JPH0777060A - Bypass operation method for blast furnace gas recovery device and blast furnace top pressure recovery turbine - Google Patents

Bypass operation method for blast furnace gas recovery device and blast furnace top pressure recovery turbine

Info

Publication number
JPH0777060A
JPH0777060A JP24212293A JP24212293A JPH0777060A JP H0777060 A JPH0777060 A JP H0777060A JP 24212293 A JP24212293 A JP 24212293A JP 24212293 A JP24212293 A JP 24212293A JP H0777060 A JPH0777060 A JP H0777060A
Authority
JP
Japan
Prior art keywords
blast furnace
furnace gas
top pressure
gas
recovery turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24212293A
Other languages
Japanese (ja)
Inventor
Toru Oba
透 大場
Yoshihiko Takashima
吉彦 高島
Yasuhiko Omatsu
保彦 尾松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24212293A priority Critical patent/JPH0777060A/en
Publication of JPH0777060A publication Critical patent/JPH0777060A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To provide a bypass operation device which is constituted to collect and purify dust in blast furnace gas by a dry type dust collector when a furnace top pressure recovery turbine and/or a generator is tripped and protect equipment situated downstream of blast furnace gas main pipe from a high heat and to provide an operation method. CONSTITUTION:Blast furnace gas is guided to a bypass pipe 4 and by regulating a cooling water amount of a cooling mechanism 3, the blast furnace gas is cooled to a preset temperature. A pressure is reduced to a value at which blast furnace gas is prevented from a reverse flow from a downstream blast furnace gas main pipe 10 and the gas is recovered to the blast furnace gas main pipe 10, whereby equipment installed downstream of the blast furnace gas main pipe is protected from a high heat. Since, after repair of trip, a furnace top pressure recovery turbine 6 is started by means of blast furnace gas freed from dust and purified by a dry type dust collector and having high energy, recovery efficiency of fed energy is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高炉操業中で炉頂圧
回収タービン及び/または発電機のトリップ時の高炉炉
頂圧回収タービンのバイパス運転装置及び運転方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bypass operating device and operating method for a blast furnace top pressure recovery turbine during trip of the blast furnace top pressure recovery turbine and / or generator during blast furnace operation.

【0002】[0002]

【従来の技術】高炉の操業時に炉内に発生する高炉ガス
(Bガス)は燃料として有用な為に、そのまま廃棄する
ことなく除塵清浄化した後に高炉ガス本管を介して所要
設備へと供給し燃料として利用する。近年、このような
高炉ガス回収系には、例えば特公平3−77845号公
報、および日本工業炉協会発行の「工業加熱」(Vo
1.25、No.4、17頁)、乾式除塵機と併設して
ガスの除塵清浄化及び温度調整のために湿式除塵装置が
用いられることが示されている。このような一般的な高
炉ガス回収系を略図として図8に示す。
2. Description of the Related Art Since blast furnace gas (B gas) generated in the furnace during operation of the blast furnace is useful as a fuel, it is supplied to the required equipment through the blast furnace gas main line after being cleaned without dust as it is. And use it as fuel. In recent years, such a blast furnace gas recovery system has been disclosed in, for example, Japanese Examined Patent Publication No. 3-77845 and “Industrial Heating” (Vo
1.25, No. 4, p. 17), it is shown that a wet dust remover is used together with a dry dust remover to clean and remove gas and control the temperature. A schematic diagram of such a general blast furnace gas recovery system is shown in FIG.

【0003】高炉の通常操業においては高炉17内で発
生した高炉ガスは、含塵量が多いために先ず除塵器20
へ送られ、ここで粗粒ダストを相当程度分離沈降させて
除塵した後乾式除塵機18へ送られる。乾式除塵機18
へ送られた高炉ガスは入口の遮断弁22を介して粗ガス
分配器24へ入り、ここから、分配器を中心として放射
状に配置された複数のバグチャンバ25内へ入る。26
はバグチャンバ内のバグフィルタであって、粗ガス中の
微細なダストを除去し、ここで清浄化された高炉ガスは
配管27及び各バグチャンバをその底部で連通する環状
管28を経て出口遮断弁29から炉頂圧回収タービン6
へ送られ、該炉頂圧回収タービン6に回転エネルギを与
えた後、高炉ガス本管10へ至る。このときベンチュリ
スクラバ30及びミストセパレータ31より成る湿式除
塵機19の入口に設けられた蝶弁32と出口に設けられ
た蝶弁33は閉じられている。
In the normal operation of the blast furnace, the blast furnace gas generated in the blast furnace 17 has a large amount of dust, so that the dust remover 20 is first used.
Is sent to the dry type dust remover 18 after the coarse particles are separated and settled to a considerable extent to remove the dust. Dry type dust remover 18
The blast furnace gas sent to the above enters the crude gas distributor 24 via the shutoff valve 22 at the inlet, and from there, enters the plurality of bag chambers 25 arranged radially about the distributor. 26
Is a bag filter in the bag chamber, which removes fine dust in the crude gas, and the cleaned blast furnace gas is shut off through a pipe 27 and an annular pipe 28 which communicates each bag chamber at its bottom. Valve 29 to top pressure recovery turbine 6
Is sent to the blast furnace gas main pipe 10 after giving rotational energy to the furnace top pressure recovery turbine 6. At this time, the butterfly valve 32 provided at the inlet and the butterfly valve 33 provided at the outlet of the wet dust remover 19 including the venturi scrubber 30 and the mist separator 31 are closed.

【0004】一方高炉ガスを湿式除塵する場合は、乾式
除塵機の入口に設けられた遮断弁22及び23、蝶弁2
1、出口の遮断弁29を閉とし除塵器20で除塵した高
炉ガスをベンチュリスクラバ30に送る。ベンチュリス
クラバ30に入った高炉ガスはその微細なダストを水の
噴霧等によって除去され、さらにミストセパレータ31
でその水分を除去されて清浄ガスとなり炉頂圧回収ター
ビン6へ送られる。但し、この湿式除塵機19によって
清浄化された高炉ガスは温度・圧力共に著しく低下して
おり、炉頂圧回収タービン6へ送られたときには、その
有効エネルギが低いので、通常操業時には湿式除塵機1
9は閉止されている。
On the other hand, when the blast furnace gas is subjected to wet dust removal, the shutoff valves 22 and 23 and the butterfly valve 2 provided at the inlet of the dry dust remover.
1. The shut-off valve 29 at the outlet is closed and the blast furnace gas dusted by the dust remover 20 is sent to the venturi scrubber 30. The fine dust in the blast furnace gas that has entered the venturi scrubber 30 is removed by spraying water, etc.
At that time, the moisture is removed to form a clean gas, which is sent to the furnace top pressure recovery turbine 6. However, the temperature and pressure of the blast furnace gas cleaned by the wet dust remover 19 are remarkably lowered, and the effective energy of the blast furnace gas when sent to the furnace top pressure recovery turbine 6 is low. 1
9 is closed.

【0005】いま、高炉操業時で乾式除塵機稼働中に炉
頂圧回収タービン6が、該炉頂圧回収タービン6及び/
または発電機7が原因でトリップした場合は、炉頂圧回
収タービン6入口の遮断弁8を閉とし、乾式除塵機18
の除塵配管34と炉頂圧回収タービン6の出側の高炉ガ
ス本管10との間を結ぶバイパス管4内のガス圧調整弁
5を開として、高炉ガスをバイパス管4に通過させて、
高炉ガス本管10へ送る。さらに、炉頂圧回収タービン
6及び/または発電機7が復旧のために長時間停止する
場合は、炉頂圧回収タービン6後の水封弁9をも閉止す
る。乾式除塵機18を通り除塵清浄化された高炉ガスは
高温高圧である。このためバイパス管4にはガス圧調整
弁5の設備保護のため、高炉ガスを冷却するための水ス
プレー方式の冷却機構3が配されている。この冷却機構
3により、ガス圧調整弁5の耐熱温度まで冷却される。
また、圧力はガス圧調整弁5により、高炉ガス本管10
の圧力まで減圧される。さらに、該ガス圧力調整弁5
は、高炉炉頂圧の変動信号により、自動開閉して高炉炉
頂圧を一定に保つ機能を保持している。
Now, during operation of the dry dust remover during operation of the blast furnace, the furnace top pressure recovery turbine 6 is
Alternatively, if the generator 7 trips, the shutoff valve 8 at the inlet of the furnace top pressure recovery turbine 6 is closed and the dry dust remover 18
The gas pressure adjusting valve 5 in the bypass pipe 4 connecting the dust removal pipe 34 and the blast furnace gas main pipe 10 on the outlet side of the furnace top pressure recovery turbine 6 is opened to allow the blast furnace gas to pass through the bypass pipe 4.
Send to the blast furnace gas main 10. Furthermore, when the furnace top pressure recovery turbine 6 and / or the generator 7 are stopped for a long time for restoration, the water sealing valve 9 after the furnace top pressure recovery turbine 6 is also closed. The blast furnace gas that has passed through the dry dust remover 18 and has been cleaned by dust removal has a high temperature and high pressure. For this reason, the bypass pipe 4 is provided with a water spray type cooling mechanism 3 for cooling the blast furnace gas in order to protect the equipment of the gas pressure adjusting valve 5. The cooling mechanism 3 cools the gas pressure adjusting valve 5 to the heat resistant temperature.
In addition, the pressure is adjusted by the gas pressure control valve 5 to the blast furnace gas main pipe 10.
The pressure is reduced to. Further, the gas pressure adjusting valve 5
Holds the function of automatically opening and closing the blast furnace top pressure by a fluctuation signal of the blast furnace top pressure.

【0006】バイパス運転は、炉頂圧回収タービン6及
び/または発電機7がトリップしてから再び起動するま
での時間が2時間程度までと予測されるとき実行され、
それ以上長い時には高炉ガスの除塵清浄化方法を乾式方
法から湿式方法に切り替えて運転することが行われる。
これは、冷却機構3が、ガス圧調整弁5の耐久温度(1
20〜130℃)まで冷却するよう水噴射量が決められ
ており、この温度は高炉ガス本管10の下流に配置され
る高炉ガスホルダ、伸縮継手の耐熱温度(50〜80
℃)に比較して高く、長時間になるとこれら設備を破損
する恐れがあるためである。
The bypass operation is executed when it is predicted that the time from the trip of the furnace top pressure recovery turbine 6 and / or the generator 7 to the restart thereof is up to about 2 hours,
When it is longer than that, the method for removing dust from the blast furnace gas is switched from the dry method to the wet method to operate.
This is because the cooling mechanism 3 has the durability temperature (1
The amount of water injection is determined so as to cool it to 20 to 130 ° C., and this temperature is the heat resistant temperature (50 to 80) of the blast furnace gas holder and expansion joint arranged downstream of the blast furnace gas main 10.
This is because the temperature is higher than that of (° C), and there is a risk of damaging these facilities over a long period of time.

【0007】次に、トリップ解決後炉頂圧回収タービン
6を再起動するにあたっては、まず炉頂圧回収タービン
6入口の遮断弁8を開とし、該遮断弁8と炉頂圧回収タ
ービン6の間に設けられた調節弁(図示略)を徐々に開
としながら、ガス圧調整弁5を徐々に閉として炉頂圧回
収タービン6を立ちあげていく。高炉ガス性状安定後、
乾式除塵機18入口に設けられた遮断弁22及び23、
出口の遮断弁29を開とし、さらに乾式除塵機18入口
の蝶弁21を徐々に開とし、湿式除塵機19の入口に設
けられた蝶弁32と出口に設けられた蝶弁33を徐々に
閉として乾式除塵機18による除塵清浄化方法への切替
が行われる。つまり、高炉ガスの除塵清浄化方法を湿式
方法から、エネルギロスの少ない乾式方法へ切替える。
Next, in restarting the furnace top pressure recovery turbine 6 after the trip is solved, first, the shutoff valve 8 at the inlet of the furnace top pressure recovery turbine 6 is opened, and the shutoff valve 8 and the furnace top pressure recovery turbine 6 are connected. While gradually opening a control valve (not shown) provided therebetween, the gas pressure adjusting valve 5 is gradually closed and the furnace top pressure recovery turbine 6 is started up. After stabilizing the blast furnace gas properties,
Shutoff valves 22 and 23 provided at the inlet of the dry dust remover 18,
The shutoff valve 29 at the outlet is opened, the butterfly valve 21 at the inlet of the dry dust remover 18 is gradually opened, and the butterfly valve 32 provided at the inlet of the wet dust remover 19 and the butterfly valve 33 provided at the outlet are gradually opened. When closed, switching to the dust removal cleaning method by the dry dust remover 18 is performed. In other words, the method for removing dust from the blast furnace gas is switched from the wet method to the dry method with less energy loss.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、炉頂圧
回収タービン6及び/または発電機7のトリップ後、通
常の運転状態つまりエネルギロスの少ない乾式除塵方法
による運転に復帰するためには、トリップ原因解明、復
旧後炉頂圧回収タービン6の再起動に加えて、湿式除塵
方法から乾式除塵方法への切り替えも必要である。これ
は、エネルギロスの少ない乾式除塵方法で再起動を行う
のに比べ、湿式除塵方法による再起動後、湿式除塵方法
から乾式除塵方法への切り替えを行う間、電力回収量が
湿式除塵方法により得られる電力と乾式除塵方法により
得られる電力との差がロスとなり、経済効率上大きな問
題があった。本発明は、このような従来の問題点に鑑み
てなされたものであって、炉頂圧回収タービン6及び/
または発電機7のトリップ時、炉頂圧回収タービン6が
再起動するまで乾式除塵機18で高炉ガスを除塵清浄化
しながら、高炉ガス温度を高炉ガス本管10下流のガス
ホルダ及び伸縮継ぎ手の耐熱温度まで低下させてバイパ
ス運転を行う装置及び方法を提供することを目的とす
る。また、本バイパス運転により、乾式除塵装置18に
より除塵清浄化されたエネルギの高い高炉ガスにより炉
頂圧回収タービン6を再起動する方法を提供することを
目的とする。
However, after the trip of the furnace top pressure recovery turbine 6 and / or the generator 7, in order to return to the normal operation state, that is, the operation by the dry dust removal method with less energy loss, the cause of the trip is In addition to restarting the furnace top pressure recovery turbine 6 after elucidation and restoration, it is necessary to switch from the wet dust removal method to the dry dust removal method. Compared to restarting with the dry dust removal method with less energy loss, this means that after restarting with the wet dust removal method, the power recovery amount is obtained with the wet dust removal method while switching from the wet dust removal method to the dry dust removal method. The difference between the generated electric power and the electric power obtained by the dry dust removal method causes a loss, which poses a serious problem in terms of economic efficiency. The present invention has been made in view of the above-mentioned conventional problems, and the furnace top pressure recovery turbine 6 and / or
Alternatively, when the generator 7 is tripped, the dry type dust remover 18 removes and cleans the blast furnace gas until the top pressure recovery turbine 6 is restarted, and the blast furnace gas temperature is set to the heat resistant temperature of the gas holder and the expansion joint downstream of the blast furnace gas main 10. It is an object of the present invention to provide an apparatus and a method for performing a bypass operation by lowering the temperature. Another object of the present invention is to provide a method for restarting the furnace top pressure recovery turbine 6 by the high-energy blast furnace gas that has been dust-cleaned by the dry dust remover 18 by the bypass operation.

【0009】[0009]

【課題を解決するための手段】本発明は、前記目的を達
成するために、 1.高炉ガス回収系に乾式集塵機(18)と湿式集塵機
(19)とを併設し、高炉ガスを前記いずれか一方の集
塵機を介して炉頂圧回収タービン(6)に供給した後、
高炉ガスを高炉ガス本管(10)へ回収する設備におい
て、除塵機配管(34)における高炉ガスの温度、圧
力、流量の信号及び冷却機構(3)の冷却水温度の信号
により、所要の冷却水量を計算する演算装置(1)を備
えたことを特徴とする。 2.前記演算装置(1)の演算結果と冷却機構(3)よ
り噴射される冷却水量の信号により、流量調節弁(1
6)を開閉制御する制御装置(2)を備えた事を特徴と
する。 3.高炉ガス回収系に乾式集塵機(18)と湿式集塵機
(19)とを併設し、高炉ガスを前記乾式集塵機(1
8)を介して炉頂圧回収タービン(6)に供給した後、
前記高炉ガスを高炉ガス本管(10)へ回収するように
した高炉ガス回収方法において炉頂圧回収タービン
(6)及び/または発電機(7)がトリップした直後に
炉頂圧回収タービン(6)入口の遮断弁(8)を閉とす
るとともに、ガス圧調整弁(5)を開としてバイパス管
(4)に高炉ガスを通し、バイパス管(4)の経路内に
設けた冷却機構(3)により高炉ガスを冷却するに際し
て、高炉ガスをあらかじめ設定した温度に冷却するよう
に冷却機構(3)内の水噴射流量を調整するとともに、
ガス圧調整弁(5)によりガス圧調整弁(5)入側の高
炉ガス圧力が本弁出側の高炉ガス圧力より大きくなるよ
うに減圧して高炉ガスを高炉ガス本管(10)へ回収す
ることを特徴とする。
In order to achieve the above object, the present invention provides: A dry type dust collector (18) and a wet type dust collector (19) are provided side by side in the blast furnace gas recovery system, and after the blast furnace gas is supplied to the furnace top pressure recovery turbine (6) through one of the above dust collectors,
In a facility for recovering blast furnace gas to the blast furnace gas main pipe (10), required cooling is performed by signals of the temperature, pressure and flow rate of the blast furnace gas in the dust remover pipe (34) and the cooling water temperature signal of the cooling mechanism (3). It is characterized by being provided with an arithmetic unit (1) for calculating the amount of water. 2. The flow rate control valve (1) is calculated by the calculation result of the calculation device (1) and the signal of the amount of cooling water injected from the cooling mechanism (3).
6) is provided with a control device (2) for controlling opening and closing. 3. A dry dust collector (18) and a wet dust collector (19) are provided together in the blast furnace gas recovery system, and the blast furnace gas is fed to the dry dust collector (1).
After supplying to the furnace top pressure recovery turbine (6) via 8),
In the blast furnace gas recovery method for recovering the blast furnace gas to the blast furnace gas main pipe (10), the furnace top pressure recovery turbine (6) and / or the generator (7) immediately after tripping the furnace top pressure recovery turbine (6 ) A cooling mechanism (3) provided in the path of the bypass pipe (4) by closing the shutoff valve (8) at the inlet and opening the gas pressure adjusting valve (5) to pass the blast furnace gas through the bypass pipe (4) ), When cooling the blast furnace gas, while adjusting the water injection flow rate in the cooling mechanism (3) so as to cool the blast furnace gas to a preset temperature,
The gas pressure adjusting valve (5) reduces the blast furnace gas pressure on the inlet side of the gas pressure adjusting valve (5) to be higher than the blast furnace gas pressure on the outlet side of the main valve, and recovers the blast furnace gas to the blast furnace gas main pipe (10). It is characterized by doing.

【0010】[0010]

【作用】炉頂圧回収タービン6及び/または発電機7が
トリップした場合には、微粒な水滴が得られる水スプレ
ー方式の冷却機構3を使用し、その水滴が蒸発する時の
潜熱により高炉ガスを、高炉ガス本管10下流に設置さ
れた例えばガスホルダの耐熱温度(約50℃)まで冷却
するように水噴射流量を調節するので、炉頂圧回収ター
ビン6及び/または発電機7がトリップし、再起動する
までの間、高炉ガス本管10下流に設備されたガスホル
ダ、伸縮継ぎ手等の高熱による設備破損を防止すること
ができる。さらに復旧後、炉頂圧回収タービン6及び発
電機7を乾式除塵機18により除塵清浄化されたエネル
ギの高い高炉ガスで起動することが可能となる。
When the top pressure recovery turbine 6 and / or the generator 7 are tripped, a water spray type cooling mechanism 3 is used which can obtain fine water droplets, and the blast furnace gas is generated by latent heat when the water droplets are evaporated. Is adjusted to the heat resistant temperature (about 50 ° C.) of, for example, the gas holder installed downstream of the blast furnace gas main 10, so that the furnace top pressure recovery turbine 6 and / or the generator 7 trips. Until the system is restarted, it is possible to prevent equipment damage due to high heat such as the gas holder and expansion joints installed downstream of the blast furnace gas main 10. Further, after the recovery, the furnace top pressure recovery turbine 6 and the generator 7 can be started by the high-energy blast furnace gas that has been dust cleaned by the dry dust remover 18.

【0011】図4〜図7は、水スプレーノズル方式の冷
却装置の例である。図4における本冷却機構のしくみを
説明すると次のようになる。すなわち、冷却水は配管4
1を通り配管上部に設備されたヘッダー42に入る。ヘ
ッダー42に入った水は、ヘッダー42に設けられた多
数の小孔43より噴霧状態で噴射する。図5における本
冷却機構のしくみを説明すると次のようになる。すなわ
ち、冷却水は配管51を通りバイパス管4のほぼ中心部
に設置された球状のヘッダー52に入る。ヘッダー52
は全面に多数の小孔53を配し、冷却水は該小孔53よ
り噴霧状態で噴射する。図6における本冷却機構のしく
みを説明すると次のようになる。すなわち、冷却水は配
管61を通り環状のヘッダー62に入る。ヘッダー62
に入った冷却水は、ヘッダー62の上下左右からバイパ
ス管4中心部に向かうノズル63を通り、ノズル63の
先端部で且つ高炉ガス下流側に配された小孔64より噴
霧状態で噴射する。図7における本冷却機構のしくみを
説明すると次のようになる。すなわち、冷却水は配管7
1を通り配管上部に設置されたヘッダー72に入る。ヘ
ッダー72に入った冷却水は、ヘッダー72の下部から
バイパス管4中央部に向かう複数のノズル73に分配さ
れ、ノズル73の先端部で且つ高炉ガス下流側に配され
た小孔74より噴霧状態で噴射する。
4 to 7 show an example of a water spray nozzle type cooling device. The mechanism of the present cooling mechanism in FIG. 4 will be described below. That is, the cooling water is pipe 4
1 through a header 42 installed on the upper part of the pipe. The water that has entered the header 42 is sprayed in a spray state from a large number of small holes 43 provided in the header 42. The mechanism of the present cooling mechanism in FIG. 5 will be described below. That is, the cooling water passes through the pipe 51 and enters the spherical header 52 installed at substantially the center of the bypass pipe 4. Header 52
Has a large number of small holes 53, and the cooling water is sprayed from the small holes 53 in a spray state. The mechanism of the present cooling mechanism in FIG. 6 will be described below. That is, the cooling water passes through the pipe 61 and enters the annular header 62. Header 62
The entering cooling water passes from the top, bottom, left and right of the header 62 to the nozzle 63 directed toward the center of the bypass pipe 4, and is sprayed in a spray state from a small hole 64 arranged at the tip of the nozzle 63 and on the downstream side of the blast furnace gas. The mechanism of this cooling mechanism in FIG. 7 will be described below. That is, the cooling water is pipe 7
1 and enters the header 72 installed on the upper part of the pipe. The cooling water entering the header 72 is distributed to a plurality of nozzles 73 from the lower part of the header 72 toward the center of the bypass pipe 4, and is sprayed from a small hole 74 arranged at the tip of the nozzle 73 and on the downstream side of the blast furnace gas. To inject.

【0012】噴射する水の流量は、噴射した冷却水が全
量蒸発し、その蒸発潜熱によって高炉ガスの持っている
顕熱を奪い、高炉ガスが冷却されることにより決まる。
その関係式を(1)式に示す。
The flow rate of the injected water is determined by the fact that the injected cooling water is entirely evaporated, the latent heat of evaporation thereof deprives the sensible heat of the blast furnace gas, and the blast furnace gas is cooled.
The relational expression is shown in Expression (1).

【0013】[0013]

【数1】 [Equation 1]

【0014】Wは水噴射流量(t/h)である。Cgは
バイパス管を通過する高炉ガスの比熱(kcal/Nm
3 )であり、高炉ガスの温度と圧力により決まる値であ
る。参考としてゲージ圧力2kg/cm2 の時、温度2
00℃では0.367kcal/Nm3 、350℃では
0.382kcal/Nm3 である。ΔTgはバイパス
管を通過する高炉ガス冷却前後の温度差(℃)であり、
温度計12が示す温度から、高炉ガス本管10下流側設
備の耐熱温度である50℃を減じた値である。Vはバイ
パス管を通過する高炉ガス量(Nm3 )であり、計量計
13により計測する。Cwはバイパス管を通過する高炉
ガス中の水分の比熱(kcal/Nm3 )であり、高炉
ガスの温度と圧力により決まる値である。参考としてゲ
ージ圧力2kg/cm2 の時、温度200℃では0.3
45kcal/Nm3 、350℃では0.355kca
l/Nm3 である。Mは水噴射前のバイパス管を通過す
る、乾式除塵機により除塵清浄化された高炉ガス中の水
分量(Nm3 /h)であり、高炉ガス流量60万Nm3
/hのとき、約3万Nm3 /hである事を本発明者らは
すでに実験で確認している。Sは上記のエンタルピー
(kcal/kg)であり、蒸気の温度と圧力により決
まる値であり、蒸気表に示されている。Twは噴射前の
冷却水温度(℃)であり、温度計14により計測する。
W is a water injection flow rate (t / h). Cg is the specific heat (kcal / Nm) of the blast furnace gas passing through the bypass pipe.
3 ), which is a value determined by the temperature and pressure of the blast furnace gas. As a reference, when the gauge pressure is 2 kg / cm 2 , the temperature is 2
00 ° C. In 0.367kcal / Nm 3, which is 350 ° C. At 0.382kcal / Nm 3. ΔTg is the temperature difference (° C) before and after cooling the blast furnace gas passing through the bypass pipe,
It is a value obtained by subtracting 50 ° C., which is the heat resistant temperature of the equipment downstream of the blast furnace gas main 10, from the temperature indicated by the thermometer 12. V is the amount of blast furnace gas (Nm 3 ) passing through the bypass pipe, which is measured by the meter 13. Cw is the specific heat (kcal / Nm 3 ) of water in the blast furnace gas passing through the bypass pipe, and is a value determined by the temperature and pressure of the blast furnace gas. As a reference, 0.3 at a temperature of 200 ° C when the gauge pressure is 2 kg / cm 2.
45 kcal / Nm 3 , 0.355 kca at 350 ° C
1 / Nm 3 . M is the amount of water (Nm 3 / h) in the blast furnace gas that has been dust-cleaned by the dry dust remover that passes through the bypass pipe before water injection, and the blast furnace gas flow rate is 600,000 Nm 3
The present inventors have already confirmed by experiments that, when / h, the value is about 30,000 Nm 3 / h. S is the above-mentioned enthalpy (kcal / kg), which is a value determined by the temperature and pressure of the steam, and is shown in the steam table. Tw is the cooling water temperature (° C.) before injection and is measured by the thermometer 14.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照しながら
説明する。図1は、本発明の実施態様例を示す側面断面
図である。図1に於いて、4はバイパス管であって、そ
の下流端は高炉ガス本管10と連結し、その上流端は除
塵機配管34に連結している。3は水スプレー方式の冷
却機構である。次に、本発明により乾式集塵装置による
高炉ガスの除塵清浄化中で且つ炉頂圧回収タービン6及
び/または発電機7のトリップ時のバイパス運転方法を
具体例に基づいて説明する。図2は、炉頂圧回収タービ
ン6及び/または発電機7がトリップした時のバイパス
運転方法を示すフローチャートである。また、図3は炉
頂圧回収タービン6及び/または発電機7の復旧後、炉
頂圧回収タービン6再起動完了までのバイパス運転方法
を示すフローチャートである。乾式除塵機18による高
炉ガスの除塵清浄化中に炉頂圧回収タービン6及び/ま
たは発電機7がトリップした時は、先ず、炉頂圧回収タ
ービン6入口の遮断弁8を閉とし、炉頂圧回収タービン
6へ送られるガスを遮断する。同時にバイパス管2上の
ガス圧調整弁5は高炉炉頂圧を感知し、炉頂圧を一定に
保つように開閉し、且つ高炉ガス本管10から高炉ガス
が逆流しない圧力まで減圧する。同時に炉頂圧回収ター
ビン6及び/または発電機7のトリップ信号により、演
算装置1及び制御装置2を作動させる。演算装置1は温
度計12及び14、圧力計11、流量計13の値によ
り、高炉ガス本管下流側設備の耐熱温度まで冷却するた
めに必要な冷却水量を計算する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view showing an embodiment of the present invention. In FIG. 1, 4 is a bypass pipe, the downstream end of which is connected to the blast furnace gas main pipe 10 and the upstream end of which is connected to the dust remover pipe 34. Reference numeral 3 is a water spray type cooling mechanism. Next, a bypass operation method of the present invention during the dust cleaning of the blast furnace gas by the dry dust collector and at the time of trip of the furnace top pressure recovery turbine 6 and / or the generator 7 will be described based on a specific example. FIG. 2 is a flowchart showing a bypass operation method when the furnace top pressure recovery turbine 6 and / or the generator 7 trip. Further, FIG. 3 is a flowchart showing a bypass operation method after the recovery of the furnace top pressure recovery turbine 6 and / or the generator 7 until the restart of the furnace top pressure recovery turbine 6 is completed. When the furnace top pressure recovery turbine 6 and / or the generator 7 trip during the dust cleaning of the blast furnace gas by the dry dust remover 18, first, the shutoff valve 8 at the inlet of the furnace top pressure recovery turbine 6 is closed to open the furnace top. The gas sent to the pressure recovery turbine 6 is shut off. At the same time, the gas pressure adjusting valve 5 on the bypass pipe 2 senses the blast furnace top pressure, opens and closes so as to keep the blast furnace pressure constant, and reduces the pressure from the blast furnace gas main pipe 10 to a pressure at which the blast furnace gas does not flow backward. At the same time, the arithmetic unit 1 and the control unit 2 are operated by the trip signal of the furnace top pressure recovery turbine 6 and / or the generator 7. The arithmetic unit 1 calculates the amount of cooling water required for cooling to the heat resistant temperature of the equipment on the downstream side of the blast furnace gas main pipe, using the values of the thermometers 12 and 14, the pressure gauge 11, and the flowmeter 13.

【0016】一例として、高炉ガス温度200℃、流量
60万Nm3 /h、ゲージ圧力2kg/cm2 、冷却水
温度30℃の時、高炉ガス本管下流側設備の耐熱温度5
0℃まで冷却するために必要な冷却水量は以下のように
なる。前記(1)式において、Cgは、0.352kc
al/Nm3 、ΔTgは150℃、Vは60万Nm3
h、Cwは0.335kcal/Nm3 、Mは2986
7Nm3 /h、Sは664kcal/kg、Twは30
℃である。従って、必要な冷却水量は約51t/hであ
る。次に、上記演算結果及び流量計15の値が制御装置
2に入力され、両者の値が等しくなるように流量調節弁
16へ開閉信号を送る。流量調節弁16は、制御装置2
より開閉信号を受けて開閉動作する事で、冷却水流量を
調節する。
As an example, when the blast furnace gas temperature is 200 ° C., the flow rate is 600,000 Nm 3 / h, the gauge pressure is 2 kg / cm 2 , and the cooling water temperature is 30 ° C., the heat resistant temperature of the downstream side equipment of the blast furnace gas main pipe is 5
The amount of cooling water required for cooling to 0 ° C. is as follows. In the formula (1), Cg is 0.352 kc
al / Nm 3 , ΔTg is 150 ° C., V is 600,000 Nm 3 /
h and Cw are 0.335 kcal / Nm 3 , M is 2986
7 Nm 3 / h, S is 664 kcal / kg, Tw is 30
℃. Therefore, the required cooling water amount is about 51 t / h. Next, the calculation result and the value of the flow meter 15 are input to the control device 2, and an open / close signal is sent to the flow rate control valve 16 so that both values become equal. The flow rate control valve 16 is the control device 2
The cooling water flow rate is adjusted by receiving the opening / closing signal and opening / closing operation.

【0017】次に、トリップ原因判明、復旧後炉頂圧回
収タービン6を再起動するにあたっては、まず炉頂圧回
収タービン6入口の遮断弁8を開とし、この遮断弁8と
炉頂圧回収タービン6の間に設けられた調節弁(図示
略)を徐々に開として炉頂圧回収タービン6に高炉ガス
を導入し、同時にガス圧調整弁5は炉頂圧が一定となる
よう開度調整しながら徐々に閉として炉頂圧回収タービ
ン6に導入される高炉ガス量を増加して起動していき、
炉頂圧回収タービン6に導入される高炉ガスの流量及び
圧力が一定となり安定状態となってから、演算装置1及
び制御装置2を停止し、さらに流量調整弁16を閉とし
て、冷却機構3を停止させる。なお、本実施例において
は、図4のような冷却機構を有する装置で説明したが、
例えば図5〜図7の冷却機構でも同様に適用できるもの
はもちろんである。さらに、本実施例においては、乾式
除塵機18がバグフィルタ26を有する装置で説明した
が、これに限らず電機集塵機でも同様に適用できるのは
もちろんである。
Next, in order to restart the furnace top pressure recovery turbine 6 after the cause of the trip is determined and restored, first, the shutoff valve 8 at the inlet of the furnace top pressure recovery turbine 6 is opened, and the shutoff valve 8 and the furnace top pressure recovery are performed. A control valve (not shown) provided between the turbines 6 is gradually opened to introduce blast furnace gas into the furnace top pressure recovery turbine 6, and at the same time, the gas pressure adjusting valve 5 adjusts the opening so that the furnace top pressure becomes constant. While gradually closing it, the amount of blast furnace gas introduced into the furnace top pressure recovery turbine 6 is increased and then started.
After the flow rate and pressure of the blast furnace gas introduced into the furnace top pressure recovery turbine 6 become constant and become stable, the arithmetic unit 1 and the control unit 2 are stopped, the flow rate adjusting valve 16 is closed, and the cooling mechanism 3 is installed. Stop. In the present embodiment, the device having the cooling mechanism as shown in FIG. 4 has been described.
For example, it goes without saying that the cooling mechanism shown in FIGS. 5 to 7 can be similarly applied. Further, in the present embodiment, the dry dust remover 18 has been described as the device having the bag filter 26, but the present invention is not limited to this, and can be similarly applied to an electric dust collector.

【0018】[0018]

【発明の効果】本発明によれば、エネルギロスの大きい
湿式除塵機による除塵清浄化方法に切替える事なく、冷
却機構により高炉ガス温度を高炉ガス本管下流に設置さ
れたガスホルダ、伸縮継ぎ手等の耐熱温度まで冷却し
て、高炉ガス本管へ回収するバイパス管によるバイパス
運転を行うので、炉頂圧回収タービン及び発電機の復旧
後、乾式除塵機により除塵清浄化されたエネルギの高い
高炉ガスで前記炉頂圧回収タービンを再起動することが
可能となり、エネルギとしての回収効率も向上させる事
ができるという効果が得られる。
According to the present invention, a gas holder, expansion joint, etc. installed at the blast furnace gas temperature downstream of the blast furnace gas main by a cooling mechanism can be used without switching to a dust cleaning method using a wet dust remover with a large energy loss. By-pass operation is performed with a bypass pipe that cools to a heat-resistant temperature and recovers to the blast furnace gas main, so after recovery of the furnace top pressure recovery turbine and generator, it is a high-energy blast furnace gas that has been dust cleaned by a dry dust remover. The furnace top pressure recovery turbine can be restarted, and the effect of recovery efficiency as energy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるバイパス運転の実施態様例を示
す概略側面断面図
FIG. 1 is a schematic side sectional view showing an example of an embodiment of bypass operation according to the present invention.

【図2】炉頂圧回収タービン及び/または発電機トリッ
プ時のバイパス運転方法を示すフローチャート
FIG. 2 is a flowchart showing a bypass operation method at the time of trip of a furnace top pressure recovery turbine and / or a generator.

【図3】トリップ復旧後のバイパス運転方法を示すフロ
ーチャート
FIG. 3 is a flowchart showing a bypass operation method after trip recovery.

【図4】本発明に用いられる冷却機構の実施態様の一例
を示す図
FIG. 4 is a diagram showing an example of an embodiment of a cooling mechanism used in the present invention.

【図5】本発明に用いられる冷却機構の実施態様の一例
を示す図
FIG. 5 is a diagram showing an example of an embodiment of a cooling mechanism used in the present invention.

【図6】本発明に用いられる冷却機構の実施態様の一例
を示す図
FIG. 6 is a diagram showing an example of an embodiment of a cooling mechanism used in the present invention.

【図7】本発明に用いられる冷却機構の実施態様の一例
を示す図
FIG. 7 is a diagram showing an example of an embodiment of a cooling mechanism used in the present invention.

【図8】高炉ガス回収装置の概要を示す概略側面断面図FIG. 8 is a schematic side sectional view showing an outline of a blast furnace gas recovery device.

【符号の説明】[Explanation of symbols]

1 演算装置 2 制御装置 3 冷却機構 4 バイパス管 5 ガス圧調整弁 6 炉頂圧回収タービン 7 発電機 8 遮断弁 9 水封弁 10 高圧ガス本管 11 圧力計 12 温度計 13 流量計 14 温度計 15 流量計 16 流量調整弁 17 高炉 18 乾式除塵機 19 湿式除塵機 20 除塵機 21 蝶弁 22 遮断弁 23 遮断弁 24 粗ガス分配器 25 バグチャンバ 26 バグフィルタ 27 配管 28 環状管 29 遮断弁 30 ベンチュリスクラバ 31 ミストセパレータ 32 蝶弁 33 蝶弁 34 除塵機配管 41 配管 42 ヘッダー 43 小孔 51 配管 52 ヘッダー 53 小孔 61 配管 62 ヘッダー 63 ノズル 64 小孔 71 配管 72 ヘッダー 73 ノズル 74 小孔 1 computing device 2 control device 3 cooling mechanism 4 bypass pipe 5 gas pressure adjusting valve 6 furnace top pressure recovery turbine 7 generator 8 shutoff valve 9 water sealing valve 10 high pressure gas main pipe 11 pressure gauge 12 thermometer 13 flowmeter 14 thermometer 15 Flowmeter 16 Flow control valve 17 Blast furnace 18 Dry dust remover 19 Wet dust remover 20 Dust remover 21 Butterfly valve 22 Shutoff valve 23 Shutoff valve 24 Coarse gas distributor 25 Bag chamber 26 Bag filter 27 Piping 28 Ring pipe 29 Shutoff valve 30 Venturi Scrubber 31 Mist separator 32 Butterfly valve 33 Butterfly valve 34 Dust collector piping 41 Piping 42 Header 43 Small hole 51 Piping 52 Header 53 Small hole 61 Piping 62 Header 63 Nozzle 64 Small hole 71 Piping 72 Header 73 Nozzle 74 Small hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高炉ガス回収系に乾式集塵機(18)と
湿式集塵機(19)とを併設し、高炉ガスを前記いずれ
か一方の集塵機を介して炉頂圧回収タービン(6)に供
給した後、高炉ガスを高炉ガス本管(10)へ回収する
設備において、除塵機配管(34)における高炉ガスの
温度、圧力、流量の信号及び冷却機構(3)の冷却水温
度の信号により、所要の冷却水量を計算する演算装置
(1)を備えたことを特徴とする高炉ガス回収装置。
1. A dry type dust collector (18) and a wet type dust collector (19) are provided side by side with a blast furnace gas recovery system, and blast furnace gas is supplied to a furnace top pressure recovery turbine (6) through one of the dust collectors. In the facility for recovering the blast furnace gas to the blast furnace gas main pipe (10), the required temperature, pressure, flow rate signal of the blast furnace gas in the dust remover pipe (34) and the cooling water temperature signal of the cooling mechanism (3) A blast furnace gas recovery system comprising a calculation device (1) for calculating the amount of cooling water.
【請求項2】 演算装置(1)の演算結果と冷却機構
(3)より噴射される冷却水量の信号により、流量調節
弁(16)を開閉制御する制御装置(2)を備えたこと
を特徴とする請求項1記載の高炉ガス回収装置。
2. A control device (2) for controlling the opening and closing of the flow rate control valve (16) according to the calculation result of the calculation device (1) and a signal of the amount of cooling water injected from the cooling mechanism (3). The blast furnace gas recovery device according to claim 1.
【請求項3】 高炉ガス回収系に乾式集塵機(18)と
湿式集塵機(19)とを併設し、高炉ガスを前記乾式集
塵機(18)を介して炉頂圧回収タービン(6)に供給
した後、前記高炉ガスを高炉ガス本管(10)へ回収す
るようにした高炉ガス回収方法において炉頂圧回収ター
ビン(6)及び/または発電機(7)がトリップした直
後に炉頂圧回収タービン(6)入口の遮断弁(8)を閉
とするとともに、ガス圧調整弁(5)を開としてバイパ
ス管(4)に高炉ガスを通し、バイパス管(4)の経路
内に設けた冷却機構(3)により高炉ガスを冷却するに
際して、高炉ガスをあらかじめ設定した温度に冷却する
ように冷却機構(3)内の水噴射流量を調整するととも
に、ガス圧調整弁(5)によりガス圧調整弁(5)入側
の高炉ガス圧力が本弁出側の高炉ガス圧力より大きくな
るように減圧して高炉ガスを高炉ガス本管(10)へ回
収することを特徴とする高炉炉頂圧回収タービンのバイ
パス運転方法。
3. A dry type dust collector (18) and a wet type dust collector (19) are provided together in the blast furnace gas recovery system, and after the blast furnace gas is supplied to the furnace top pressure recovery turbine (6) through the dry type dust collector (18). In the blast furnace gas recovery method in which the blast furnace gas is recovered into the blast furnace gas main pipe (10), the furnace top pressure recovery turbine (6) and / or the generator (7) immediately after the trip, the furnace top pressure recovery turbine ( 6) A cooling mechanism provided in the path of the bypass pipe (4) by closing the shutoff valve (8) at the inlet and opening the gas pressure adjusting valve (5) to pass the blast furnace gas through the bypass pipe (4) ( When cooling the blast furnace gas by 3), the water injection flow rate in the cooling mechanism (3) is adjusted so as to cool the blast furnace gas to a preset temperature, and the gas pressure adjusting valve (5) adjusts the gas pressure adjusting valve (5). 5) The blast furnace gas pressure on the inlet side is A bypass operation method for a blast furnace top pressure recovery turbine, characterized in that the blast furnace gas is decompressed to a pressure higher than the blast furnace gas pressure on the valve exit side and the blast furnace gas is recovered in the blast furnace gas main pipe (10).
JP24212293A 1993-09-03 1993-09-03 Bypass operation method for blast furnace gas recovery device and blast furnace top pressure recovery turbine Withdrawn JPH0777060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24212293A JPH0777060A (en) 1993-09-03 1993-09-03 Bypass operation method for blast furnace gas recovery device and blast furnace top pressure recovery turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24212293A JPH0777060A (en) 1993-09-03 1993-09-03 Bypass operation method for blast furnace gas recovery device and blast furnace top pressure recovery turbine

Publications (1)

Publication Number Publication Date
JPH0777060A true JPH0777060A (en) 1995-03-20

Family

ID=17084629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24212293A Withdrawn JPH0777060A (en) 1993-09-03 1993-09-03 Bypass operation method for blast furnace gas recovery device and blast furnace top pressure recovery turbine

Country Status (1)

Country Link
JP (1) JPH0777060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156277A1 (en) * 2013-03-26 2014-10-02 三菱重工業株式会社 Intake air cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014156277A1 (en) * 2013-03-26 2014-10-02 三菱重工業株式会社 Intake air cooling device
US9790858B2 (en) 2013-03-26 2017-10-17 Mitsubishi Hitachi Power Systems, Ltd. Intake-air cooling device

Similar Documents

Publication Publication Date Title
CN108661733A (en) A kind of enclosed purge system and method suitable for supercritical carbon dioxide Brayton cycle
JPH0777060A (en) Bypass operation method for blast furnace gas recovery device and blast furnace top pressure recovery turbine
EP0301577B1 (en) Apparatus for recovering high temperature blast furnace gas
JP2000303804A (en) Coal gasification compound generation plant and operation control apparatus thereof
JPH0645811B2 (en) Energy recovery equipment for blast furnace exhaust gas
JPH0691125A (en) Operation of dust collecting device for blast furnace in generation of abnormality high-temperature gas
JP3560555B2 (en) Blast furnace top gas energy recovery method and its recovery device
JP2790704B2 (en) Blast furnace top gas energy recovery method and dust removal method in piping of the recovery equipment
JPS6119709A (en) Controlling method of temperature on occurrence of blow-by in blast furnace
JP2573437B2 (en) Operating method of blast furnace gas energy recovery equipment
JPS5847124A (en) Control method for temperature of gas generated at the furnace top
JPS5481107A (en) Facilites for recovering energies of blast furnace exhaust gas
JP3776947B2 (en) Blast furnace gas treatment method
JPH02219905A (en) Soot blow method of waste heat boiler
JP2695276B2 (en) Blast furnace top gas energy recovery facility
JPS5948289B2 (en) Blast furnace top pressure power recovery method using dry dust remover
JPS5941407A (en) Dry dust separator for exhaust gas from blast furnace
JPH01110837A (en) Dry type power recovering method for blast furnace exhaust gas
JP2756213B2 (en) Power unit
JP2891009B2 (en) Gas turbine power plant
JPS5948290B2 (en) Blast furnace top pressure power recovery method using dry dust remover
KR830000076Y1 (en) Turbine protection against furnace blowout
JPH06316714A (en) Method for lowering temperature of generating gas in blast furnace
JP3994075B2 (en) Exhaust gas cooling device
JPH08295912A (en) Method for controlling temperature of furnace top gas in blast furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001107