JPH0777220B2 - Ag wiring forming method and Ag wiring forming apparatus - Google Patents

Ag wiring forming method and Ag wiring forming apparatus

Info

Publication number
JPH0777220B2
JPH0777220B2 JP18348193A JP18348193A JPH0777220B2 JP H0777220 B2 JPH0777220 B2 JP H0777220B2 JP 18348193 A JP18348193 A JP 18348193A JP 18348193 A JP18348193 A JP 18348193A JP H0777220 B2 JPH0777220 B2 JP H0777220B2
Authority
JP
Japan
Prior art keywords
halogenated
wiring
wiring forming
substrate
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18348193A
Other languages
Japanese (ja)
Other versions
JPH0786275A (en
Inventor
晃 古谷
明男 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP18348193A priority Critical patent/JPH0777220B2/en
Publication of JPH0786275A publication Critical patent/JPH0786275A/en
Publication of JPH0777220B2 publication Critical patent/JPH0777220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子作成プロセス
の一つであるAg配線形成方法及びAg配線形成装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Ag wiring forming method and an Ag wiring forming apparatus which are one of semiconductor element manufacturing processes.

【0002】[0002]

【従来の技術】従来、LSIの配線材料にはAlあるい
はAl合金が用いられていたが、今後の微細化にはAl
あるいはAl合金では抵抗値の高さによる信号伝達速度
の遅れ、マイグレーション耐性の低さによる信頼性の低
下が問題となる。一方、Au,Ag,Cuは、低抵抗、
高マイグレーション耐性であることからAlに代わる配
線材料として期待されている。従来のAlおよびAl合
金配線は、塩素を用いたドライエッチング法により蒸気
圧の高いAlCl3を形成し、低温で加工を行ってい
た。しかしながらAg化合物は蒸気圧が低く、ドライエ
ッチング法においては低温での加工は困難である。また
従来の配線形成方法は、全面に配線材料を堆積後、レジ
ストを塗布し、配線パターンに合わせた光照射を行い、
焼き締め、現像により加工希望箇所のみレジストを剥離
してドライエッチングを行い、しかる後にアッシング、
有機ボイル等により残ったレジストを除去するという煩
雑な工程を行う。さらに配線形成技術は、Al配線にお
いては信頼性向上のために、Au,Ag,Cu配線にお
いては拡散防止のために多層化の傾向にあり、工程は複
雑化する傾向にある。
2. Description of the Related Art Conventionally, Al or Al alloy has been used as a wiring material for LSI.
Alternatively, in the case of Al alloy, there is a problem that the signal transmission speed is delayed due to the high resistance value and the reliability is lowered due to the low migration resistance. On the other hand, Au, Ag, and Cu have low resistance,
Since it has high migration resistance, it is expected as a wiring material replacing Al. Conventional Al and Al alloy wiring have been processed at a low temperature by forming AlCl 3 having a high vapor pressure by a dry etching method using chlorine. However, since the Ag compound has a low vapor pressure, it is difficult to process it at a low temperature by the dry etching method. Further, the conventional wiring forming method is to deposit a wiring material on the entire surface, apply a resist, and perform light irradiation according to the wiring pattern,
By baking and developing, the resist is peeled off only at the desired processing portion, dry etching is performed, and then ashing,
A complicated process of removing the remaining resist by organic boiling or the like is performed. Further, the wiring forming technique tends to be multi-layered in order to improve reliability in Al wiring and to prevent diffusion in Au, Ag, and Cu wiring, and the process tends to be complicated.

【0003】[0003]

【発明が解決しようとする課題】Ag配線においては、
Ag化合物の蒸気圧が低く、ドライエッチングによる低
温加工が困難なことが問題となっている。また現在、半
導体業界では配線の多層化に伴う工数の増加が深刻な問
題となっている。本発明の目的は上記の課題を克服し、
加工の困難なAgにおいて、少ない工数でAg配線を形
成する方法およびそのための装置を提供することにあ
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In Ag wiring,
The vapor pressure of the Ag compound is low, which makes it difficult to perform low-temperature processing by dry etching. At present, in the semiconductor industry, an increase in man-hours due to multilayer wiring is a serious problem. The object of the present invention is to overcome the above problems,
It is an object of the present invention to provide a method for forming Ag wiring with a small number of steps and a device therefor for Ag which is difficult to process.

【0004】[0004]

【課題を解決するための手段】本発明は、基板上にハロ
ゲン化Agを堆積する工程と、基板側が負となるように
バイアスを印加しつつ前記ハロゲン化Agに所定の配線
パターンで単色光を照射し、照射部をAgとする工程
と、前記ハロゲン化Agを選択的にエッチング除去する
工程と、基板を熱処理する工程とからなることを特徴と
するAg配線形成方法である。また、その方法を実施す
るための装置は、ハロゲン化Agを堆積するスパッタ室
と、該スパッタ室から真空を破ることなくかつ光に曝さ
れることなく試料を搬送可能で、かつハロゲン化Agを
所定のパターンで露光して露光部をAgとする露光室と
を備え、該露光室内には、バイアス印加が可能な試料台
と、所定のパターンを有するマスクと、単色光源とが順
に配置されてなることを特徴とする。
According to the present invention, a step of depositing a halogenated Ag on a substrate, and applying a bias so that the substrate side becomes negative, a monochromatic light is applied to the halogenated Ag with a predetermined wiring pattern. An Ag wiring forming method comprising: a step of irradiating and irradiating the irradiated portion with Ag; a step of selectively removing the halogenated Ag by etching; and a step of heat-treating the substrate. Further, an apparatus for carrying out the method is capable of transporting a sample from a sputtering chamber in which a halogenated Ag is deposited, a vacuum from the sputtering chamber without being exposed to light, and a halogenated Ag An exposure chamber in which the exposure portion is exposed to Ag with a predetermined pattern is provided, and a sample stage to which a bias can be applied, a mask having a predetermined pattern, and a monochromatic light source are sequentially arranged in the exposure chamber. It is characterized by

【0005】[0005]

【作用】本発明においては、基板上に形成されたハロゲ
ン化Agに対し、基板側に負のバイアスを印加した状態
で配線パターンにあわせた光を照射する。その結果、光
照射された部位はハロゲンとAgの結合が切れ、負に帯
電したハロゲンイオンと正に帯電したAgイオンとな
る。基板に印加された電場によりハロゲンイオンは膜の
表面側に、Agイオンは基板側に電界拡散する。ハロゲ
ンイオンとAgイオンの再結合時間は短いので照射部位
のハロゲンがなくなるまで光を照射し続ける必要があ
る。その結果、光照射された部位はAgのみとなり、光
照射されない部位はハロゲン化Agのまま残る。ハロゲ
ン化AgとAgではエッチングレートが大きく異なるの
でハロゲン化Agのみを選択的にエッチングすることが
出来る。次いでハロゲンが拡散した後のAgの結晶性回
復のための熱処理を行うことにより、良質のAg配線を
レジスト塗布、現像、レジスト剥離等の工程なしに形成
することが出来る。
In the present invention, the halogenated Ag formed on the substrate is irradiated with light in accordance with the wiring pattern while a negative bias is applied to the substrate side. As a result, the light-irradiated site breaks the bond between halogen and Ag, and becomes a negatively charged halogen ion and a positively charged Ag ion. Due to the electric field applied to the substrate, halogen ions are electric field diffused to the surface side of the film, and Ag ions are electric field diffused to the substrate side. Since the recombination time of halogen ions and Ag ions is short, it is necessary to continue irradiation with light until there is no halogen at the irradiation site. As a result, the light-irradiated portion is only Ag, and the light-irradiated portion remains as halogenated Ag. Since the halogenated Ag and the Ag have greatly different etching rates, only the halogenated Ag can be selectively etched. Then, by performing heat treatment for recovering the crystallinity of Ag after the diffusion of halogen, a good quality Ag wiring can be formed without steps such as resist coating, development, and resist stripping.

【0006】[0006]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図2は本発明のAg配線形成装置の一実施
例の構成図である。図2に示すように、本装置はスパッ
タ室1と露光室2がゲートバルブ3を介して連結され、
真空を破ることなく、かつ光に曝されることなく試料1
3をスパッタ室1から露光室2に搬送可能である。露光
室2の試料台4はバイアスが印加可能となっている。さ
らに試料台4から近い順にマスク5、単色光源であるi
線光源6が配置され、バイアス印加しながら露光が可能
になっている。単色光源としてはi線源でなく、g線
源、x線源を用いてもよい。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 2 is a configuration diagram of an embodiment of the Ag wiring forming apparatus of the present invention. As shown in FIG. 2, in this apparatus, a sputtering chamber 1 and an exposure chamber 2 are connected via a gate valve 3,
Sample 1 without breaking vacuum and without being exposed to light
3 can be transported from the sputtering chamber 1 to the exposure chamber 2. A bias can be applied to the sample table 4 of the exposure chamber 2. Further, the mask 5 and the monochromatic light source i
A line light source 6 is arranged so that exposure can be performed while applying a bias. As the monochromatic light source, a g-ray source or an x-ray source may be used instead of the i-ray source.

【0007】図1は上記の装置を用いた本発明のAg配
線形成方法の一実施例を示す試料の断面図である。まず
Ar(0.1〜10mTorr)+Cl2(0.1〜1
0mTorr)雰囲気中で反応性スパッタ法により図1
(a)に示すように、Si基板7上にAgCl8を膜厚
0.1〜1μm堆積する。次にスパッタ室1から露光室
2に光を当てることなく搬送する。露光室2では、図1
(b)に示すように、基板側に負のバイアス1〜100
0Vを印加した状態で水銀灯のi線光源6およびマスク
5を用い、AgCl8に配線パターンにあわせてi線9
を照射する。その結果、光が照射された部位はAgとハ
ロゲンの結合が切れ、負に帯電したハロゲンイオン10
と正に帯電したAgイオン11が生成する。基板に印加
された電場により該Agイオン11は基板側に、ハロゲ
ンイオン10はマスク側に電界拡散する。前記ハロゲン
がなくなるまで光照射し続けることにより、図1(c)
に示すように光照射部位はAg12のみとなる。次にA
g配線形成装置から試料を取り出し、アンモニア水によ
りAgCl8のみをエッチングすることにより、図1
(d)のように基板7上にAg12の配線パターンが形
成される。最後に100〜700℃のアニールを行い、
Agの結晶性回復を行う。
FIG. 1 is a sectional view of a sample showing an embodiment of the Ag wiring forming method of the present invention using the above apparatus. First, Ar (0.1 to 10 mTorr) + Cl 2 (0.1 to 1)
1 m by the reactive sputtering method in an atmosphere of 0 mTorr).
As shown in (a), AgCl 8 is deposited on the Si substrate 7 to a film thickness of 0.1 to 1 μm. Next, it is conveyed from the sputtering chamber 1 to the exposure chamber 2 without exposing it to light. In the exposure room 2, FIG.
As shown in (b), a negative bias of 1 to 100 is applied to the substrate side.
With 0 V applied, the i-line light source 6 and the mask 5 of the mercury lamp were used, and the i-line 9 was formed on the AgCl 8 according to the wiring pattern.
Irradiate. As a result, the bond between Ag and halogen is broken at the site irradiated with light, and the negatively charged halogen ion 10
Then, positively charged Ag ions 11 are generated. The electric field applied to the substrate causes the Ag ions 11 to diffuse toward the substrate and the halogen ions 10 to diffuse toward the mask. By continuously irradiating light until the halogen is exhausted, FIG.
As shown in, the light irradiation site is only Ag12. Then A
The sample is taken out from the g-wiring forming device and only AgCl8 is etched with ammonia water.
A wiring pattern of Ag12 is formed on the substrate 7 as shown in FIG. Finally, anneal at 100-700 ℃,
The crystallinity of Ag is recovered.

【0008】以上の実施例において、基板はSi基板で
なく、GaAs,SiGe,SiO2,Six1-x,T
iN,TiW,W,Co等、半導体材料に用いられてい
る全ての材料に適用可能である。ハロゲン化AgはAg
ClでなくAgBrであっても同様の結果を得ることが
出来る。また、ハロゲン化Agを形成する際のスパッタ
ガスはArでなくXeであっても同様の結果が得られ
る。また反応ガスはCl2でなくハロゲン化Ag中のハ
ロゲンを少なくとも一種類含んだガスでも同様の結果が
得られる。単色光はi線でなく、x線、g線でも同様の
結果が得られる。ハロゲン化Agのエッチャントはアン
モニア水でなく、濃塩酸またはシアン化カリウム溶液ま
たはチオ硫酸ナトリウム溶液のいずれかを含む溶液でも
同様の結果が得られる。
In the above embodiments, the substrate is not a Si substrate, but GaAs, SiGe, SiO 2 , Si x N 1-x , T.
It can be applied to all materials used for semiconductor materials such as iN, TiW, W, and Co. Halogenated Ag is Ag
Similar results can be obtained with AgBr instead of Cl. Similar results can be obtained even if the sputtering gas used to form the halogenated Ag is Xe instead of Ar. Similar results can be obtained when the reaction gas is not Cl 2 but contains at least one halogen in the halogenated Ag. The same result can be obtained with x-rays and g-rays instead of i-rays for monochromatic light. Similar results are obtained with a solution containing either concentrated hydrochloric acid or a potassium cyanide solution or a sodium thiosulfate solution instead of an aqueous ammonia as the halogenated Ag etchant.

【0009】[0009]

【発明の効果】以上説明したように、本発明によれば加
工の困難なAgによる配線を形成することができる。ま
た、レジスト塗布、現像、剥離等の工程なしに配線を形
成することができるため、少ない配線形成工程数で形成
が可能であり、またそれに伴う有機物使用も減少させる
ことができる。
As described above, according to the present invention, it is possible to form a wiring made of Ag which is difficult to process. Further, since the wiring can be formed without the steps of resist coating, development, peeling, etc., the wiring can be formed by a small number of wiring forming steps, and the use of organic substances can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を説明するための試料の工程断面
図である。
FIG. 1 is a process sectional view of a sample for explaining a method of the present invention.

【図2】本発明の装置の一例の構成図である。FIG. 2 is a configuration diagram of an example of an apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 スパッタ室 2 露光室 3 ゲートバルブ 4 試料台 5 マスク 6 i線光源 7 Si基板 8 AgCl 9 i線 10 ハロゲンイオン 11 Agイオン 12 Ag 13 試料 1 Sputtering chamber 2 Exposure chamber 3 Gate valve 4 Sample stage 5 Mask 6 i-line light source 7 Si substrate 8 AgCl 9 i-line 10 Halogen ion 11 Ag ion 12 Ag 13 Sample

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上にハロゲン化Agを堆積する工程
と、基板側が負となるようにバイアスを印加しつつ前記
ハロゲン化Agに所定の配線パターンで単色光を照射
し、照射部をAgとする工程と、前記ハロゲン化Agを
選択的にエッチング除去する工程と、基板を熱処理する
工程とからなることを特徴とするAg配線形成方法。
1. A step of depositing halogenated Ag on a substrate, irradiating the halogenated Ag with monochromatic light in a predetermined wiring pattern while applying a bias so that the substrate side becomes negative, and irradiating the illuminated portion with Ag. And a step of selectively removing the halogenated Ag by etching, and a step of heat-treating the substrate.
【請求項2】 ハロゲン化Agを堆積するスパッタ室
と、該スパッタ室から真空を破ることなくかつ光に曝さ
れることなく試料を搬送可能で、かつハロゲン化Agを
所定のパターンで露光して露光部をAgとする露光室と
を備え、該露光室内には、バイアス印加が可能な試料台
と、所定のパターンを有するマスクと、単色光源とが順
に配置されてなることを特徴とするAg配線形成装置。
2. A sputter chamber for depositing a halogenated Ag, a sample can be transported from the sputter chamber without breaking the vacuum and without being exposed to light, and the halogenated Ag is exposed in a predetermined pattern. An exposure chamber having an exposure unit of Ag is provided, and a sample stage to which a bias can be applied, a mask having a predetermined pattern, and a monochromatic light source are sequentially arranged in the exposure chamber. Wiring forming device.
JP18348193A 1993-06-30 1993-06-30 Ag wiring forming method and Ag wiring forming apparatus Expired - Fee Related JPH0777220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18348193A JPH0777220B2 (en) 1993-06-30 1993-06-30 Ag wiring forming method and Ag wiring forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18348193A JPH0777220B2 (en) 1993-06-30 1993-06-30 Ag wiring forming method and Ag wiring forming apparatus

Publications (2)

Publication Number Publication Date
JPH0786275A JPH0786275A (en) 1995-03-31
JPH0777220B2 true JPH0777220B2 (en) 1995-08-16

Family

ID=16136571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18348193A Expired - Fee Related JPH0777220B2 (en) 1993-06-30 1993-06-30 Ag wiring forming method and Ag wiring forming apparatus

Country Status (1)

Country Link
JP (1) JPH0777220B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007284276A (en) * 2006-04-14 2007-11-01 Nippon Sheet Glass Co Ltd Windowpane with conductive ceramic sintered compact, and its manufacturing method

Also Published As

Publication number Publication date
JPH0786275A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
EP0020776B1 (en) Method of forming patterns
US4497890A (en) Process for improving adhesion of resist to gold
TWI264764B (en) Lithographic mask and manufacturing method thereof
US3799777A (en) Micro-miniature electronic components by double rejection
EP0401314B1 (en) Cryogenic process for metal lift-off
EP0794573A2 (en) Semiconductor device and method of manufacturing the same
US6566269B1 (en) Removal of post etch residuals on wafer surface
JPS58137835A (en) Formation of pattern on resist layer of germanium selenide on substrate
JPH0777220B2 (en) Ag wiring forming method and Ag wiring forming apparatus
US5759745A (en) Method of using amorphous silicon as a photoresist
EP0198280B1 (en) Dry development process for metal lift-off profile
TWI389195B (en) A substrate for processing a substrate, and a method of processing a substrate
JP7219521B2 (en) Sacrificial layer for platinum patterning
JP3348804B2 (en) Post-etch treatment method
JPH07130751A (en) Method of patterning aluminum system metal film
JPS5816545A (en) Manufacture of semiconductor device
JPH0814032B2 (en) Dry etching equipment
JPH04103130A (en) Manufacture of semiconductor device
JP2005123494A (en) Manufacturing method and analysis method of semiconductor device
JPH06244184A (en) Formation of wiring
JPH11297674A (en) Manufacture of semiconductor device
JPH0719773B2 (en) Surface treatment method and apparatus
JP2771989B2 (en) Metal film surface treatment method
JP2611485B2 (en) Pattern formation method by lift-off method
JPS59207628A (en) Dry-etching method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees