JPH0777012B2 - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPH0777012B2
JPH0777012B2 JP30752087A JP30752087A JPH0777012B2 JP H0777012 B2 JPH0777012 B2 JP H0777012B2 JP 30752087 A JP30752087 A JP 30752087A JP 30752087 A JP30752087 A JP 30752087A JP H0777012 B2 JPH0777012 B2 JP H0777012B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
head
magnetic core
head gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30752087A
Other languages
Japanese (ja)
Other versions
JPH01150212A (en
Inventor
久 片橋
義從 三浦
結子 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30752087A priority Critical patent/JPH0777012B2/en
Publication of JPH01150212A publication Critical patent/JPH01150212A/en
Publication of JPH0777012B2 publication Critical patent/JPH0777012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3113Details for improving the magnetic domain structure or avoiding the formation or displacement of undesirable magnetic domains
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/312Details for reducing flux leakage between the electrical coil layers and the magnetic cores or poles or between the magnetic cores or poles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビデオテープレコーダなどに用いて好適な薄
膜磁気ヘッドに関する。
The present invention relates to a thin film magnetic head suitable for use in a video tape recorder or the like.

〔従来の技術〕[Conventional technology]

従来、薄膜磁気ヘッドとしては、応用磁気研究会資料
(昭和60年3月11日)資料番号;MSJ39−5 p.41−49の
成重真治等による「ハードディスク装置用薄膜磁気ヘッ
ド」と題する論文で報告されているものがあるが、これ
ら従来の薄膜磁気ヘッドにおいては、磁気コアに一軸異
方性が付与されており、磁化容易軸は磁気コアの面に平
行であってかつ媒体摺動面に平行となるように設定され
ている。
Conventionally, as a thin film magnetic head, a paper entitled "Thin Film Magnetic Head for Hard Disk Drives" by Shinji Narushige et al., Applied Magnetics Research Institute (March 11, 1985) Material No .; MSJ39-5 p.41-49 In these conventional thin-film magnetic heads, the magnetic core has uniaxial anisotropy, the easy axis of magnetization is parallel to the surface of the magnetic core, and the medium sliding surface is It is set to be parallel to.

ここで、第5図により、かかる薄膜磁気ヘッドのヘッド
ギャップ近傍での磁束の流れについて説明する。なお、
同図において、1は上部磁気コア、1′は下部磁気コ
ア、2はヘッドギャップ、3は薄膜コイルである。ま
た、破線矢印は磁束の流れ、は磁化容易軸方向を示し
ている。
Here, the flow of magnetic flux in the vicinity of the head gap of the thin film magnetic head will be described with reference to FIG. In addition,
In the figure, 1 is an upper magnetic core, 1'is a lower magnetic core, 2 is a head gap, and 3 is a thin film coil. Also, the broken line arrow indicates the flow of magnetic flux, and indicates the easy magnetization axis direction.

第5図(a)は記録時の磁束の流れを示すものであり、
薄膜コイル3に信号電流が流れると、これによる磁束が
破線矢印のように流れる。ヘッドギャップ2近傍では、
磁束が辿る経路としては、上部磁気コア1からヘッドギ
ャップ2を介して下部磁気コア1′に至る経路と、上記
磁気コア1から一旦外部に出て下部磁気コア1′に至る
経路とがある。この後者の経路を辿る磁束によって媒体
(図示せず)に記録が行なわれる。したがって、ヘッド
ギャップ2を介する経路の磁束量の割合が少ない程記録
に供される磁束量の割合が多くなり、電磁変換効率が高
いことになる。
FIG. 5 (a) shows the flow of magnetic flux during recording,
When a signal current flows through the thin-film coil 3, the resulting magnetic flux flows as indicated by the broken line arrow. In the vicinity of the head gap 2,
The path followed by the magnetic flux includes a path from the upper magnetic core 1 to the lower magnetic core 1'via the head gap 2 and a path from the magnetic core 1 to the outside to reach the lower magnetic core 1 '. Recording is performed on a medium (not shown) by the magnetic flux following the latter path. Therefore, the smaller the ratio of the amount of magnetic flux in the path passing through the head gap 2, the greater the ratio of the amount of magnetic flux used for recording, and the higher the electromagnetic conversion efficiency.

第5図(b)は再生時の磁束の流れを示すものであり、
媒体(図示せず)から流入した磁束は、破線矢印で示す
ように、上記磁気コア1からヘッドギャップ2を介し、
下部磁気コア1′を通って媒体に至る経路を流れる磁束
と、上記磁気コア1から薄膜コイル3をまわり込んで下
部磁気コア1′を通り、媒体に流れる磁束とに分岐す
る。後者の経路を通る磁束によって薄膜コイル3に信号
電流が誘起される。したがって、ヘッドギャップ2を通
る磁束量の割合が少ない程薄膜コイル3に信号電流を誘
起させる磁束量の割合が多く、電磁変換効率が高いこと
になる。
FIG. 5 (b) shows the flow of magnetic flux during reproduction,
The magnetic flux flowing from the medium (not shown) passes through the head gap 2 from the magnetic core 1 as indicated by the broken line arrow.
The magnetic flux is branched into a magnetic flux flowing through the path through the lower magnetic core 1'to the medium and a magnetic flux flowing around the thin film coil 3 from the magnetic core 1 and passing through the lower magnetic core 1'to the medium. A signal current is induced in the thin-film coil 3 by the magnetic flux passing through the latter path. Therefore, the smaller the ratio of the amount of magnetic flux passing through the head gap 2, the larger the ratio of the amount of magnetic flux that induces the signal current in the thin film coil 3, and the higher the electromagnetic conversion efficiency.

一方、磁性体においては、透磁率が大きい程磁束密度が
大きい。一般に、一軸異方性を有する磁性体において、
第6図に示すように、磁化困難軸方向(磁化容易軸方向
に垂直な方向)で最大であり、磁化困難軸方向からずれ
に従って透磁率は低下する。但し、第6図では、透磁率
を磁化困難軸方向での透磁率で規格化している。一軸異
方性単磁区理論によれば、磁化困難軸方向からのずれ角
をθとすると、そのずれ角θに対する透磁率μ(θ)は
次式で表わされる。
On the other hand, in the magnetic body, the larger the magnetic permeability, the larger the magnetic flux density. Generally, in a magnetic substance having uniaxial anisotropy,
As shown in FIG. 6, it is maximum in the direction of the hard magnetization axis (direction perpendicular to the direction of the easy magnetization axis), and the magnetic permeability decreases as it deviates from the hard axis direction. However, in FIG. 6, the magnetic permeability is standardized by the magnetic permeability in the hard axis direction. According to the uniaxial anisotropic single domain theory, when the deviation angle from the hard magnetization axis direction is θ, the magnetic permeability μ (θ) with respect to the deviation angle θ is expressed by the following equation.

μ(θ)=μ(0゜)cos2θ このことから、従来の薄膜磁気ヘッドにおいては、第5
図(a),(b)に示すように、上部磁気コア1、下部
磁気コア1′での磁化容易軸の方向(磁化困難軸に垂直
な方向)を磁束の流れ方向に垂直な方向となるように設
定されている。この磁化容易軸の方向は上記磁気コア
1、下部磁気コア1′の面に平行であって、かつ媒体摺
動面に平行であり、磁束の流れ方向で透過率が最大とな
る。
μ (θ) = μ (0 °) cos 2 θ Therefore, in the conventional thin film magnetic head,
As shown in FIGS. (A) and (b), the direction of the easy axis of magnetization in the upper magnetic core 1 and the lower magnetic core 1 '(the direction perpendicular to the hard axis of magnetization) becomes the direction perpendicular to the flow direction of the magnetic flux. Is set. The direction of this easy axis of magnetization is parallel to the surfaces of the magnetic core 1 and the lower magnetic core 1'and parallel to the medium sliding surface, and the transmittance becomes maximum in the direction of the magnetic flux flow.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

かかる従来の薄膜磁気ヘッドにおいては、ヘッドギャッ
プ2の近傍も含めて上部磁気コア1、下部磁気コア1′
での磁束の流れ方向の透磁率は均一である。
In such a conventional thin film magnetic head, the upper magnetic core 1 and the lower magnetic core 1'including the vicinity of the head gap 2 are included.
The magnetic permeability in the flow direction of the magnetic flux is uniform.

そこで、第5図(a)において、ヘッドギャップ2を通
る磁束の経路と外部を通る磁束の経路とをみると、これ
らはほとんど変わりなく、これらの磁気抵抗はほぼ同等
である。これに対して、第5図(b)の場合には、ヘッ
ドギャップ2を通る磁束の経路は、薄膜コイル3をまわ
り込む磁束の経路に比べ、経路長が充分短かくて磁気抵
抗が小さくなる。このために、ヘッドギャップ2を通る
磁束量の割合が多く、充分良好な電磁変換効率が得られ
ないことになる。
Therefore, in FIG. 5 (a), when the path of the magnetic flux passing through the head gap 2 and the path of the magnetic flux passing through the outside are almost the same, these magnetic resistances are almost the same. On the other hand, in the case of FIG. 5B, the path of the magnetic flux passing through the head gap 2 is sufficiently short and the magnetic resistance becomes small as compared with the path of the magnetic flux passing around the thin film coil 3. . For this reason, the ratio of the amount of magnetic flux passing through the head gap 2 is large, and sufficiently good electromagnetic conversion efficiency cannot be obtained.

本発明の目的は、かかる問題点を解消し、電磁変換効率
を高めることができるようにした薄膜磁気ヘッドを提供
することにある。
It is an object of the present invention to provide a thin film magnetic head that solves such problems and can improve electromagnetic conversion efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明は、磁気コアのヘッ
ドギャップ部での磁化容易方向をヘッドギャップ面の法
線方向とし、該磁気コアのその他の部分では、磁化容易
軸の方向をトラック幅方向に平行にする。
In order to achieve the above object, the present invention sets the direction of easy magnetization in the head gap portion of the magnetic core to be the normal direction of the head gap surface, and in the other portions of the magnetic core, the direction of easy magnetization axis is the track width. Make it parallel to the direction.

〔作用〕[Action]

磁気コアのヘッドギャップ部での磁化困難軸方向がヘッ
ドギャップ面に平行となるから、磁束の流れの方向と大
幅にずれて透磁率が非常に小さくなる。磁気コアのヘッ
ドギャップ部以外では、磁化困難軸の方向が磁束の流れ
方向と一致するから、透磁率が非常に大きい。したがっ
て、ヘッドギャップを通る磁束量の割合が非常に小さく
なり、電磁変換特性は大幅に改善される。
Since the direction of the hard axis in the head gap portion of the magnetic core is parallel to the head gap surface, the magnetic permeability is greatly deviated from the direction of the magnetic flux flow, and the magnetic permeability is extremely reduced. Except for the head gap portion of the magnetic core, the direction of the hard axis of magnetization coincides with the flow direction of the magnetic flux, so that the magnetic permeability is very large. Therefore, the ratio of the amount of magnetic flux passing through the head gap becomes very small, and the electromagnetic conversion characteristics are greatly improved.

〔実施例〕〔Example〕

以下、本発明の実施例を図面によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による薄膜磁気ヘッドの一実施例を示す
斜視図であって、1は上部磁気コア、1′は下部コア、
2はヘッドギャップ、3は薄膜コイル、4は非磁性基
板、5は媒体摺動面である。
FIG. 1 is a perspective view showing an embodiment of a thin film magnetic head according to the present invention, in which 1 is an upper magnetic core, 1'is a lower core,
Reference numeral 2 is a head gap, 3 is a thin film coil, 4 is a non-magnetic substrate, and 5 is a medium sliding surface.

同図において、下部磁気コア1′は非磁性基板4に設け
られたV字状の溝に埋め込まれているとともに、一部が
非磁性基板4の表面から突出している。このV字状の表
面の1/3以上は非磁性基板4の表面に対して傾斜面をな
し、非磁性基板4の表面に対してこの傾斜面がなす傾斜
角φは30゜以上、好ましくは45゜〜80゜に設定される。
下部磁気コア1′上媒体摺動面5から所定の深さまで、
上部磁気コア1が図示しない非常に薄い膜厚の非磁性材
を介して下部磁気コア1′に対向しており、この部分が
ヘッドギャップ2をなしている。このヘッドギャップ2
よりも奥の部分では、上部磁気コア1と下部磁気コア
1′との間に層間絶縁材(図示せず)に埋め込まれて薄
膜コイル3の一部が設けられ、さらに、上部磁気コア1
と下部磁気コア1′とが結合されている。
In the figure, the lower magnetic core 1 ′ is embedded in a V-shaped groove provided in the non-magnetic substrate 4 and a part thereof projects from the surface of the non-magnetic substrate 4. One third or more of the V-shaped surface forms an inclined surface with respect to the surface of the non-magnetic substrate 4, and the inclination angle φ formed by this inclined surface with respect to the surface of the non-magnetic substrate 4 is 30 ° or more, preferably It is set to 45 to 80 degrees.
From the medium sliding surface 5 on the lower magnetic core 1'to a predetermined depth,
The upper magnetic core 1 is opposed to the lower magnetic core 1 ′ through a non-magnetic material having an extremely thin film thickness (not shown), and this portion forms a head gap 2. This head gap 2
In the deeper part, a part of the thin film coil 3 is provided between the upper magnetic core 1 and the lower magnetic core 1 ′ by being embedded in an interlayer insulating material (not shown).
And the lower magnetic core 1'are coupled.

ここで、上部磁気コア1と下部磁気コア1′のヘッドギ
ャップ部では、磁化容易軸の方向がヘッドギャップ2の
面の法線方向(垂直方向)に一致しており、その他の部
分では、磁化容易軸の方向がトラック幅方向に平行とな
っている。このために、ヘッドギャップ2を通る磁束量
の割合が非常に少なくなり、記録時には、薄膜コイル3
に信号電流を流すことによって上部磁気コア1、下部磁
気コア1′に生ずる磁束が多く媒体摺動面から外部に流
れ、また、再生時には、図示しない媒体からの磁束の多
くが、上部磁気コア1に入り込んで薄膜コイル3をまわ
り込み、下部磁気コア1′を通って(あるいはその逆の
経路で)媒体に戻る。したがって、電磁変換効率が大幅
に向上し、特に再生時には、薄膜コイル3に生ずる信号
電流のレベルが高くなって高S/Nの再生信号が得られ
る。
Here, in the head gap portions of the upper magnetic core 1 and the lower magnetic core 1 ', the direction of the easy axis of magnetization coincides with the normal direction (perpendicular direction) of the surface of the head gap 2, and in the other portions, The direction of the easy axis is parallel to the track width direction. For this reason, the ratio of the amount of magnetic flux passing through the head gap 2 becomes very small, and at the time of recording, the thin film coil 3
A large amount of magnetic flux is generated in the upper magnetic core 1 and the lower magnetic core 1'by flowing a signal current to the outside from the medium sliding surface, and during reproduction, most of the magnetic flux from the medium (not shown) is generated in the upper magnetic core 1. It enters and wraps around the thin film coil 3 and returns to the medium through the lower magnetic core 1'or vice versa. Therefore, the electromagnetic conversion efficiency is significantly improved, and the level of the signal current generated in the thin-film coil 3 is increased during reproduction, and a reproduction signal of high S / N can be obtained.

次に、第2図により、各部の材料、、膜厚などの一例を
具体的に示して第1図に示した薄膜磁気ヘッドの製造方
法について説明する。
Next, a method of manufacturing the thin film magnetic head shown in FIG. 1 will be described by concretely showing an example of the material of each part, the film thickness and the like with reference to FIG.

まず、非磁性基板4上に、フォトリゾグラフィック法お
よびイオンエッチング法により、ヘッドギャップ部分が
第1図に示したようなV字状をなす溝を形成し、この溝
が埋め込まれるように、CoNbZr膜をDC対向スパッタリン
グ法によって形成し、研摩によってこの膜の溝以外の部
分を取り除いて下部磁気コア1′を形成する。このとき
の下部磁気コア1′の膜厚を20μmとした。次に、この
下部磁気コア1′の表面にヘッドギャップ2となる膜厚
0.3μmのSiO2膜と、さらにその上におよび非磁性基板
4上に膜厚3μmのCu膜を夫々マグネトロンスパッタリ
ング法によって形成し、フォトリゾグラフィック法によ
ってCu膜から薄膜コイル3を形成する。そして、薄膜コ
イル3の下部磁気コア1′上の部分を埋めつくすよう
に、同様の手法で層間絶縁層6を形成し、さらに、この
層間絶縁層6および下部磁気コア1′上のSiO2膜上にDC
対向スパッタリング法によって膜厚20μmのCoNbZr膜を
形成し、フォトリゾグラフィック法を用いてパターニン
グして上部磁気コア1を得る。
First, a V-shaped groove having a head gap portion as shown in FIG. 1 is formed on the non-magnetic substrate 4 by photolithography and ion etching, and CoNbZr is formed so that this groove is filled. The film is formed by the DC facing sputtering method, and the portion other than the groove of the film is removed by polishing to form the lower magnetic core 1 '. The film thickness of the lower magnetic core 1'at this time was set to 20 μm. Next, on the surface of this lower magnetic core 1 ′, the film thickness which becomes the head gap 2
A 0.3 μm SiO 2 film and a Cu film with a thickness of 3 μm are further formed thereon and on the non-magnetic substrate 4 by magnetron sputtering, and the thin film coil 3 is formed from the Cu film by photolithography. Then, an interlayer insulating layer 6 is formed by a similar method so as to fill the portion of the thin film coil 3 on the lower magnetic core 1 ', and further, the SiO 2 film on the interlayer insulating layer 6 and the lower magnetic core 1'. DC on top
A CoNbZr film having a film thickness of 20 μm is formed by the facing sputtering method and is patterned by the photolithographic method to obtain the upper magnetic core 1.

次に、温度450℃、磁場強度11kOeの条件下で30分磁場中
熱処理する。磁場の印加方向は、下部磁気コア1′、上
部磁気コア1の面に平行でかつ媒体摺動面に平行に設定
する。なお、この熱処理温度450℃は、非磁性基板4の
溝内に形成される下部磁気コア1′の媒体摺動面側(フ
ロント部)でのキュリー温度420℃とリア部でのキュリ
ー温度480℃の間に設定されたものである。そして、最
後に、媒体摺動面5と加工する。
Next, heat treatment is performed in a magnetic field for 30 minutes under the conditions of a temperature of 450 ° C. and a magnetic field strength of 11 kOe. The magnetic field application direction is set parallel to the surfaces of the lower magnetic core 1'and the upper magnetic core 1 and parallel to the medium sliding surface. The heat treatment temperature of 450 ° C. is a Curie temperature of 420 ° C. on the medium sliding surface side (front part) of the lower magnetic core 1 ′ formed in the groove of the non-magnetic substrate 4 and a Curie temperature of 480 ° C. on the rear part. It was set during. Then, finally, the medium sliding surface 5 is processed.

第3図はこのような工程で製作された薄膜磁気ヘッドの
磁区構造の一例を示す側面図である。同図に示すよう
に、下部磁気コア1′のヘッドギャップ部では膜厚方向
の直線的磁壁7が、その他の部分では膜厚方向のジグザ
グ磁壁7′が観測された。これらはいずれも一軸異方性
膜の磁区構造であり、夫々膜厚方向、トラック幅方向の
磁化容易軸をもつ場合に観測される磁区構造である。
FIG. 3 is a side view showing an example of the magnetic domain structure of the thin film magnetic head manufactured by the above process. As shown in the figure, a linear domain wall 7 in the film thickness direction was observed in the head gap portion of the lower magnetic core 1 ', and a zigzag domain wall 7'in the film thickness direction was observed in the other portions. Each of these is a magnetic domain structure of a uniaxial anisotropic film, and is a magnetic domain structure observed when each has a magnetization easy axis in the film thickness direction and a track width direction.

第4図は本発明による薄膜磁気ヘッドと従来の薄膜磁気
ヘッドとのインダクタンス当りのヘッド再生出力を示し
たものであり、同図から明らかなように、本発明による
薄膜磁気ヘッドは、従来の薄膜磁気ヘッドの比べ、3〜
4dBの改善が認められた。
FIG. 4 shows the head reproduction output per inductance between the thin film magnetic head according to the present invention and the conventional thin film magnetic head. As is clear from the figure, the thin film magnetic head according to the present invention is a conventional thin film magnetic head. Compared to magnetic heads, 3 to
A 4 dB improvement was observed.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、ヘッドギャップ
を通る磁束量の割合を大幅に低減し、電磁変換効率を大
幅に高めることができる。
As described above, according to the present invention, the ratio of the amount of magnetic flux passing through the head gap can be significantly reduced, and the electromagnetic conversion efficiency can be significantly increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による薄膜磁気ヘッドの一実施例を示す
斜視図、第2図はその製造プロセスの一具体例を示す工
程流れ図、第3図はこの製造方法による薄膜磁気ヘッド
の磁区構造の一例を示す側断面図、第4図は本発明によ
る薄膜磁気ヘッドと従来の薄膜磁気ヘッドとの再生出力
一周波数特性を示すグラフ図、第5図は従来の薄膜磁気
ヘッドのヘッドギャップ近傍における磁束の流れを示す
説明図、第6図は磁性体における磁化困難方向からのず
れに対する透磁率の関係を示す特性図である。 1……上部磁気コア、1′……下部磁気コア、2……ヘ
ッドギャップ、3……薄膜コイル、4……非磁性基板、
5……媒体摺動面。
FIG. 1 is a perspective view showing an embodiment of the thin film magnetic head according to the present invention, FIG. 2 is a process flow chart showing a specific example of the manufacturing process thereof, and FIG. 3 is a magnetic domain structure of the thin film magnetic head according to the manufacturing method. FIG. 4 is a side sectional view showing an example, FIG. 4 is a graph showing reproduction output-frequency characteristics of a thin film magnetic head according to the present invention and a conventional thin film magnetic head, and FIG. 5 is a magnetic flux near the head gap of the conventional thin film magnetic head. FIG. 6 is a characteristic diagram showing the relationship of the magnetic permeability with respect to the deviation of the magnetic substance from the difficult magnetization direction. 1 ... upper magnetic core, 1 '... lower magnetic core, 2 ... head gap, 3 ... thin film coil, 4 ... non-magnetic substrate,
5: Medium sliding surface.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−52710(JP,A) 特開 昭60−51520(JP,A) 特開 昭63−304414(JP,A) 応用磁気研究会資料MSJ39−5「ハー ドディスク装置用薄膜ヘッド−磁気コアの 磁区構造」,成重他2名,昭和60年3月11 日 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 62-52710 (JP, A) JP 60-51520 (JP, A) JP 63-304414 (JP, A) Applied Magnetics Research Group Material MSJ39-5 "Thin film head for hard disk drive-Magnetic domain structure of magnetic core", Narishige and 2 others, March 11, 1985

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1,第2の磁気コアが薄膜コイルを介して
隔離され、かつ媒体摺動面近傍で微小間隔で対向してヘ
ッドギャップを形成するようにした薄膜磁気ヘッドにお
いて、該第1,第2の磁気コアのヘッドギャップ部での磁
化容易軸方向が該ヘッドギャップの面の法線方向に一致
し、該第1,第2の磁気コアの該ヘッドギャップ部以外で
の磁化容易軸方向がトラック幅方向に平行であることを
特徴とする薄膜磁気ヘッド。
1. A thin-film magnetic head in which first and second magnetic cores are separated by a thin-film coil, and a head gap is formed so as to face each other in the vicinity of a sliding surface of the medium at a minute interval. Easy magnetization in the head gap portion of the first and second magnetic cores coincides with the normal direction of the surface of the head gap, and easy magnetization in the portions other than the head gap portion of the first and second magnetic cores. A thin-film magnetic head having an axial direction parallel to a track width direction.
JP30752087A 1987-12-07 1987-12-07 Thin film magnetic head Expired - Fee Related JPH0777012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30752087A JPH0777012B2 (en) 1987-12-07 1987-12-07 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30752087A JPH0777012B2 (en) 1987-12-07 1987-12-07 Thin film magnetic head

Publications (2)

Publication Number Publication Date
JPH01150212A JPH01150212A (en) 1989-06-13
JPH0777012B2 true JPH0777012B2 (en) 1995-08-16

Family

ID=17970072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30752087A Expired - Fee Related JPH0777012B2 (en) 1987-12-07 1987-12-07 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH0777012B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2822487B2 (en) * 1989-09-29 1998-11-11 ソニー株式会社 Thin film magnetic head
JPH10162322A (en) 1996-11-28 1998-06-19 Nec Corp Magnetoresistance effect type composite head and its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
応用磁気研究会資料MSJ39−5「ハードディスク装置用薄膜ヘッド−磁気コアの磁区構造」,成重他2名,昭和60年3月11日

Also Published As

Publication number Publication date
JPH01150212A (en) 1989-06-13

Similar Documents

Publication Publication Date Title
US5590008A (en) Magnetic disc unit having a plurality of magnetic heads which include multilayer magnetic films
JPH0576682B2 (en)
JPH0777012B2 (en) Thin film magnetic head
JP2598018B2 (en) Thin film magnetic head
JPH0476171B2 (en)
JP2003263705A (en) Perpendicular recording magnetic head and magnetic disk drive on which head is mounted
JP2654401B2 (en) Thin film magnetic head
EP0585930A2 (en) Thin film magnetic head
JPS5933613A (en) Magnetic pole of thin film magnetic head and its production
JP3070495B2 (en) Magnetoresistance effect type thin film transducer
JPS62114113A (en) Thin film magnetic head
JPS6057520A (en) Magnetic head
JPH103611A (en) Thin film magnetic head and magnetic recording/ reproducing device
JPH09282620A (en) Magnetic head and magnetic recording and reproducing device
Ohura et al. Design of high recording density thin‐film heads for particulate rigid disks
JPS6043202A (en) Vertical magnetic recording and reproducing device
JPH0528564Y2 (en)
JP2591109B2 (en) Magnetic head
JPH06274834A (en) Thin-film magnetic head and its production
JPS6220606B2 (en)
JPS60256903A (en) Magnetic head
JPS61117714A (en) Thin film magnetic head
Hayakawa et al. Reproducing characteristics of perpendicular magnetic recording
JPH0668819B2 (en) Thin film magnetic head
JPS62146417A (en) Thin film magnetic head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees