility of fatigue fracture is reduced, but the energy absorption is small. Since it will not be performed at the time of an earthquake, the efficiency as a damper will deteriorate.

【0004】[0004]

【課題を解決するための手段】前述の問題を有利に解決
するために、本発明の構造物用振動エネルギー吸収装置
においては、構造物における2つの部分の間に挿置さ
れ、地震や台風により生じる加速力を減衰する振動エネ
ルギー吸収装置において、前記構造物1における一方の
部分に結合される第1部材2と、前記構造物1の他方の
部分に結合される第2部材3との間に、外力を加えて変
形を生じさせることにより応力誘起マルテンサイト変態
を生じる鉄系合金部材4を介在させるか、またはせん断
変形を加えることにより応力誘起マルテンサイト変態を
生じる鉄系合金部材5を介在させるか、あるいは曲げ変
形を加えることにより応力誘起マルテンサイト変態を生
じる鉄系合金部材6を介在させ、前記各鉄系合金部材
4,5,6と前記第1部材2および第2部材3とを係合
させる。
In order to advantageously solve the above-mentioned problems, in the vibration energy absorbing device for a structure of the present invention, the device is inserted between two parts of the structure, and is protected by an earthquake or typhoon. In the vibration energy absorbing device for damping the generated acceleration force, between the first member 2 connected to one part of the structure 1 and the second member 3 connected to the other part of the structure 1. , An iron-based alloy member 4 that causes stress-induced martensitic transformation by applying an external force, or an iron-based alloy member 5 that causes stress-induced martensitic transformation by applying shear deformation is interposed. Alternatively, the iron-based alloy members 6 that cause stress-induced martensitic transformation by applying bending deformation are interposed, and the iron-based alloy members 4, 5, 6 and the first Engaging the timber 2 and the second member 3.

【0005】ある合金に外力が加えられた時、そのエネ
ルギーの大きさが合金の弾性限度を越える場合には、合
金は塑性変形される。その際合金内部においては、原子
間の結合が切れ、一原子間距離以上の原子の移動を伴う
すべり変形、原子間の結合は切れることなく、結晶格子
が剪断変形されて別の相が生成される応力誘起マルテン
サイト変態などが生じる。この二つを比較すると、前者
の場合には変形の度に転位の増殖とそれらの絡み合いと
が進行し合金を疲労破壊に至らしめるのみ対して、後者
の場合には、応力誘起変態が優先的に生じて転位の増殖
を低く抑えるために、外力の負荷が同じように繰り返さ
れた場合においても、より高いエネルギー吸収効果を持
続出来る。本発明に応力誘起マルテンサイト変態を生じ
る合金を用いるのはこのためである。応力誘起マルテン
サイト変態する合金には、TiーNi合金やCu系合金
など種々のものがあるが、経済性や量産性から判断して
鉄系の合金が望ましい。本発明で用いる合金を鉄系とし
たのはそのためである。応力誘起マルテンサイト変態を
生じる鉄系合金としては、例えば、特開昭61−766
47号公報に開示されているFe−Mn−Si系合金を
使用することができる。その化学成分を具体的に明示す
れば、質量比でMnを20〜30%、Siを3.5〜8
%含有し、残部はFeおよび不可避不純物よりなる合金
や、これを基本として、これに必要に応じてCr,Ni
などの元素を特性向上のために添加したものである。本
合金は合金成分の調整によってMs点(マルテンサイト
変態開始温度)を室温以下に設定することが可能であ
る。このように設定された合金は容易に応力誘起マルテ
ンサイト変態するので本発明にはより有効である。
When an external force is applied to an alloy and the magnitude of the energy exceeds the elastic limit of the alloy, the alloy is plastically deformed. At that time, inside the alloy, the bonds between the atoms are broken, the slip deformation is accompanied by the movement of atoms more than one interatomic distance, the bonds between the atoms are not broken, and the crystal lattice is sheared to form another phase. Stress-induced martensitic transformation occurs. Comparing the two, in the former case, dislocation multiplication and their entanglement proceed with each deformation, which leads to fatigue failure of the alloy, whereas in the latter case, stress-induced transformation is preferential. In order to suppress the proliferation of dislocations to a low level, the higher energy absorption effect can be maintained even when the load of external force is similarly repeated. This is the reason why the alloy that causes stress-induced martensitic transformation is used in the present invention. There are various alloys that undergo stress-induced martensitic transformation, such as Ti-Ni alloys and Cu-based alloys, but iron-based alloys are preferable in view of economic efficiency and mass productivity. This is why the alloy used in the present invention is iron-based. Examples of iron-based alloys that cause stress-induced martensitic transformation include, for example, JP-A-61-766.
The Fe-Mn-Si based alloy disclosed in Japanese Patent No. 47 can be used. Specifically, the chemical composition of Mn is 20 to 30% and Si is 3.5 to 8 by mass.
%, With the balance being Fe and unavoidable impurities, and on the basis of this alloy, Cr, Ni as necessary.
These elements are added to improve the characteristics. In the present alloy, it is possible to set the Ms point (martensitic transformation start temperature) to room temperature or lower by adjusting the alloy components. The alloy thus set easily undergoes stress-induced martensitic transformation, which is more effective in the present invention.

【0006】[0006]

【実施例】次に請求項1の発明の第1実施例を図1ない
し図5によって説明する。複数の鋼製柱7と上下方向に
間隔をおいて前記柱7に溶接により固着された鋼製梁8
とにより鋼製構造物1が構成され、下部の梁8からなる
第1部材2の上部フランジの長手方向の両側に、上部が
相互に接近するように傾斜している1対のH形断面の下
部斜め部材12の下端部が溶接により固着され、上部の
梁8からなる第2部材3の下部フランジの中央部に、H
形断面の上部垂直部材13の上端部が溶接により固着さ
れ、その上部垂直部材13の下端部には、水平な鋼製ベ
ースプレート14が溶接により固着されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the invention of claim 1 will be described with reference to FIGS. Steel beams 8 fixed to the plurality of steel columns 7 by welding to the columns 7 at intervals in the vertical direction.
The steel structure 1 is constituted by and a pair of H-shaped cross sections in which the upper parts are inclined so that the upper parts approach each other on both sides in the longitudinal direction of the upper flange of the first member 2 composed of the lower beam 8. The lower end portion of the lower diagonal member 12 is fixed by welding, and H is attached to the central portion of the lower flange of the second member 3 including the upper beam 8.
An upper end portion of the upper vertical member 13 having a shaped cross section is fixed by welding, and a horizontal steel base plate 14 is fixed by welding to the lower end portion of the upper vertical member 13.

【0007】前記ベースプレート14の下面に、逆V字
状に配置されたH形断面の中間斜め部材15の上端部が
溶接により固着され、前記各下部斜め部材12の上端部
と前記各中間斜め部材15の下端部とは、対向するよう
に配置され、前記下部斜め部材12のフランジおよびウ
エッブと、前記中間斜め部材15のフランジおよびウエ
ッブとは、複数の鋼製継手板16およびボルト17によ
り締付結合されている。また前記上部垂直部材13は、
これらに外力を加えて変形を生じさせることにより応力
誘起マルテンサイト変態を生じる鉄系合金部材4により
構成され、また梁8の上部フランジおよび下部フランジ
の間に、鉄系合金部材4に対向する位置において補強ス
チフナー28が溶接により固着されている。またこの場
合、通常せん断変形が卓越する為、上部垂直部材13の
内、ウエブ部材51のみを応力誘起マルテンサイト変態
を生じる鉄系合金部材にて構成しても同じ効果が得られ
る。
The upper end of an intermediate diagonal member 15 having an H-shaped cross section and arranged in an inverted V shape is fixed to the lower surface of the base plate 14 by welding, and the upper end of each lower diagonal member 12 and each intermediate diagonal member. The lower end of 15 is disposed so as to face each other, and the flange and the web of the lower diagonal member 12 and the flange and the web of the intermediate diagonal member 15 are tightened by a plurality of steel joint plates 16 and bolts 17. Are combined. The upper vertical member 13 is
Positions facing the iron-based alloy member 4 between the upper flange and the lower flange of the beam 8 that are formed by the iron-based alloy member 4 that causes stress-induced martensitic transformation by applying an external force to these to cause deformation. In, the reinforcing stiffener 28 is fixed by welding. Further, in this case, since the shear deformation is usually predominant, the same effect can be obtained even if only the web member 51 of the upper vertical member 13 is made of the iron-based alloy member that causes the stress-induced martensitic transformation.

【0008】次に請求項2の発明の実施例を図6および
図7によって説明する。鋼製構造物1における下部の梁
8からなる第1部材2の上部フランジに、その第1部材
2の長手方向に延長する鋼製下部取付板18が溶接によ
り固着され、かつ上部の梁8からなる第2部材3の下部
フランジに、その第2部材3の長手方向に延長する鋼製
上部取付板19が溶接により固着され、前記下部取付板
18および上部取付板19の間に、下部取付板18およ
び上部取付板19の長手方向に延長する垂直平板20と
その垂直平板20の表裏両面に溶接により固着された多
数の縦リブ21および横リブ22とからなるリブ付き平
板23が配置されている。
Next, an embodiment of the invention of claim 2 will be described with reference to FIGS. 6 and 7. A steel lower mounting plate 18 extending in the longitudinal direction of the first member 2 is fixed by welding to the upper flange of the first member 2 composed of the lower beam 8 in the steel structure 1, and from the upper beam 8 A steel upper mounting plate 19 extending in the longitudinal direction of the second member 3 is fixed to the lower flange of the second member 3 by welding, and the lower mounting plate 18 and the upper mounting plate 19 are provided between the lower mounting plate 18 and the upper mounting plate 19. A vertical flat plate 20 extending in the longitudinal direction of the upper plate 18 and the upper mounting plate 19 and a flat plate 23 with ribs composed of a number of vertical ribs 21 and horizontal ribs 22 fixed by welding are arranged on both front and back surfaces of the vertical flat plate 20. .

【0009】前記リブ付き平板23における垂直平板2
0の下部の表裏両面と、下部取付板18の表裏両面とに
わたって、鋼製帯状下部連結板24が配置され、その鋼
製帯状下部連結板24と下部取付板18および垂直平板
20の下部とは、多数のボルト25により締付け結合さ
れ、リブ付き平板23における垂直平板20の上部の表
裏両面と、上部取付板19の表裏両面とにわたって、鋼
製帯状上部連結板26が配置され、その鋼製帯状上部連
結板26と上部取付板19および垂直平板20の上部と
は、多数のボルト27により締付け結合されている。前
記リブ付き平板23は、せん断変形を加えることにより
応力誘起マルテンサイト変態を生じる鉄系合金部材5に
より構成されている。
Vertical plate 2 in the ribbed plate 23
The steel strip-shaped lower connecting plate 24 is arranged over both the front and back surfaces of the lower part of 0 and both the front and back surfaces of the lower mounting plate 18, and the steel strip-shaped lower connecting plate 24, the lower mounting plate 18, and the lower part of the vertical flat plate 20. The steel strip-shaped upper connecting plate 26 is arranged over both the front and back surfaces of the upper portion of the vertical flat plate 20 in the ribbed flat plate 23 and the front and back surfaces of the upper mounting plate 19 by being tightened and coupled by a large number of bolts 25. The upper connecting plate 26, the upper mounting plate 19, and the upper portion of the vertical flat plate 20 are fastened and coupled by a large number of bolts 27. The ribbed flat plate 23 is composed of an iron-based alloy member 5 that undergoes stress-induced martensitic transformation by applying shear deformation.

【0010】次に請求項3の発明の実施例を図8ないし
図12によって説明する。鋼製構造物1における下部の
梁8からなる第1部材2の上部フランジに、その第1部
材2の長手方向の中央部において、下部H形部材29の
下端部が溶接により固着され、前記構造物1における上
部の梁8からなる第2部材3の下部フランジに、その第
2部材3の長手方向の中央部において、上部H形部材3
0の上端部が溶接により固着され、下部の梁8からなる
第1部材2における上部フランジと下部フランジとの間
に、下部H形部材29に対向する位置において補強スチ
フナー28が嵌入されて、溶接により固着され、上部の
梁8からなる第2部材3における上部フランジと下部フ
ランジとの間に、上部H形部材30に対向する位置にお
いて補強スチフナー28が嵌入されて、溶接により固着
されている。
Next, an embodiment of the invention of claim 3 will be described with reference to FIGS. The lower end of the lower H-shaped member 29 is fixed by welding to the upper flange of the first member 2 composed of the lower beam 8 in the steel structure 1 at the central portion in the longitudinal direction of the first member 2. In the lower flange of the second member 3 composed of the upper beam 8 of the object 1, the upper H-shaped member 3 is provided at the center of the second member 3 in the longitudinal direction.
The upper end portion of 0 is fixed by welding, and the reinforcing stiffener 28 is inserted between the upper flange and the lower flange of the first member 2 including the lower beam 8 at a position facing the lower H-shaped member 29, and welding is performed. The reinforcing stiffener 28 is fitted between the upper flange and the lower flange of the second member 3 composed of the upper beam 8 at a position facing the upper H-shaped member 30 and fixed by welding.

【0011】前記下部H形部材29および上部H形部材
30と同一断面の中間H形部材31は、前記下部H形部
材29と上部H形部材30との間に介在され、前記下部
H形部材29の上部と前記中間H形部材31の下部と
は、複数の鋼製継手板32およびボルト33により締付
け結合され、かつ前記上部H形部材30の下部と前記中
間H形部材31の上部とは、複数の鋼製継手板34およ
びボルト35により締付け結合されている。前記下部H
形部材29と上部H形部材30と中間H形部材31とか
らなる鉄系合金部材6は、変形を加えることにより応力
誘起マルテンサイト変態を生ずる鉄系合金部材により構
成されている。またこの場合、中間H形部材31のみを
応力誘起マルテンサイト変態を生じる鉄系合金部材とし
ても同様の効果が得られる。またせん断変形が卓越する
場合にもウエブ材53のみを応力誘起マルテンサイト変
態を生じる鉄系合金部材としても効果が得られる。
An intermediate H-shaped member 31 having the same cross section as that of the lower H-shaped member 29 and the upper H-shaped member 30 is interposed between the lower H-shaped member 29 and the upper H-shaped member 30, and the lower H-shaped member 30. The upper portion of 29 and the lower portion of the intermediate H-shaped member 31 are tightened and coupled by a plurality of steel joint plates 32 and bolts 33, and the lower portion of the upper H-shaped member 30 and the upper portion of the intermediate H-shaped member 31 are , A plurality of steel joint plates 34 and bolts 35 are tightened and coupled. The lower part H
The iron-based alloy member 6 including the shaped member 29, the upper H-shaped member 30, and the intermediate H-shaped member 31 is formed of an iron-based alloy member that causes stress-induced martensitic transformation by applying deformation. Further, in this case, the same effect can be obtained even if only the intermediate H-shaped member 31 is an iron-based alloy member that causes stress-induced martensitic transformation. Further, even when the shear deformation is predominant, the effect can be obtained even when only the web material 53 is used as the iron-based alloy member that causes the stress-induced martensitic transformation.

【0012】次に請求項1の発明の第2実施例を図13
ないし図18によって説明する。下部の鋼製梁8からな
る第1部材2における上部フランジの長手方向の両側
に、上部が相互に接近するように傾斜する1対の下部斜
め部材12の下端部が溶接により固着され、上部の鋼製
梁8からなる第2部材3における下部フランジの長手方
向の中央部に、下部が相互に離反するように傾斜する1
対の上部斜め部材36の上端部が溶接により固着され、
前記下部斜め部材12と上部斜め部材36との間に、中
間斜め部材37が介在され、前記下部斜め部材12の上
部と中間斜め部材37の下部とは、複数の鋼製継手板3
2およびボルト33により締付け結合され、前記上部斜
め部材36の下部と中間斜め部材37の上部とは、複数
の鋼製継手板34およびボルト35により締付け結合さ
れ、前記下部斜め部材12と上部斜め部材36と中間斜
め部材37とからなる鉄系合金部材4は、これに外力を
加えて変形を生じさせることにより応力誘起マルテンサ
イト変態を生じる鉄系合金部材により構成されている
が、その他の構成は請求項1の発明の第1実施例の場合
と同様である。またこの場合、中間斜め部材37のみが
応力誘起マルテンサイト変態を生ずる鉄系合金部材とし
ても同様の効果が得られる。
Next, a second embodiment of the invention of claim 1 is shown in FIG.
Through FIG. 18. The lower ends of a pair of lower diagonal members 12 inclined so that the upper parts approach each other are fixed by welding to both sides in the longitudinal direction of the upper flange in the first member 2 made of the lower steel beam 8. The lower part of the second member 3 made of the steel beam 8 is inclined at the center of the lower flange in the longitudinal direction so that the lower parts are separated from each other.
The upper ends of the pair of upper diagonal members 36 are fixed by welding,
An intermediate diagonal member 37 is interposed between the lower diagonal member 12 and the upper diagonal member 36, and the upper portion of the lower diagonal member 12 and the lower portion of the intermediate diagonal member 37 include a plurality of steel joint plates 3.
2 and bolts 33, and the lower portion of the upper diagonal member 36 and the upper portion of the intermediate diagonal member 37 are tightly coupled by a plurality of steel joint plates 34 and bolts 35, and the lower diagonal member 12 and the upper diagonal member are joined. The iron-based alloy member 4 including 36 and the intermediate diagonal member 37 is configured by an iron-based alloy member that causes stress-induced martensitic transformation by applying an external force to the iron-based alloy member 4 to cause deformation, but other configurations are This is similar to the case of the first embodiment of the invention of claim 1. Further, in this case, the same effect can be obtained even if only the intermediate slanting member 37 is an iron-based alloy member that causes stress-induced martensitic transformation.

【0013】図19ないし図26は本発明の他の実施例
を示すものであって、地盤38に免震構造物支承用の基
礎39が構築され、その基礎39により複数の積層ゴム
支承体41を介して免震構造物40が支承され、前記基
礎39の中央上部に鋼製第1部材2が固定され、前記免
震構造物40の中央下部に鋼製第2部材3が固定され、
横断面が円形または角形である鋼棒42の下部は、前記
第1部材2に固定され、前記鋼棒42の上部は、前記第
2部材3における下向き開口部43に挿入され、前記鋼
棒42としては、これに外力を加えて変形を生じさせる
ことにより、応力誘起マルテンサイト変態を生じる鉄系
合金部材を使用するか、または前記鋼棒42にせん断変
形を加えることにより、応力誘起マルテンサイト変態を
生じる鉄系合金部材を使用するか、あるいは前記鋼棒4
2に曲げ変形を加えることにより、応力誘起マルテンサ
イト変態を生じる鉄系合金部材を使用する。
FIGS. 19 to 26 show another embodiment of the present invention, in which a foundation 39 for supporting a seismic isolation structure is constructed on the ground 38, and a plurality of laminated rubber bearings 41 are constructed by the foundation 39. The seismic isolation structure 40 is supported via, the steel first member 2 is fixed to the central upper portion of the foundation 39, and the steel second member 3 is fixed to the central lower portion of the seismic isolation structure 40.
The lower portion of the steel rod 42 having a circular or rectangular cross section is fixed to the first member 2, and the upper portion of the steel rod 42 is inserted into the downward opening portion 43 of the second member 3 to form the steel rod 42. As for the stress-induced martensitic transformation, an iron-based alloy member that causes stress-induced martensitic transformation by applying an external force to this is used, or a stress-induced martensitic transformation is performed by applying shear deformation to the steel rod 42. Using an iron-based alloy member that causes
An iron-based alloy member that causes stress-induced martensitic transformation by applying bending deformation to 2 is used.

【0014】地震発生時等において、免震構造物40が
水平変形を生じるのに伴って、鋼棒42が曲げ変形す
る。この鋼棒42として、応力誘起マルテンサイト変態
を生じる鉄系合金を使用することにより、小地震には応
力誘起マルテンサイト変態による変形を発生させ、また
大地震には、鋼棒42にすべり変形をそれぞれ発生させ
ることにより、耐疲労性の高い振動エネルギー吸収装置
を得ることができる。
When an earthquake occurs, the steel bar 42 is bent and deformed as the seismic isolation structure 40 horizontally deforms. By using an iron-based alloy that causes stress-induced martensitic transformation as the steel rod 42, deformation due to the stress-induced martensitic transformation occurs in small earthquakes and slip deformation in the steel rod 42 occurs in large earthquakes. By generating each, a vibration energy absorbing device having high fatigue resistance can be obtained.

【0015】本発明による構造物用振動エネルギー吸収
装置における構造物1の第1部材2と第2部材3とが、
相対的に変位して歪を生じると、その振動エネルギー吸
収装置におけるダンパー部分に使用されている応力誘起
マルテンサイトに変態を生じる鉄系合金は、通常の金属
材料の塑性変形の際に生じるすべり変形よりも優先的に
応力誘起マルテンサイト変態を生じ、変形歪がある大き
さよりも小さい場合は、マルテンサイト相のみを生成し
て変形歪を吸収する。また、一旦マルテンサイト相の生
じた部分は、変態前よりも硬化するので、再び外力を受
けると、先の変形でマルテンサイト相が生成しなかった
部分に、新たに、マルテンサイト相が生成して、変形歪
を吸収する。図21ないし図24は、前記の状態を示す
ものであって、図21に示すように、鉄系合金部材44
における左側上端部に水平外力45を加えると共に、前
記鉄系合金部材44の右側下端部に水平外力46を加え
ると、図22に示すように、せん断変形したマルテンサ
イト相47が生成し、次いで図23に示すように、鉄系
合金部材44の右側上端部に水平外力48を加えると共
に、鉄系合金部材44の左側下端部に水平外力49を加
えると、図24に示すように、マルテンサイト相47と
異なる方向にせん断変形したマルテンサイト相50が新
らたに生成する。
In the vibration energy absorbing device for a structure according to the present invention, the first member 2 and the second member 3 of the structure 1 are
Iron-based alloys that undergo a transformation to the stress-induced martensite used in the damper part of the vibration energy absorber when they displace relative to each other and generate strain are slip deformations that occur during plastic deformation of ordinary metal materials. When the stress-induced martensitic transformation occurs preferentially over the deformation strain and the strain is smaller than a certain magnitude, only the martensite phase is generated to absorb the strain. Further, since the part where the martensite phase has once hardened is harder than that before the transformation, when an external force is applied again, a new martensite phase is formed in the part where the martensite phase was not formed by the previous deformation. And absorb the deformation strain. 21 to 24 show the above-described state, and as shown in FIG.
When a horizontal external force 45 is applied to the left upper end of the above and a horizontal external force 46 is applied to the right lower end of the iron-based alloy member 44, a shear-deformed martensite phase 47 is generated and then the 23, when a horizontal external force 48 is applied to the right upper end of the iron-based alloy member 44 and a horizontal external force 49 is applied to the left lower end of the iron-based alloy member 44, as shown in FIG. A new martensite phase 50 shear-deformed in a direction different from 47 is newly formed.

【0016】しかも、前述のような歪吸収機構は、図2
5に示すように、通常の金属材料を繰り返し塑性変形し
た場合に発現し、吸収可能な外力すなわちエネルギーの
最小値が次第に高まるようなものではなく、変形歪が2
〜3%前後においても、図26に示すように、ほぼ一定
の外力すなわちエネルギーに対して安定的に発現し、そ
れに伴い耐疲労性に優れた性能が得られる。
Moreover, the strain absorbing mechanism as described above is shown in FIG.
As shown in FIG. 5, it does not occur when an ordinary metal material is repeatedly plastically deformed, and the minimum value of the external force that can be absorbed, that is, the minimum value of energy is gradually increased.
Even at around 3%, as shown in FIG. 26, stable expression is exerted against an almost constant external force, that is, energy, and along with that, excellent fatigue resistance is obtained.

【0017】一方、一度に5%を越える程度の大きな変
形歪が加えられた場合には、変形の過程で、まずマルテ
ンサイト相が生成し、次いですべり変形が生じるため、
変形後の合金内部は通常の金属材料を塑性変形した場合
とほぼ同様となり、上記のような繰り返し性能は期待で
きないが、通常の鋼材と同等の耐震性能を確保できる。
On the other hand, when a large deformation strain of more than 5% is applied at one time, a martensite phase is first generated in the process of deformation, and then slip deformation occurs,
After deformation, the inside of the alloy is almost the same as when plastically deforming a normal metal material, and although the above repeated performance cannot be expected, it is possible to secure seismic performance equivalent to normal steel material.

【0018】本発明による振動エネルギー吸収装置は、
このような変形歪(エネルギー)吸収メカニズムを応用
して、構造物の振動エネルギーを吸収して振動を抑制す
るものであり、したがって、用いる鉄系合金のマルテン
サイト変態性のみで担われる歪の大きさを明らかにし、
それに基づいて、振動エネルギー吸収装置を設計するこ
とにより優れた性能を引き出すことができる。
The vibration energy absorbing device according to the present invention comprises:
By applying such deformation strain (energy) absorption mechanism, the vibration energy of the structure is absorbed to suppress the vibration. Therefore, the magnitude of the strain that is carried only by the martensitic transformation property of the iron-based alloy used. To clarify
Based on that, excellent performance can be obtained by designing the vibration energy absorbing device.

【0019】例えば、前記の例示した鉄系合金の一つで
あるFe−28Mn−6Si−5Cr鋼の場合には、約
5%の歪までは変形が全て応力誘起マルテンサイト変態
で担われ、それ以上の大きさの歪では、次第にすべり変
形が導入される。そこで、前記鉄系合金を用いる場合に
は、頻度の高い小地震等に対応したダンパー部分の変形
歪を、例えば5%の半分の2.5%となるように、か
つ、建物すなわち構造物の構築中に生じる可能性の少な
い巨大地震に対応した変形歪が5%前後になるように設
定すれば、頻度の多い小地震等の場合には、耐疲労性の
良好な応力誘起マルテンサイト変態により、エネルギー
の吸収を主として行い、極めて頻度の少ない巨大地震の
場合には、すべり変形を含めて対応することができる。
これにより、エネルギー吸収を小地震等から巨大地震ま
で対応できると共に、疲労破壊の可能性を軽減すること
ができる。すなわち構造物の安全性を向上させることが
できる。
For example, in the case of Fe-28Mn-6Si-5Cr steel, which is one of the above-mentioned iron-based alloys, the deformation is entirely carried out by the stress-induced martensitic transformation up to a strain of about 5%. With the strain of the above magnitude, slip deformation is gradually introduced. Therefore, when the iron-based alloy is used, the deformation strain of the damper portion corresponding to frequent small earthquakes is 2.5%, which is half of 5%, and the deformation of the building or structure is reduced. If the deformation strain corresponding to a huge earthquake that is unlikely to occur during construction is set to around 5%, stress-induced martensitic transformation with good fatigue resistance can be used in the case of frequent small earthquakes. , It mainly absorbs energy, and in the case of extremely small earthquakes, it can deal with slip deformation.
This makes it possible to absorb energy from small earthquakes to huge earthquakes and reduce the possibility of fatigue failure. That is, the safety of the structure can be improved.

【0020】[0020]

【発明の効果】本発明によれば、構造物における2つの
部分の間に挿置され、地震や台風により生じる加速力を
減衰する振動エネルギー吸収装置において、前記構造物
1における一方の部分に結合される第1部材2と、前記
構造物1の他方の部分に結合される第2部材3との間
に、外力を加えて変形を生じさせることにより応力誘起
マルテンサイト変態を生じる鉄系合金部材4を介在させ
るか、またはせん断変形を加えることにより応力誘起マ
ルテンサイト変態を生じる鉄系合金部材5を介在させる
か、あるいは曲げ変形を加えることにより応力誘起マル
テンサイト変態を生じる鉄系合金部材6を介在させ、前
記各鉄系合金部材4,5,6と前記第1部材2および第
2部材3とを係合させるので、簡単な手段によって、構
造物の振動エネルギーを有効に吸収して、構造物の振動
を迅速に停止させることができる。また、本発明の場合
は、鉄系合金部材4,5,6を使用しているので、その
材料は、金属材料の中でも強度の高い鉄系合金であり、
例えば降伏強度を約200MPa以上に高くすることが
でき、そのため小さな振動エネルギー吸収装置を使用し
て、大きなエネルギー吸収量と降伏耐力を持たせること
ができ、かつ鋼製構造物1と接合する場合、ボルト接合
または溶接接合を容易に採用することができ、さらに原
材料コストが安いため、経済的である。
According to the present invention, in a vibration energy absorption device which is inserted between two parts of a structure and damps the acceleration force generated by an earthquake or a typhoon, it is connected to one part of the structure 1. An iron-based alloy member that causes stress-induced martensitic transformation by applying an external force between the first member 2 and the second member 3 that is coupled to the other portion of the structure 1 to cause deformation. 4 is interposed, or an iron-based alloy member 5 that causes a stress-induced martensitic transformation by applying shear deformation is interposed, or an iron-based alloy member 6 that causes a stress-induced martensitic transformation by applying bending deformation is used. Since the iron-based alloy members 4, 5, 6 are engaged with each other and the first member 2 and the second member 3 are engaged with each other, the vibration energy of the structure can be obtained by a simple means. By effectively absorbing, it can be stopped quickly vibration of the structure. Further, in the case of the present invention, since the iron-based alloy members 4, 5 and 6 are used, the material thereof is an iron-based alloy having high strength among metal materials,
For example, the yield strength can be increased to about 200 MPa or more, and thus a small vibration energy absorption device can be used to provide a large energy absorption amount and yield strength, and when joining with the steel structure 1, It is economical because it is possible to easily adopt bolt joining or welding joining and the raw material cost is low.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の第1実施例に係る構造物用振
動エネルギー吸収装置を示す正面図である。
FIG. 1 is a front view showing a vibration energy absorbing device for a structure according to a first embodiment of the present invention.

【図2】図1の一部を拡大して示す正面図である。FIG. 2 is a front view showing a part of FIG. 1 in an enlarged manner.

【図3】図2のA−A線断面図である。3 is a cross-sectional view taken along the line AA of FIG.

【図4】図2のB−B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG.

【図5】図2のC−C線断面図である。5 is a cross-sectional view taken along line CC of FIG.

【図6】請求項2の発明の実施例に係る構造物用振動エ
ネルギー吸収装置を示す正面図である。
FIG. 6 is a front view showing a vibration energy absorbing device for a structure according to an embodiment of the present invention.

【図7】図6の縦断側面図である。7 is a vertical side view of FIG.

【図8】請求項3の発明の実施例に係る構造物用振動エ
ネルギー吸収装置を示す正面図である。
FIG. 8 is a front view showing a vibration energy absorbing device for a structure according to an embodiment of the present invention.

【図9】図8の一部を拡大して示す正面図である。9 is a front view showing a part of FIG. 8 in an enlarged manner. FIG.

【図10】図9の下側部分を拡大して示す正面図であ
る。
FIG. 10 is an enlarged front view showing the lower portion of FIG.

【図11】図9のD−D線断面図である。11 is a cross-sectional view taken along the line DD of FIG.

【図12】図9のE−E線断面図である。12 is a cross-sectional view taken along the line EE of FIG.

【図13】請求項1の発明の第2実施例に係る構造物用
振動エネルギー吸収装置を示す正面図である。
FIG. 13 is a front view showing a vibration energy absorbing device for a structure according to a second embodiment of the present invention.

【図14】図13の一部を拡大して示す正面図である。14 is a front view showing a part of FIG. 13 in an enlarged manner. FIG.

【図15】図14の左下側部分を拡大して示す正面図で
ある。
FIG. 15 is an enlarged front view showing the lower left portion of FIG.

【図16】図14の左側中間部分を拡大して示す正面図
である。
16 is an enlarged front view showing the left-side middle portion of FIG.

【図17】図15のF−F線断面図である。FIG. 17 is a sectional view taken along line FF in FIG.

【図18】図16のG−G線断面図である。18 is a cross-sectional view taken along the line GG of FIG.

【図19】本発明の他の実施例に係る構造物用振動エネ
ルギー吸収装置を示す一部縦断正面図である。
FIG. 19 is a partially longitudinal front view showing a vibration energy absorbing device for structures according to another embodiment of the present invention.

【図20】図19の免震構造物が振動した状態を示す一
部縦断正面図である。
20 is a partially longitudinal front view showing a state where the seismic isolation structure of FIG. 19 vibrates.

【図21】鉄系合金部材の上端部および下端部に水平外
力を加えてせん断変形させるときの状態を示す正面図で
ある。
FIG. 21 is a front view showing a state in which horizontal external force is applied to the upper end portion and the lower end portion of the iron-based alloy member to cause shear deformation.

【図22】鉄系合金部材をせん断変形させた状態を示す
正面図である。
FIG. 22 is a front view showing a state where the iron-based alloy member is shear-deformed.

【図23】図21の場合と逆方向にせん断変形させるた
めに鉄系合金部材の上端部および下端部に逆方向の水平
外力を加えるときの状態を示す正面図である。
23 is a front view showing a state in which a horizontal external force in the opposite direction is applied to the upper end portion and the lower end portion of the iron-based alloy member in order to perform shear deformation in the direction opposite to that in the case of FIG. 21.

【図24】鉄系合金部材を逆方向にせん断変形させた状
態を示す正面図である。
FIG. 24 is a front view showing a state where the iron-based alloy member is shear-deformed in the opposite direction.

【図25】金属材料を繰り返し塑性変形させるときの状
態を示す図である。
FIG. 25 is a diagram showing a state in which a metal material is repeatedly plastically deformed.

【図26】ほぼ一定の外力が安定的に発現している状態
を示す図である。
FIG. 26 is a diagram showing a state in which an almost constant external force is stably expressed.

【図27】従来の第1例の振動エネルギー吸収装置を示
す正面図である。
FIG. 27 is a front view showing a conventional vibration energy absorbing device of a first example.

【図28】従来の第2例の振動エネルギー吸収装置を示
す正面図である。
FIG. 28 is a front view showing a vibration energy absorbing device of a second conventional example.

【図29】従来の第3例の振動エネルギー吸収装置を示
す正面図である。
FIG. 29 is a front view showing a vibration energy absorbing device of a third conventional example.

【図30】従来の第4例の振動エネルギー吸収装置を示
す正面図である。
FIG. 30 is a front view showing a vibration energy absorbing device of a fourth conventional example.

【図31】破壊までの繰返し数とひずみ範囲との関係を
示す図である。
FIG. 31 is a diagram showing the relationship between the number of repetitions until fracture and the strain range.

【符号の説明】[Explanation of symbols]

1 構造物 2 第1部材 3 第2部材 4 鉄系合金部材 5 鉄系合金部材 6 鉄系合金部材 7 柱 8 梁 9 フランジ 10 ウエッブ 11 鋼製部材 12 下部斜め部材 13 上部垂直部材 14 ベースプレート 15 中間斜め部材 16 鋼製継手板 17 ボルト 18 下部取付板 19 上部取付板 20 垂直平板 21 縦リブ 22 横リブ 23 リブ付き平板 24 鋼製帯状下部連結板 25 ボルト 26 鋼製帯状上部連結板 27 ボルト 28 補強スチフナー 29 下部H形部材 30 上部H形部材 31 中間H形部材 32 鋼製継手板 33 ボルト 34 鋼製継手板 35 ボルト 36 上部斜め部材 37 中間斜め部材 38 地盤 39 基礎 40 免震構造物 41 積層ゴム支承体 42 鋼棒 43 下向き開口部 44 鉄系合金部材 45 水平外力 46 水平外力 47 マルテンサイト相 48 水平外力 49 水平外力 50 マルテンサイト相 51 垂直H形部材ウエブ材 52 垂直H形部材フランジ材 53 ウエブ材 54 ウエブ材 1 Structure 2 1st member 3 2nd member 4 Iron-based alloy member 5 Iron-based alloy member 6 Iron-based alloy member 7 Pillar 8 Beam 9 Flange 10 Web 11 Steel member 12 Lower diagonal member 13 Upper vertical member 14 Base plate 15 Middle Diagonal member 16 Steel joint plate 17 Bolt 18 Lower mounting plate 19 Upper mounting plate 20 Vertical flat plate 21 Vertical rib 22 Horizontal rib 23 Flat plate with ribs 24 Steel strip lower connecting plate 25 Bolt 26 Steel strip upper connecting plate 27 Bolt 28 Reinforcement Stiffener 29 Lower H-shaped member 30 Upper H-shaped member 31 Intermediate H-shaped member 32 Steel joint plate 33 Bolt 34 Steel joint plate 35 Bolt 36 Upper diagonal member 37 Intermediate diagonal member 38 Ground 39 Foundation 40 Seismic isolation structure 41 Laminated rubber Support 42 Steel rod 43 Downward opening 44 Iron-based alloy member 45 Horizontal external force 46 Horizontal external force 47 Martensite phase 48 horizontal force 49 horizontal force 50 martensite phase 51 vertical H-shaped member web material 52 vertical H-shaped member flange member 53 the web material 54 web material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 構造物における2つの部分の間に挿置さ
れ、地震や台風により生じる加速力を減衰する振動エネ
ルギー吸収装置において、前記構造物1における一方の
部分に結合される第1部材2と、前記構造物1の他方の
部分に結合される第2部材3との間に、外力を加えて変
形を生じさせることにより応力誘起マルテンサイト変態
を生じる鉄系合金部材4を介在させ、その鉄系合金部材
4と前記第1部材2および第2部材3とを係合させた構
造物用振動エネルギー吸収装置。
1. A vibration energy absorbing device which is inserted between two parts of a structure and which damps acceleration forces generated by an earthquake or a typhoon, and a first member 2 which is connected to one part of the structure 1. And the second member 3 coupled to the other part of the structure 1 with an iron-based alloy member 4 that causes stress-induced martensitic transformation by causing deformation by applying an external force, and A vibration energy absorbing device for a structure in which an iron-based alloy member 4 is engaged with the first member 2 and the second member 3.
【請求項2】 構造物における2つの部分の間に挿置さ
れ、地震や台風により生じる加速力を減衰する振動エネ
ルギー吸収装置において、前記構造物1における一方の
部分に結合される第1部材2と、前記構造物1の他方の
部分に結合される第2部材3との間に、せん断変形を加
えることにより応力誘起マルテンサイト変態を生じる鉄
系合金部材5を介在させ、その鉄系合金部材5と前記第
1部材2および第2部材3とを係合させた構造物用振動
エネルギー吸収装置。
2. A vibration energy absorbing device which is inserted between two parts of a structure and damps acceleration forces generated by an earthquake or a typhoon, and a first member 2 which is connected to one part of the structure 1. And the second member 3 coupled to the other part of the structure 1 are interposed with an iron-based alloy member 5 that causes stress-induced martensitic transformation by applying shear deformation. 5. A vibration energy absorbing device for a structure, in which 5 is engaged with the first member 2 and the second member 3.
【請求項3】 構造物における2つの部分の間に挿置さ
れ、地震や台風により生じる加速力を減衰する振動エネ
ルギー吸収装置において、前記構造物1における一方の
部分に結合される第1部材2と、前記構造物1の他方の
部分に結合される第2部材3との間に、曲げ変形を加え
ることにより応力誘起マルテンサイト変態を生ずる鉄系
合金部材6を介在させ、その鉄系合金部材6と前記第1
部材2および第2部材3とを係合させた構造物用振動エ
ネルギー吸収装置。
3. A vibration energy absorbing device that is inserted between two parts of a structure and damps acceleration forces generated by an earthquake or a typhoon, and a first member 2 that is connected to one part of the structure 1. And the second member 3 coupled to the other part of the structure 1 are interposed with an iron-based alloy member 6 that causes stress-induced martensitic transformation by applying bending deformation. 6 and the first
A vibration energy absorbing device for a structure in which the member 2 and the second member 3 are engaged.
JP24608393A 1993-09-08 1993-09-08 Vibro-energy absorber for structure Pending JPH0777232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24608393A JPH0777232A (en) 1993-09-08 1993-09-08 Vibro-energy absorber for structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24608393A JPH0777232A (en) 1993-09-08 1993-09-08 Vibro-energy absorber for structure

Publications (1)

Publication Number Publication Date
JPH0777232A true JPH0777232A (en) 1995-03-20

Family

ID=17143237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24608393A Pending JPH0777232A (en) 1993-09-08 1993-09-08 Vibro-energy absorber for structure

Country Status (1)

Country Link
JP (1) JPH0777232A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058258A (en) * 2009-09-10 2011-03-24 Nippon Steel Corp Building seismic control damper and building structure
JP5314201B1 (en) * 2013-02-25 2013-10-16 株式会社免制震ディバイス Vibration suppression device
JP2020056286A (en) * 2018-09-28 2020-04-09 株式会社フジタ Frame structure
JP2020056283A (en) * 2018-09-28 2020-04-09 株式会社フジタ Frame structure
JP2020056282A (en) * 2018-09-28 2020-04-09 株式会社フジタ Frame structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058258A (en) * 2009-09-10 2011-03-24 Nippon Steel Corp Building seismic control damper and building structure
JP5314201B1 (en) * 2013-02-25 2013-10-16 株式会社免制震ディバイス Vibration suppression device
JP2020056286A (en) * 2018-09-28 2020-04-09 株式会社フジタ Frame structure
JP2020056283A (en) * 2018-09-28 2020-04-09 株式会社フジタ Frame structure
JP2020056282A (en) * 2018-09-28 2020-04-09 株式会社フジタ Frame structure

Similar Documents

Publication Publication Date Title
KR101263078B1 (en) Connection metal fitting and building with the same
JP2009052097A (en) Damping member
JPH11269984A (en) Damping structure for building frame
JPH08151686A (en) Pillar/beam connecting part provided with energy absorbing mechanism
KR102034116B1 (en) Damage controlled coupling structure and reinforcement method for steel beam to column connection
JPH0777232A (en) Vibro-energy absorber for structure
JPH11131860A (en) Earthquake control device and steel structure
JP2000274107A (en) Elastoplastic energy absorbing body
JPH10140873A (en) Vibration damping structure of building
JPH11350778A (en) Vibration damper and vibration-damping structure
JP2669740B2 (en) Damping frame structure
CN108978924B (en) Tension-compression loading type mild steel damper with replaceable function
JP2602888Y2 (en) Elasto-plastic damper
JP4087026B2 (en) Superplastic metal damper
JP2000120299A (en) Vibration control device for structure
JPH07102635A (en) Pillar beam joint metal
JP2715710B2 (en) Eccentric brace structure with vibration suppression function
JP2001200591A (en) Earthquake-proof reinforcing fitting
JPH0791104A (en) Ferromagnetic alloy-made absorber for vibrational energy of structure
JPH05287841A (en) Reinforcing structure for bucking, in steel structure plate element
JP2002303351A (en) Energy absorbing body
JP3858773B2 (en) Reinforced concrete column wall
JPH041373A (en) Steel structure
JPH10317711A (en) Vibration damping brace structure of steel frame
Basius et al. ENERGY DISSIPATION AND DUCTILITY OF STEEL PLATE SHEAR WALL WITH PERFORATION