JPH0776663B2 - Cold storage - Google Patents

Cold storage

Info

Publication number
JPH0776663B2
JPH0776663B2 JP60165208A JP16520885A JPH0776663B2 JP H0776663 B2 JPH0776663 B2 JP H0776663B2 JP 60165208 A JP60165208 A JP 60165208A JP 16520885 A JP16520885 A JP 16520885A JP H0776663 B2 JPH0776663 B2 JP H0776663B2
Authority
JP
Japan
Prior art keywords
temperature
opening
compartment
closing member
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60165208A
Other languages
Japanese (ja)
Other versions
JPS6224083A (en
Inventor
勇治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60165208A priority Critical patent/JPH0776663B2/en
Publication of JPS6224083A publication Critical patent/JPS6224083A/en
Publication of JPH0776663B2 publication Critical patent/JPH0776663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は吐出口から供給される冷気の吐出量を制御し
て、室内の温度を制御する冷却貯蔵庫に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a cooling storage for controlling the temperature in a room by controlling the discharge amount of cold air supplied from a discharge port.

(ロ) 従来の技術 従来此種冷却貯蔵庫では貯蔵室内に冷気を直接供給する
か、若しくは、貯蔵室を間接的に冷却する冷気通路に冷
気を供給することによって室内を冷却している。この様
に冷気を強制的に循環することによって貯蔵室内を冷却
する場合の温度制御は、従来例えば実開昭60−54078号
公報に示される如きダンパーサーモスタットによって行
なわれていた。
(B) Conventional Technology In a conventional cold storage of this kind, the inside of the storage room is cooled by directly supplying cold air to the storage room or by supplying cold air to a cold air passage that indirectly cools the storage room. In this way, the temperature control in the case of cooling the storage chamber by forcibly circulating the cool air has been conventionally performed by a damper thermostat as disclosed in, for example, Japanese Utility Model Publication No. 60-54078.

(ハ) 発明が解決しようとする問題点 前記公報に示される如きダンパーサーモスタットはガス
を封入した感熱管であるキャピラリーチューブによって
貯蔵室内の温度を検知し、該室内の温度変化に伴うガス
の圧縮・膨張を利用してベローズを圧縮・伸張せしめ、
それによってダンパーを駆動し、冷気吐出口を開閉する
ことにより、室内への冷気供給量を制御して貯蔵室の温
度制御を行うものであるが、キャピラリチューブを介し
たガスの相変化を利用するものであるので、温度変化に
対する応答性が鈍く、又、精度も低いので温度設定の変
更も困難であると共に制御温度も安定しない問題点があ
った。
(C) Problems to be Solved by the Invention The damper thermostat as disclosed in the above publication detects the temperature in the storage chamber by a capillary tube which is a heat-sensitive tube containing gas, and compresses the gas due to the temperature change in the chamber. Use expansion to compress and expand the bellows,
By this, the damper is driven and the cold air discharge port is opened / closed to control the amount of cold air supplied to the room to control the temperature of the storage room, but the phase change of the gas through the capillary tube is used. However, since the response to temperature change is slow, and the accuracy is low, it is difficult to change the temperature setting and the control temperature is not stable.

(ニ) 問題点を解決するための手段 本発明の冷却貯蔵庫は、断熱箱と扉とで形成される被冷
却空間(F,P,R)と、冷却器で冷却された冷気をこれら
各被冷却空間へ導びく複数のダクト(18、20、21)と、
これら複数のダクトのうち被冷却空間(P)に冷気を導
びくダクト(20)に形成された冷気吐出口(20a)を開
閉する開閉部材(71)と、この開閉部材を開閉動作させ
るとともに任意の位置で止めるモータ(61)と、前記被
冷却空間(P)の温度を設定する設定手段と、設定温度
が高ければ開閉部材の開度を小さくし設定温度が低けれ
ば開閉部材の開度を大きくするように前記設定手段の設
定温度に基づいて前記モータ(61)を駆動する時間を決
めて前記開閉部材の開放時の停止位置を制御するととも
に、前記設定温度と前記被冷却空間(P)の温度検出手
段で検出した検出温度とに基づいて前記開閉部材を開く
時と閉じる時のタイミングを制御する制御装置とを備え
たものである。
(D) Means for Solving Problems The cooling storage of the present invention provides a cooled space (F, P, R) formed by a heat insulating box and a door, and cold air cooled by a cooler. Multiple ducts (18, 20, 21) leading to the cooling space,
An opening / closing member (71) that opens and closes a cold air discharge port (20a) formed in a duct (20) that guides cool air to the cooled space (P) among the plurality of ducts, and an opening / closing member for opening / closing the opening / closing member (71). Motor (61) stopped at the position, setting means for setting the temperature of the cooled space (P), the opening degree of the opening / closing member is decreased if the setting temperature is high, and the opening degree of the opening / closing member is decreased if the setting temperature is low. The time for driving the motor (61) is determined based on the set temperature of the setting means so as to increase the stop position when the opening / closing member is opened, and the set temperature and the space to be cooled (P) are controlled. And a control device for controlling the timing of opening and closing the opening / closing member based on the temperature detected by the temperature detecting means.

(ホ)作用 以上のように本発明によれば、制御装置S1及びS2が、設
定手段で設定された被冷却空間(即ち区画室P)の設定
温度に基づいてモータ61を駆動する時間を決めて開閉部
材(即ちバッフル板71)の開放時の停止位置(即ち開位
置若しくは開度)を設定温度に基づいて定まる位置に動
作制御するように作用するので、冷蔵庫使用者は設定手
段で区画室(P)の設定温度を設定するだけの簡単な操
作をするだけで、区画室(P)へ導入される冷気の供給
量が適宜設定温度に見合った量(区画室の設定温度が低
ければ供給量を多くし高ければ供給量を少なくするよ
う)に調節される一方、区画室(P)の冷却速度を早め
たり遅らせたりすることに利用できる。特に、この冷却
貯蔵庫(特にダンパー装置)は区画室の設定温度が凍結
温度から非凍結温度(例えば冷蔵温度)までの広い温度
範囲で調節可能な冷蔵庫への適用に好適である。また開
閉部材を開く時と閉じる時のタイミングは区画室の設定
温度と検出温度に基づいて制御される。
(E) Operation As described above, according to the present invention, the control devices S1 and S2 determine the time for driving the motor 61 based on the set temperature of the cooled space (that is, the compartment P) set by the setting means. The opening / closing member (i.e., the baffle plate 71) acts to control the stop position (i.e., open position or opening) of the opening / closing member at a position determined based on the set temperature. By simply performing a simple operation of setting the set temperature of (P), the supply amount of the cool air introduced into the compartment (P) is appropriately adjusted to the set temperature (if the set temperature of the compartment is low, supply It can be used to increase or decrease the cooling rate of the compartment (P) while adjusting the amount of supply to increase or decrease. In particular, this cooling storage (particularly a damper device) is suitable for application to a refrigerator in which the set temperature of the compartment can be adjusted in a wide temperature range from a freezing temperature to a non-freezing temperature (for example, a refrigerating temperature). The timing of opening and closing the opening / closing member is controlled based on the set temperature of the compartment and the detected temperature.

(ヘ) 実施例 図面に於いて冷却貯蔵庫の実施例としての冷蔵庫(1)
について説明する。第6図は冷蔵庫(1)の断面図を示
している。冷蔵庫(1)は鋼板製の外箱(2)内に間隔
を存して合成樹脂製の内箱(3)を組み込み、両箱
(2)(3)間にウレタン断熱材(4)を発泡充填して
断熱箱体を形成している。冷蔵庫(1)の庫内は内部に
断熱材を充填した仕切壁(5)によって上下に仕切られ
ており、上方に凍結温度(例えば−20℃)に冷却される
冷凍室(F)と、下方に氷点以上の冷蔵温度(例えば+
3℃)で維持される冷蔵室(R)とを形成している。冷
蔵庫(1)の庫内の一部である冷蔵室(R)の開口縁に
は左右に渡って仕切前部材(8)が架設されており、こ
の仕切前部材(8)とこれと略同一高さで内箱(3)に
形成した凹溝(3a)とに支持されて断熱性の区画板
(9)が取り付けられ、この区画板(9)によって冷蔵
室(R)は上下に区画される。区画板(9)の上方空間
には仕切壁(5)下面、区画板(9)上面、内箱(3)
両側面及び後面と間隔を存して冷気通路(10)を形成し
て、前方に開口した箱状のケース(11)が組み込まれ
る。ケース(11)の開口縁は内箱(3)、仕切壁(5)
及び区画板(9)に当接せしめており、これによってこ
のケース(11)内に庫外のみに連通した被冷却空間とし
ての区画室(P)が形成され、冷気通路(10)の前端部
は閉塞される。
(F) Example Refrigerator (1) as an example of a cooling storage in the drawings
Will be described. FIG. 6 shows a sectional view of the refrigerator (1). The refrigerator (1) incorporates a synthetic resin inner box (3) in a steel plate outer box (2) with a space, and foams a urethane heat insulating material (4) between both boxes (2) and (3). Filled to form an insulating box. The inside of the refrigerator (1) is divided into upper and lower parts by a partition wall (5) filled with a heat insulating material inside, and a freezer compartment (F) that is cooled to a freezing temperature (for example, -20 ° C) and a lower part. Refrigeration temperature above freezing (eg +
And a refrigerating chamber (R) maintained at 3 ° C. A partition member (8) is installed across the left and right of the opening edge of the refrigerating compartment (R), which is a part of the refrigerator (1), and this partition member (8) and this partition member are substantially the same. A heat insulating partition plate (9) is attached by being supported by a groove (3a) formed in the inner box (3) at a height, and the cold storage room (R) is vertically partitioned by this partition plate (9). It In the space above the partition plate (9), the lower surface of the partition wall (5), the upper surface of the partition plate (9), and the inner box (3)
A box-shaped case (11) that is open to the front is formed by forming a cool air passage (10) at a distance from both side surfaces and the rear surface. The opening edge of the case (11) has an inner box (3) and a partition wall (5).
And the partition plate (9), thereby forming a partitioned chamber (P) as a cooled space in the case (11) that communicates with only the outside of the case, and the front end of the cold air passage (10). Is blocked.

仕切壁(5)の上方には間隔を存して下面に断熱材を有
した冷凍室(F)の底板(13)が設けられ、この底板
(13)と仕切壁(5)間に冷却室(14)が形成される。
この冷却室(14)内に冷凍サイクルに含まれる冷却器
(15)が収納設置され、この冷却器(15)後方に位置し
て送風機(16)が設けられる。送風機(16)を駆動する
モータ(16M)は冷却室(14)の後方に位置して外箱
(2)背面の内側に取り付けられ断熱材(4)中に埋設
された収納箱(17)内に収納され、回転軸が収納箱(1
7)、断熱材(4)及び内箱(3)を貫通して冷却室(1
4)内に臨み、その先端に送風ファン(16F)が取り付け
られている。送風機(16)は回転して回転軸方向より冷
気を吸引し、半径方向に吹き出すものである。冷凍室
(F)の底板(13)の後辺(13a)は内箱(3)後面と
間隔を存して上方に立上り、冷却室(14)後部と冷凍室
(F)を連通するダクト(18)を形成しており、送風機
(16)によって加速された冷気はダクト(18)先端の吐
出口(18a)より冷凍室(F)に吐出される。(19)は
冷却室(14)後部と冷気通路(10)とを連通するダクト
(20)を形成するダクト部材で、送風機(16)により加
速された冷気は冷気通路(10)後方の内箱(3)後面上
部に形成した冷気の吐出口(20a)より冷気通路(10)
内に吐出される。(21)は冷却室(14)後部と冷蔵室
(R)とを連通するダクトで冷気の吐出口(21a)より
冷気は冷蔵室(R)内に吐出される。冷凍室(F)と冷
気通路(10)を循環する冷気は冷凍室(F)を直接冷却
により、また、区画室(P)はケース(11)からの間接
冷却により冷却した後、冷却室(14)前部に連通した冷
気吸入口(22)(23)よりそれぞれ冷却室(14)に帰還
する。冷蔵庫(1)の側壁の断熱材(4)中には冷蔵室
(R)と冷却室(14)前部を連通する帰還ダクト(24)
が形成されており、ここを通り冷蔵室(R)内の冷気は
吸入口(25)から冷却室(14)に帰還する。(26)は凍
凍サイクルに含まれる圧縮機、(27)(28)(29)はそ
れぞれ室(F)(P)(R)の前方開口を開閉自在に閉
じる扉である。上述の実施例においては区画室Pを冷気
通路10からの間接冷却によって冷却される構造とした
が、冷却は間接冷却に限定されるものではなく、例えば
ケース11を除去して仕切壁5、区画板9、内箱の両側面
及び背面と扉28で囲まれる空間全てを区画室Pとし、区
画室に直接冷気を導入することにより区画室を冷却する
いわゆる冷気循環による直接冷却方式としてもよい。
A bottom plate (13) of a freezer compartment (F) having a heat insulating material on the lower surface is provided above the partition wall (5) with a space therebetween, and a cooling chamber is provided between the bottom plate (13) and the partition wall (5). (14) is formed.
A cooler (15) included in the refrigeration cycle is housed and installed in the cooling chamber (14), and a blower (16) is provided behind the cooler (15). The motor (16M) that drives the blower (16) is located behind the cooling chamber (14) and is installed inside the rear surface of the outer box (2) and is embedded in the heat insulating material (4) inside the storage box (17). The rotating shaft is stored in (1
7), penetrating the heat insulating material (4) and the inner box (3),
4) It faces inside, and a blower fan (16F) is attached to its tip. The blower (16) rotates, sucks cool air from the rotation axis direction, and blows it out in the radial direction. The rear side (13a) of the bottom plate (13) of the freezer compartment (F) rises upward with a space from the rear surface of the inner box (3) and connects the rear part of the cooling room (14) and the freezer compartment (F) ( 18) is formed, and the cold air accelerated by the blower (16) is discharged into the freezer compartment (F) through the discharge port (18a) at the tip of the duct (18). (19) is a duct member that forms a duct (20) that connects the rear part of the cooling chamber (14) and the cool air passageway (10). The cool air accelerated by the blower (16) is an inner box behind the cool air passageway (10). (3) Cool air passage (10) from the cool air discharge port (20a) formed in the upper part of the rear surface
Is discharged inside. Reference numeral (21) is a duct that connects the rear part of the cooling chamber (14) with the refrigerating chamber (R), and cool air is discharged into the refrigerating chamber (R) from the cool air discharge port (21a). The cold air circulating in the freezing compartment (F) and the cold air passage (10) is cooled by directly cooling the freezing compartment (F), and the compartment (P) is cooled by indirect cooling from the case (11), and then the cooling compartment (F). 14) Return to the cooling chamber (14) through the cold air suction ports (22) (23) communicating with the front part. In the heat insulating material (4) on the side wall of the refrigerator (1), there is a return duct (24) that connects the refrigerating room (R) and the front part of the cooling room (14).
Is formed, and the cold air in the refrigerating chamber (R) passes through here and returns from the suction port (25) to the cooling chamber (14). (26) is a compressor included in the freeze-freezing cycle, and (27), (28) and (29) are doors that open and close the front openings of the chambers (F), (P) and (R), respectively. In the above-mentioned embodiment, the compartment P is cooled by the indirect cooling from the cold air passage 10, but the cooling is not limited to the indirect cooling. For example, the case 11 is removed and the partition wall 5, the partition The space surrounded by the plate 9, both side surfaces and the back surface of the inner box and the door 28 may be defined as a compartment P, and the compartment may be cooled by directly introducing the cool air into the compartment, which is a so-called direct cooling system by cold air circulation.

吐出口(21a)からの冷気吐出量は開閉部材としての電
磁ダンパー(36)によって開閉制御される。電磁ダンパ
ー(36)はアーム先端に取り付けられ吐出口(21a)を
開閉するバッフル板・電磁コイル(36A)及び図示しな
いプランジャー等にて構成される。
The amount of cold air discharged from the discharge port (21a) is controlled to be opened / closed by an electromagnetic damper (36) as an opening / closing member. The electromagnetic damper (36) is composed of a baffle plate, an electromagnetic coil (36A), a plunger (not shown), etc., which is attached to the arm tip and opens and closes the discharge port (21a).

第2図は冷凍室(F)と冷蔵室(R)の温度制御用電気
回路図を示している。第2図において(40)は冷凍室
(F)内の温度を検出する負特性サーミスタであり、直
流電源(VCC)と接地された抵抗(41)間に接続され、
抵抗(41)の端子電位は比較器(42)の(−)入力端子
に入力され、比較器(42)の(+)入力端子には抵抗
(43)と(44)とで決定する設定電位が入力される。比
較器(42)は正帰還抵抗(45)によりヒステリシスを有
し、その出力は抵抗(46)を介し、トライアック(47)
のゲートをトリガするためのトライアック(48)のゲー
トに接続される。トライアック(47)には交流電源に対
して直列に圧縮機駆動用のモータ(26M)と送風機(1
6)のモータ(16M)の並列回路が接続される。比較器
(42)は冷凍室(F)の温度が例えば−18℃以上になる
と出力が低電位(以下「L」と称す。)となり、トライ
アック(48)及び(47)をトリガしてモータ(26M)(1
6M)を運転し、例えば−22℃以下になると出力が高電位
(以下「H」と称す。)となり、トライアック(48)
(47)が不導通となってモータ(26M)(16M)を停止す
る。冷凍室(F)はこれによって平均−20℃に冷却され
る。
FIG. 2 shows an electric circuit diagram for temperature control of the freezer compartment (F) and the refrigerator compartment (R). In FIG. 2, (40) is a negative characteristic thermistor for detecting the temperature in the freezer compartment (F), which is connected between the DC power supply (V CC ) and the grounded resistor (41),
The terminal potential of the resistor (41) is input to the (-) input terminal of the comparator (42), and the set potential determined by the resistors (43) and (44) is input to the (+) input terminal of the comparator (42). Is entered. The comparator (42) has a hysteresis due to the positive feedback resistor (45), and its output is passed through the resistor (46) to the triac (47).
Connected to the gate of a triac (48) to trigger the gate of. A motor (26M) for driving the compressor and a blower (1
The parallel circuit of the motor (16M) of 6) is connected. The output of the comparator (42) becomes low potential (hereinafter referred to as "L") when the temperature of the freezer compartment (F) becomes -18 ° C or higher, for example, and triggers the triacs (48) and (47) to drive the motor ( 26M) (1
6M), the output becomes high potential (hereinafter referred to as "H") when the temperature becomes -22 ° C or lower, and the triac (48)
(47) becomes non-conducting and the motors (26M) and (16M) are stopped. The freezer compartment (F) is thereby cooled to an average of -20 ° C.

(50)は冷蔵室(R)の温度を検出する負特性サーミス
タで、接地間に接続した抵抗(51)の端子電位は同様に
比較器(52)の(−)入力端子に入力され、比較器(5
2)の(+)入力端子には抵抗(53)と(54)とで分圧
した設定電位が入力される。比較器(52)は正帰還抵抗
(55)によりヒステリシスを有し、その出力は抵抗(5
6)を介してトライアック(57)のゲートに接続され
る。このトライアック(57)は電磁ダイパー(36)のコ
イル(36A)と交流電源に対して直列に接続される。比
較器(52)は冷蔵室(R)の温度が例えば+5℃以上と
なると出力が「L」となり、トライアック(57)をトリ
ガしてコイル(36A)に通電する。電磁ダンパー(36)
はコイル(36A)に通電されて吐出口(21a)を開く。更
に比較器(52)は冷蔵室(R)内温度が+1℃に低下し
て出力を「H」とし、コイル(36A)を非通電として吐
出口(21a)を閉じる。これによって冷蔵室(R)は平
均+3℃とされる。
Reference numeral (50) is a negative characteristic thermistor for detecting the temperature of the refrigerating room (R). The terminal potential of the resistor (51) connected between grounds is similarly input to the (-) input terminal of the comparator (52) for comparison. Bowl (5
The set potential divided by the resistors (53) and (54) is input to the (+) input terminal of 2). The comparator (52) has a hysteresis due to the positive feedback resistor (55), and its output is a resistor (5
Connected to the gate of the triac (57) via 6). The triac (57) is connected in series with the coil (36A) of the electromagnetic dieper (36) and the AC power source. The output of the comparator (52) becomes "L" when the temperature of the refrigerating room (R) becomes, for example, + 5 ° C or more, and triggers the triac (57) to energize the coil (36A). Electromagnetic damper (36)
Energizes the coil (36A) to open the discharge port (21a). Further, in the comparator (52), the temperature inside the refrigerating chamber (R) is lowered to + 1 ° C., the output is set to “H”, the coil (36A) is de-energized, and the discharge port (21a) is closed. As a result, the refrigerating room (R) has an average temperature of + 3 ° C.

吐出口(20a)からの冷気吐出量はダイパー装置(35)
によって開閉制御される。第3図及び第4図にダイパー
装置(35)の実施例の一部切欠正面図及び側断面図を示
す。(60)は吐出口(20a)下方の内箱(3)に形成し
た開口(3a)より断熱材(4)中に埋設されるケースで
あり、このケース(60)内には前方に駆動軸(61a)を
突出した交流モーター(61)と、この駆動軸(61a)先
端に取り付けた小径のベベルギヤ(62)と、ケース(6
0)内を左右に延在する回転軸(63)に固定されてベベ
ルギヤ(62)に噛み合う大径のベベルギヤ(64)が収納
されている。このベベルギヤ(62)と(64)とで減速機
構(65)を構成し、モーター(61)の回転を回転軸(6
3)の回転に変換する。回転軸(63)には更にカム(6
6)が固定される。カム(66)は所定厚みの円板であ
り、回転軸(63)には偏心して取り付けられ、実施例で
は直径の1/3の位置に軸(63)を位置せしめている。
The amount of cold air discharged from the discharge port (20a) is measured by the dieper device (35).
The opening and closing is controlled by. 3 and 4 show a partially cutaway front view and a side sectional view of an embodiment of the dieper device (35). Reference numeral (60) is a case embedded in the heat insulating material (4) through an opening (3a) formed in the inner box (3) below the discharge port (20a). AC motor (61) protruding (61a), small-diameter bevel gear (62) attached to the tip of this drive shaft (61a), and case (6
A large-diameter bevel gear (64) fixed to a rotary shaft (63) extending in the left and right direction and meshing with the bevel gear (62) is housed. The bevel gears (62) and (64) constitute a reduction mechanism (65), and the rotation of the motor (61) is controlled by the rotation shaft (6).
3) Convert to rotation. The rotating shaft (63) has a cam (6
6) is fixed. The cam (66) is a disc having a predetermined thickness, is eccentrically attached to the rotating shaft (63), and in the embodiment, the shaft (63) is located at a position of 1/3 of the diameter.

(67)はケース(60)前部の冷気通路(10)内に位置す
る部分とその後方のカム(66)等が収納されているケー
ス(60)部分を区画する隔壁であり、この隔壁(67)は
カム(66)等が収納される部分への冷気の流入を阻止し
て氷結を防止する。隔壁(67)の前方には下端をケース
(60)に軸(68)で前後方向に回動自在に固定され、ケ
ース(60)の切欠(69)より冷気通路(10)内に突出す
るアーム(70)が設けられ、このアーム(70)上端に吐
出口(20a)を開閉する開閉部材としてのバッフル板(7
1)が取り付けられる。アーム(70)下部はバネ(72)
で隔壁(67)と連結され、常時吐出口(20a)を閉じる
方向に付勢されている。(73)は隔壁(67)に前後移動
自在に貫通装設された移動棒で、カム(66)とアーム
(70)に摺動自在に当接している。又、(74)はバッフ
ル板(71)が吐出口(20a)を閉じた時に接点(74A)を
閉じるスイッチである。尚、このスイッチ(74)はカム
(66)に当接関係としてバッフル板(71)の閉鎖を検知
せしめてもよい。
Reference numeral (67) is a partition wall that partitions the portion located in the cold air passage (10) at the front of the case (60) and the portion of the case (60) in which the cam (66) and the like behind it are housed. 67) prevents the freezing of cold air into the portion where the cam (66) etc. are stored to prevent icing. An arm having a lower end in front of the partition wall (67) rotatably fixed to the case (60) in the front-rear direction by a shaft (68) and protruding from the notch (69) of the case (60) into the cold air passageway (10). (70) is provided, and a baffle plate (7) as an opening / closing member for opening / closing the discharge port (20a) is provided at the upper end of the arm (70).
1) is attached. The lower part of the arm (70) is a spring (72)
Is connected to the partition wall (67) and is always urged in the direction of closing the discharge port (20a). Reference numeral (73) is a moving rod penetratingly installed in the partition wall (67) so as to be movable back and forth, and slidably contacts the cam (66) and the arm (70). Further, (74) is a switch that closes the contact (74A) when the baffle plate (71) closes the discharge port (20a). The switch (74) may detect the closing of the baffle plate (71) as an abutting relationship with the cam (66).

第1図は区画室Pの温度制御を行うための制御装置とし
ての電気回路の第1実施例を示し、S1は設定手段の設定
温度に基づいてモータ61を駆動する時間を決めて開閉部
材(則ちバッフル板71)の開放時の停止位置を制御する
とともに、前記設定温度とこの温度検出手段の検出温度
とに基づいて開閉部材の開放時及び閉塞時の停止を制御
する制御装置であり、以下にその詳細を説明する。(7
5)は区画室(P)内の温度或いは冷気通路(10)内の
温度等により実質的に区画室(P)内の温度を検出する
負特性サーミスタで、抵抗(76)とで分圧したサーミス
タ(75)の端子電位は比較器(77)の(−)入力端子に
入力される。比較器(77)の(+)入力端子には抵抗
(78)と(79)とで決定する設定電位が入力される。電
源(Vcc)に接続された抵抗(78)には並列にスイッチ
(SW1)と比較的大なる値の抵抗(80)の直列回路が接
続され、更に抵抗(78)には並列にアナログスイッチ
(81)と比較的小なる値の抵抗(82)の直列回路が接続
される。比較器(77)は正帰還抵抗(83)が接続されて
ヒステリシスを有し、その出力はANDゲート(84)及び
(85)に入力される。電源(Vcc)と接地間にはスイッ
チ(SW2)と抵抗(86)の直列回路及びスイッチ(SW3
と抵抗(87)の直列回路がそれぞれ接続され、抵抗(8
6)の端子電位はANDゲート(84)とアナログスイッチ
(81)のゲートに、又、抵抗(87)の端子電位はANDゲ
ート(85)にそれぞれ入力される。スイッチ(SW2)と
(SW3)は一方を閉じた時は他方は開き、更にスイッチ
(SW2)を閉じた時はスイッチ(SW1)も開くものとす
る。これらスイッチ(SW1)(SW2)(SW3)は扉(28)
前面に設けた操作パネル(89)上に配置される。
FIG. 1 shows a first embodiment of an electric circuit as a control device for controlling the temperature of the compartment P, and S1 determines the time for driving the motor 61 on the basis of the set temperature of the setting means, and the opening / closing member ( That is, a control device for controlling the stop position when the baffle plate 71) is opened, and for controlling the stop when the opening / closing member is opened and closed based on the set temperature and the temperature detected by the temperature detecting means, The details will be described below. (7
5) is a negative characteristic thermistor that substantially detects the temperature in the compartment (P) by the temperature in the compartment (P) or the temperature in the cold air passage (10), which is divided by the resistance (76). The terminal potential of the thermistor (75) is input to the (−) input terminal of the comparator (77). The set potential determined by the resistors (78) and (79) is input to the (+) input terminal of the comparator (77). A resistor (78) connected to the power supply (V cc ) is connected in parallel with a switch (SW 1 ) and a series circuit of a resistor (80) having a relatively large value, and the resistor (78) is connected in parallel with an analog circuit. A series circuit of a switch (81) and a resistor (82) having a relatively small value is connected. A positive feedback resistor (83) is connected to the comparator (77) to have a hysteresis, and its output is input to AND gates (84) and (85). Between the power supply (V cc ) and ground, a series circuit of switch (SW 2 ) and resistor (86) and switch (SW 3 )
And a resistor (87) in series circuit are connected respectively, and resistor (8
The terminal potential of 6) is input to the AND gate (84) and the gate of the analog switch (81), and the terminal potential of the resistor (87) is input to the AND gate (85). When one of the switches (SW 2 ) and (SW 3 ) is closed, the other is opened, and when the switch (SW 2 ) is further closed, the switch (SW 1 ) is also opened. These switches (SW 1 ) (SW 2 ) (SW 3 ) are doors (28)
It is arranged on the operation panel (89) provided on the front surface.

ANDゲート(84)の出力は微分回路(I1)にてパルスに
変換され、タイマー(T1)の入力端子に入力される。タ
イマー(T1)は入力端子に「H」パルスが入力された時
点から(t1)時間出力端子を「H」とするもので、その
出力はORゲート(90)に入力される。ANDゲート(85)
の出力も同様に微分回路(I2)を経てタイマー(T2)の
入力端子に入力され、タイマー(T2)は入力端子に
「H」パルスが入ってから(t2)時間出力端子を「H」
とし、その出力はORゲート(90)に入力される。ORゲー
ト(90)の出力は微分回路(I3)を経てフリップフロッ
プ(91)のセット端子に入力され、更にインバータ(9
2)と微分回路(I4)を経てフリップフロップ(91)の
リセット端子に入力される。ORゲート(90)の出力は更
にインバータ(93)と微分回路(I3)を経てタイマー
(T1)(T2)のリセット端子に入力され、各タイマー
(T1)(T2)はリセット端子に「H」パルスが入力して
リセットされる。フリップフロップ(91)のセット端子
には更に比較器(77)の出力がインバータ(94)と微分
回路(I6)を経て入力され、又、リセット端子には更
に、スイッチ(74)の接点(74A)と電源(VCC)に直列
接続された抵抗(95)の端子電圧が微分回路(I7)を介
して入力される。フリップフロップ(91)の反転出力端
子はモーター(61)と交流電源(AC)に対して直列接続
されたトライアック(97)のゲートに接続される。
The output of the AND gate (84) is converted into a pulse by the differentiating circuit (I 1 ) and input to the input terminal of the timer (T 1 ). The timer (T 1 ) sets the output terminal to “H” for a time (t 1 ) from the time when the “H” pulse is input to the input terminal, and its output is input to the OR gate (90). AND gate (85)
The output is also input to the input terminal of the timer via a differentiating circuit (I 2) in the same manner (T 2), a timer (T 2) since the beginning of "H" pulse to the input terminal (t 2) Time Output terminal "H"
And its output is input to the OR gate (90). The output of the OR gate (90) is input to the set terminal of the flip-flop (91) via the differentiating circuit (I 3 ), and further the inverter (9)
It is input to the reset terminal of the flip-flop (91) via 2) and the differentiation circuit (I 4 ). The output of the OR gate (90) is further input to the reset terminal of the timer (T 1 ) (T 2 ) via the inverter (93) and the differentiating circuit (I 3 ) and each timer (T 1 ) (T 2 ) is reset. The "H" pulse is input to the terminal and reset. The output of the comparator (77) is further input to the set terminal of the flip-flop (91) via the inverter (94) and the differentiating circuit (I 6 ), and the reset terminal is further connected to the contact (74) of the switch (74). 74A) and the terminal voltage of the resistor (95) connected in series with the power supply (V CC ) are input via the differentiation circuit (I 7 ). The inverting output terminal of the flip-flop (91) is connected to the gate of the triac (97) connected in series with the motor (61) and the AC power supply (AC).

以上の構成で区画室(P)温度制御動作を第5図を参照
して説明する。最初に、区画室(P)を冷凍室として使
用する場合はスイッチ(SW2)を閉じる。この時スイッ
チ(SW1)(SW3)は開いている。これによってアナログ
スイッチ(81)が導通し、抵抗(78)には値の小なる抵
抗(82)が並列に接続されるので比較器(77)の(+)
入力電位は比較的大きく上昇し、この時比較器(77)の
出力は区画室(P)の温度が−18℃で「H」となり、−
22℃で「L」となるようになる。区画室(P)が十分冷
えている状態ではカム(66)は第4図に一点鎖線で示す
(66a)に位置し、回転軸(63)から最短の距離で移動
棒(73)に接しており、バッフル板(71)は(71a)の
位置にあって吐出口(20a)を閉じている。この状態か
ら区画室(P)の温度が上昇し、第5図中の零時刻にお
いて−180℃に達すると比較器(77)の出力が「H」と
なり、抵抗(86)の端子電位も「H」であるのでANDゲ
ート(84)の出力が「H」となり、タイマー(T1)に
「H」パルスが入力され、タイマー(T1)の出力が
「H」となる。これによってORゲート(90)の出力が
「H」となり、フリップフロップ(91)のセット端子に
「H」パルスが入って、セットされ、反転出力端子が
「L」となってトライアック(97)導通し、モーター
(61)が回転する。これによってカム(66)は第4図中
反時計回りに回転して行き、回転開始から(t1)時間経
過した時刻(t1)にタイマー(T1)の出力が「L」にな
ると、ORゲート(90)の出力が「L」となり、インバー
タ(92)の出力が「H」となるのでフリップフロップ
(91)のリセット端子に「H」パルスが入力されてリセ
ットされ、反転出力端子が「H」となってトライアック
(97)が不導通となってモーター(61)が停止する。こ
の時カム(66)の回転角度は180゜であり、この時カム
(66)は回転軸(63)より最長の距離の位置で移動棒
(73)に当接している。これによって移動棒(73)は最
も前方に押し出され、バッフル板(71)は吐出口(20
a)より最も離間して全開とし、第4図中実線で示す位
置に停止する。この状態で冷気通路(10)内には大量の
冷気が導入され区画室(P)は急速に冷却されて行く。
その後区画室(P)の温度が低下して−22℃になると比
較器(77)の出力が「L」に反転するのでインバータ
(94)の出力が「H」となり、フリップフロップ(91)
のセット端子に「H」パルスが入力されてセットされ、
反転出力端子が「L」となってトライアック(97)が導
通し、モーター(61)が運転される。これによってカム
(66)は更に反時計回りに回転し、それによってバッフ
ル板(71)は閉じて行き、吐出口(20a)を完全に閉じ
ると接点(74A)が閉じて抵抗(95)に電圧が発生し、
フリップフロップ(91)をリセットするのでモーター
(61)は停止する。以下これを繰り返し、冷気通路(1
0)には大量の冷気が導入され、区画室(P)内は−18
℃と−22℃の間で平均−20℃の如き極低温とされるの
で、冷凍食品を収納できる。
The compartment (P) temperature control operation with the above configuration will be described with reference to FIG. First, when the compartment (P) is used as a freezing room, the switch (SW 2 ) is closed. At this time, the switch (SW 1 ) (SW 3 ) is open. As a result, the analog switch (81) is turned on and the resistor (78) is connected in parallel to the resistor (82) having a smaller value, so that the comparator (77) (+) is connected.
The input potential rises relatively large, and at this time, the output of the comparator (77) becomes “H” when the temperature of the compartment (P) is −18 ° C., −
It becomes "L" at 22 ℃. When the compartment (P) is sufficiently cooled, the cam (66) is located at (66a) shown by the alternate long and short dash line in Fig. 4 and contacts the moving rod (73) at the shortest distance from the rotating shaft (63). The baffle plate (71) is at the position (71a) and closes the discharge port (20a). From this state, when the temperature of the compartment (P) rises and reaches −180 ° C. at the zero time in FIG. 5, the output of the comparator (77) becomes “H” and the terminal potential of the resistor (86) also becomes “H”. since a H "output becomes" H "of the aND gate (84), a timer (T 1)" H "pulse is input, the output of the timer (T 1) becomes" H ". As a result, the output of the OR gate (90) becomes "H", the "H" pulse is input to the set terminal of the flip-flop (91), and it is set, and the inverting output terminal becomes "L", and the triac (97) conducts. Then, the motor (61) rotates. This causes the cam (66) to rotate counterclockwise in FIG. 4, and when the output of the timer (T 1 ) becomes “L” at the time (t 1 ) when (t 1 ) time has elapsed from the start of rotation, Since the output of the OR gate (90) becomes "L" and the output of the inverter (92) becomes "H", the "H" pulse is input to the reset terminal of the flip-flop (91) to be reset and the inverted output terminal becomes It becomes “H”, the triac (97) becomes non-conductive, and the motor (61) stops. At this time, the rotation angle of the cam (66) is 180 °, and at this time, the cam (66) is in contact with the moving rod (73) at the position of the longest distance from the rotation shaft (63). As a result, the moving rod (73) is pushed out to the frontmost, and the baffle plate (71) is discharged from the discharge port (20).
From a), the farthest position is set to the fully open position, and then stopped at the position shown by the solid line in FIG. In this state, a large amount of cold air is introduced into the cold air passage (10) and the compartment (P) is rapidly cooled.
After that, when the temperature of the compartment (P) decreases to −22 ° C., the output of the comparator (77) is inverted to “L”, so that the output of the inverter (94) becomes “H” and the flip-flop (91).
"H" pulse is input to the set terminal of
The inverting output terminal becomes "L", the triac (97) becomes conductive, and the motor (61) is operated. This causes the cam (66) to rotate further counterclockwise, which causes the baffle plate (71) to close, and when the discharge port (20a) is completely closed, the contact (74A) closes and voltage is applied to the resistor (95). Occurs,
The motor (61) is stopped because the flip-flop (91) is reset. Repeat this for the cold aisle (1
A large amount of cold air was introduced into 0), and inside the compartment (P) was -18
Frozen foods can be stored because the temperature is extremely low, such as -20 ℃ on average between ℃ and -22 ℃.

次に区画室(P)を氷温室として使用する場合は、スイ
ッチ(SW3)を閉じて更にスイッチ(SW1)を閉じる。こ
の時スイッチ(SW2)は開く。この時抵抗(78)には抵
抗(80)が並列接続され、比較器(77)の(+)入力電
位は少許上昇する。これによって比較器(77)は区画室
(P)の温度が例えば0℃で出力を「H」とし、−3℃
で出力を「L」とするようになる。区画室(P)が十分
冷えていてバッフル板(71)が(71a)の位置で吐出口
(20a)を閉じた状態で温度が上昇して第5図の時刻零
で0℃になると、比較器(77)の出力が「H」となる。
この時は抵抗(87)の端子に高電位が発生しているから
今度はANDゲート(85)の出力が「H」となり、タイマ
ー(T2)に「H」パルスが入力し出力が「H」となって
ORゲート(90)の出力が「H」となりフリップフロップ
(91)がセットされて前述と同様にモーター(61)が動
き出す。これによってカム(66)は第4図中反時計回り
に回転して行き、回転開始から今度は(t2)時間経過し
た時刻(t2)にタイマー(T2)の出力が「L」になる
と、ORゲート(90)の出力が「L」となり、インバータ
(92)の出力が「H」となるのでフリップフロップ(9
1)はリセットされ前述同様モーター(61)が停止す
る。この時カム(66)の回転角度は270゜であり、この
時カム(66)は第5図に示す如く回転軸(63)より最長
距離の部分が直下に位置し、第4図中一点鎖線で示す
(66b)に位置し、回転軸(63)より最長と最短の略中
間の距離の位置で移動棒(73)に当接している。これに
よってバッフル板(71)は全開の位置と閉位置との略中
間の第4図中に(71b)で示す中間の状態で停止する。
この状態で冷気通路(10)内には冷気が導入され区画室
(P)は冷却され、温度が低下して−3℃になると比較
器(77)の出力が「L」に反転するのでインバータ(9
4)の出力が「H」となり、フリップフロップ(91)が
セットされてモーター(61)が回転する。これによって
カム(66)は更に反時計回りに回転し、バッフル板(7
1)が吐出口(20a)を閉じた状態で前述同様停止する。
Next, when the compartment (P) is used as an ice greenhouse, the switch (SW 3 ) is closed and the switch (SW 1 ) is further closed. At this time, the switch (SW 2 ) opens. At this time, the resistor (78) is connected in parallel with the resistor (80), and the (+) input potential of the comparator (77) slightly rises. As a result, the comparator (77) sets the output to “H” when the temperature of the compartment (P) is, for example, 0 ° C., and is −3 ° C.
The output becomes "L". When the compartment (P) is sufficiently cooled and the baffle plate (71) is at the position (71a) and the discharge port (20a) is closed, the temperature rises and reaches 0 ° C at time zero in FIG. The output of the container (77) becomes "H".
Output becomes "H" in turn from this time a high potential terminal of the resistor (87) has occurred AND gate (85), a timer (T 2) to the "H" pulse is input outputs the "H Became
The output of the OR gate (90) becomes "H", the flip-flop (91) is set, and the motor (61) starts to move as described above. As a result, the cam (66) rotates counterclockwise in FIG. 4, and the output of the timer (T 2 ) becomes “L” at time (t 2 ) when (t 2 ) time has elapsed since the start of rotation. Then, the output of the OR gate (90) becomes "L" and the output of the inverter (92) becomes "H".
1) is reset and the motor (61) stops as before. At this time, the rotation angle of the cam (66) is 270 °, and at this time, as shown in FIG. 5, the longest distance from the rotation shaft (63) of the cam (66) is located directly below, and the one-dot chain line in FIG. Is located at (66b), and is in contact with the moving rod (73) at a position approximately midway between the longest axis and the shortest axis of the rotating shaft (63). As a result, the baffle plate (71) is stopped in the intermediate state shown by (71b) in FIG. 4, which is approximately intermediate between the fully opened position and the closed position.
In this state, cold air is introduced into the cold air passage (10) to cool the compartment (P), and when the temperature drops to -3 ° C, the output of the comparator (77) is inverted to "L". (9
The output of 4) becomes "H", the flip-flop (91) is set, and the motor (61) rotates. This causes the cam (66) to rotate further counterclockwise and the baffle plate (7
1) Stops as before with the discharge port (20a) closed.

以下これを繰り返し区画室(P)内は0℃と−3℃の間
で平均−2℃とされる。ここで0℃から−3℃は氷温貯
蔵温度帯である。氷温貯蔵温度とは食品の凝固点が氷点
よりも低い性質に専ら基づく、氷点下ではあるが食品の
凍結する寸法の温度のことを称し、この温度帯で食品を
貯蔵することにより、食品を凍結させずにバクテリヤの
繁殖を抑制して比較的長期間保存することができ、更に
凍結による風味の劣化も防止されるものである。この氷
温貯蔵温度帯の範囲は比較的狭いが、前述の如くバッフ
ル板(71b)は中開の位置で停止し、吐出口(20a)から
の冷気の流入は制限されているのでダンパー装置(35)
の頻繁な動作は抑制され、バッフル板(71)の移動中に
流入する誤差分の冷気量は少なくなり、温度帯内に良好
に制御されるようになる。又、この時バッフル板(71)
の開動作は第5図に示す如く、閉から中開、それから一
旦全開となってから再び閉じて行って中開になるので、
冷却開始時に比較的多量の冷気が導入されるので冷却ス
ピードの向上に寄与すると共に、中開位置からはそのま
ま90゜のみ回転して閉じるのでバッフル板(71)の移動
中に流入する冷気による過冷却も極めて少なくなる。
Hereinafter, this is repeated, and the average of −2 ° C. is set between 0 ° C. and −3 ° C. in the compartment (P). Here, 0 ° C. to −3 ° C. is the ice temperature storage temperature zone. Ice temperature storage temperature refers to the temperature of the freezing point of food, which is based on the property that the freezing point of food is lower than the freezing point, but by storing the food in this temperature range, the food is frozen. Without suppressing the reproduction of bacteria, the bacteria can be stored for a relatively long period of time, and the deterioration of flavor due to freezing can be prevented. Although the range of this ice temperature storage temperature zone is relatively narrow, the baffle plate (71b) is stopped at the middle open position as described above, and the inflow of cold air from the discharge port (20a) is restricted, so the damper device ( 35)
Is suppressed, the amount of cold air flowing in during the movement of the baffle plate (71) is reduced, and the temperature is controlled well within the temperature range. Also, at this time, the baffle plate (71)
As shown in FIG. 5, the opening operation of is performed from closed to middle opening, then once fully opened and then closed again to become middle opened.
Since a relatively large amount of cold air is introduced at the start of cooling, it contributes to the improvement of the cooling speed, and since it rotates by 90 ° as it is from the mid-open position and closes, it is overheated by cold air flowing during the movement of the baffle plate (71). Cooling is also extremely low.

次に区画室(P)を冷蔵室として使用する場合は、スイ
ッチ(SW3)を閉じた状態でスイッチ(SW1)は開く。
(この時スイッチ(SW2)は開く。)この時比較器(7
7)の(+)入力端子に接続される設定電位は抵抗(7
8)と(79)とで分圧される比較的低い値であるので比
較器(77)は区画室(P)の温度が例えば+5℃で出力
を「H」とし、+1℃で出力を「L」とするようにな
る。以下前述の氷温室として使用する場合同様ダンパー
装置(35)をモーター(61)によって駆動し、バッフル
板(71)を閉と中開とに制御して平均として+3℃とす
る。作用効果は前述と略同様である。
Next, when the compartment (P) is used as a refrigerating room, the switch (SW 1 ) is opened while the switch (SW 3 ) is closed.
(At this time, switch (SW 2 ) opens.) At this time, the comparator (7
The set potential connected to the (+) input terminal of 7) is the resistance (7
Since it is a relatively low value divided by 8) and (79), the comparator (77) sets the output to "H" when the temperature of the compartment (P) is, for example, + 5 ° C, and sets the output to "H" at + 1 ° C. L ”. The damper device (35) is driven by the motor (61) in the same manner as in the case of being used as the above-mentioned ice greenhouse, and the baffle plate (71) is controlled to be closed and opened to an average of + 3 ° C. The function and effect are substantially the same as described above.

以上の如く区画室(P)は冷凍室、氷温室或いは冷蔵室
として選択使用できるので、収納すべき食品の内の冷凍
食品、氷温貯蔵食品或いは冷蔵食品の構成比率の変化に
有効に対応でき、冷蔵庫容積のデッドスペースを少なく
し、室内の有効利用が達成される。又、この場合ダンパ
ー装置(35)開放時の冷気導入量はモーター(61)の動
作時間によって変更でき、例えば冷凍室として使用する
場合の温度制御性を考慮して吐出口(20a)の開口面積
を大きくしても、他の温度帯で制御する場合は、バッフ
ル板(71)を中開として導入量を制限するので各温度帯
での制御性能は損われない。更に減速機構(65)を有し
たモーター(61)にてダンパー装置(35)は駆動される
ので温度変化に対する応答性も良好であり、安定した温
度管理が可能となると共に、バッフル板(71)は閉じる
時に吐出口(20a)周縁に衝突しないので電磁式のダン
パーに比して騒音も生じないものである。
As described above, since the compartment (P) can be selectively used as a freezing room, an ice greenhouse, or a refrigerating room, it can effectively respond to changes in the composition ratio of frozen foods, ice-temperature stored foods, or refrigerated foods among the foods to be stored. , The dead space of the refrigerator volume is reduced and the effective use of the room is achieved. In this case, the amount of cold air introduced when the damper device (35) is opened can be changed by the operating time of the motor (61). For example, the opening area of the discharge port (20a) should be taken into consideration in consideration of temperature controllability when used as a freezer. Even if the value is increased, the control performance in each temperature zone is not impaired because the baffle plate (71) is opened to limit the introduction amount when controlling in other temperature zones. Further, since the damper device (35) is driven by the motor (61) having the speed reduction mechanism (65), the response to the temperature change is good, and stable temperature control is possible, and the baffle plate (71) is also provided. Since it does not collide with the periphery of the discharge port (20a) when it is closed, it produces less noise than an electromagnetic damper.

第7図乃至第9図はダンパー装置35の制御に関する第2
の実施例を示すものである。尚、これらの図面において
符号が第1図乃至第6図の符号と同一のものは同じもの
を表すこととする。第7図は区画室Pの温度制御を行う
ための制御装置としての電気回路の第2実施例を示し、
S2は設定手段の設定温度に基づいてモータを制御する制
御装置であり、以下にその詳細を説明する。この場合、
スイッチ(SW4)が抵抗(100)と直列に電源(VCC)に
接続され、更にこの抵抗(100)の端子電位は抵抗(8
0)と直列に電源(VCC)間に接続されたアナログスイッ
チ(101)のゲートに接続されると共に、ANDゲート(10
2)に入力される。又、スイッチ(SW5)が抵抗(103)
と直列に電源(VCC)に接続され、この抵抗(103)の端
子電位はANDゲート(104)に入力される。スイッチ(SW
2)(SW4)(SW5)は何れか一つが閉じられたら他の2
つは開くものとする。比較器(77)の出力はANDゲート
(84)の他のANDゲート(102)と(104)に入力され、A
NDゲート(102)の出力は微分回路(I8)を経てタイマ
ー(T3)に入力され、又、ANDゲート(104)の出力は微
分回路(I9)を経てタイマー(T4)に入力され、タイマ
ー(T3)(T4)の出力はORゲート(90)に入力される。
又、タイマー(T3)(T4)のリセット端子には微分回路
(I5)の出力が入力され、「H」パルスでリセットされ
る。タイマー(T3)は「H」パルスが入力されるとその
時点から(t3)時間出力を「H」とし、又、タイマー
(T4)は(t4)時間出力を「H」とするものとする。
FIGS. 7 to 9 are the second related to the control of the damper device 35.
FIG. In these drawings, the same reference numerals as those in FIGS. 1 to 6 represent the same elements. FIG. 7 shows a second embodiment of an electric circuit as a control device for controlling the temperature of the compartment P,
S2 is a control device for controlling the motor based on the set temperature of the setting means, the details of which will be described below. in this case,
The switch (SW 4 ) is connected to the power supply (V CC ) in series with the resistor (100), and the terminal potential of this resistor (100) is the resistor (8 CC ).
0) connected in series with the power supply (V CC ) to the gate of the analog switch (101) and connected to the AND gate (10
Entered in 2). Also, the switch (SW 5 ) is a resistor (103).
Is connected in series to a power source (V CC ) and the terminal potential of this resistor (103) is input to the AND gate (104). Switch (SW
2 ) (SW 4 ) and (SW 5 ) are closed when one of them is closed and the other 2
One shall open. The output of the comparator (77) is input to the other AND gates (102) and (104) of the AND gate (84), and A
The output of the ND gate (102) is input to the timer (T 3 ) via the differentiation circuit (I 8 ), and the output of the AND gate (104) is input to the timer (T 4 ) via the differentiation circuit (I 9 ). The output of the timer (T 3 ) (T 4 ) is input to the OR gate (90).
The output of the differentiating circuit (I 5 ) is input to the reset terminals of the timers (T 3 ) and (T 4 ) and reset by the “H” pulse. Timer (T 3) is the "H" pulse is input from that point the output (t 3) time is set to "H", and the timer (T 4) is "H" the output (t 4) Time I shall.

次に第8図と第9図を用いて動作を説明するが区画室
(P)を冷凍室として使用する場合の他前述の説明と重
複する部分は説明を省略する。この場合区画室(P)を
氷温室として使用する場合はスイッチ(SW4)を閉じ
る。これによってアナログスイッチ(101)が導通して
抵抗(78)には抵抗(80)が並列接続され、比較器(7
7)は前述の氷温室用の設定となる。又、ANDゲート(10
2)より出力が発生する状態となっており、区画室
(P)の温度が上昇して0℃になると比較器(77)の出
力が「H」となりANDゲート(102)の出力が「H」とな
るとタイマー(T3)の出力が「H」となる。これによっ
てモーター(61)は回転し(t3)時間後にタイマー
(T3)の出力が「L」となった時点で停止する。この時
のカム(66)の回転角度は240゜であり、第8図で示す
(66c)の位置となり、バッフル板71は一旦全開位置に
到達して全開となった後、閉じる方向に動いて第8図に
一点鎖線で示した71cの位置即ち全開の2/3の開度となる
位置(この位置を2/3開度という)で停止する。その後
の閉動作は前述と同様である。
Next, the operation will be described with reference to FIG. 8 and FIG. 9, but the description of the part overlapping with the above description will be omitted except when the compartment (P) is used as a freezing room. In this case, when using the compartment (P) as an ice greenhouse, close the switch (SW 4 ). As a result, the analog switch (101) is turned on, the resistor (78) is connected in parallel with the resistor (80), and the comparator (7) is connected.
7) is the setting for the ice greenhouse mentioned above. In addition, AND gate (10
When the temperature of the compartment (P) rises to 0 ° C, the output of the comparator (77) becomes "H" and the output of the AND gate (102) becomes "H". ", The output of the timer (T 3 ) becomes" H ". As a result, the motor (61) rotates (t 3 ) and stops when the output of the timer (T 3 ) becomes “L”. At this time, the rotation angle of the cam (66) is 240 °, which is the position (66c) shown in FIG. 8. The baffle plate 71 once reaches the fully open position and is fully opened, and then moves in the closing direction. It is stopped at the position 71c shown by the alternate long and short dash line in FIG. 8, that is, at the position where the opening is 2/3 of the full opening (this position is called the 2/3 opening). The subsequent closing operation is the same as described above.

又、区画室(P)を冷蔵室として使用する場合はスイッ
チ(SW5)を閉じれたANDゲート(81)(101)が不導通
となり、比較器(77)は前述の冷蔵室用の設定となると
共にANDゲート(104)が出力を発生する状態となってい
る。区画室(P)の温度が上昇して+5℃となると比較
器(77)が「H」になりANDゲート(104)の出力が
「H」になりタイマー(T4)の出力が「H」になってモ
ーター(61)が回転する。その後(t4)時間後にタイマ
ー(T4)の出力が「L」になってモーター(61)は停止
する。この時のカム(66)の回転角度は300゜であり、
第8図中(66d)で示す位置となっている。また、バッ
フル板71は一旦全開位置に到達して全開となった後、閉
じる方向に動いて第8図に一点鎖線71cで示した2/3開度
の位置を経て一点鎖線71dで示した位置即ち全開の1/3の
開度となる位置(この位置を1/3開度という)で停止す
る。その後の閉動作は前述と同様である。
When the compartment (P) is used as a refrigerating compartment, the AND gates (81) and (101) with the switch (SW 5 ) closed are non-conductive, and the comparator (77) is set to the refrigerating compartment as described above. At the same time, the AND gate (104) is in a state of generating an output. When the temperature of the compartment (P) rises to + 5 ° C, the comparator (77) becomes "H", the output of the AND gate (104) becomes "H", and the output of the timer (T 4 ) becomes "H". And the motor (61) rotates. After (t 4 ) hours, the output of the timer (T 4 ) becomes “L” and the motor (61) stops. The rotation angle of the cam (66) at this time is 300 °,
The position is shown by (66d) in FIG. Further, the baffle plate 71 once reaches the fully open position and becomes fully open, and then moves in the closing direction to go through the position of 2/3 opening indicated by the alternate long and short dash line 71c in FIG. 8 to the position indicated by the alternate long and short dash line 71d. That is, it stops at a position where the opening is 1/3 of the full opening (this position is called 1/3 opening). The subsequent closing operation is the same as described above.

以上の構成によれば前述の実施例における作用効果の他
に、各温度帯に対してそれぞれ適節な冷気吐出量を設定
でき、ダンパー装置(35)の動作頻度の相違を少なくし
て各温度帯に対して単一のダンパーで略一定な制御性能
を得ることができようになり、それによって更に安定し
た温度制御が実現できる。
According to the above configuration, in addition to the effects of the above-described embodiment, it is possible to set a proper amount of cool air discharge for each temperature zone, reduce the difference in the operating frequency of the damper device (35), and reduce the temperature. It becomes possible to obtain substantially constant control performance with a single damper for the band, and thereby more stable temperature control can be realized.

(ト) 発明の効果 以上のように本発明によれば、制御装置は、設定手段で
設定された被冷却空間(即ち区画室)の設定温度に基づ
いて設定温度が高ければ開閉部材の開度を小さくし設定
温度が低ければ開閉部材の開度を大きくするようにモー
タを駆動する時間を決めて、開閉部材(即ちバッフル
板)の開放時の停止位置(即ち開位置若しくは開度)を
設定温度に基づいて定まる位置に動作制御するので、冷
蔵庫使用者は設定手段で区画室の設定温度を設定するだ
けの簡単な操作だけで、区画室へ導入される冷気の供給
量が適宜設定温度に見合った量(区画室の設定温度が低
ければ供給量を多くし高ければ供給量を少なくするよ
う)に調節され、且つ、供給される冷気量が設定温度に
基づいて変化する区画室の冷却速度を上述の簡単な操作
だけで早めたり遅らせたりすることが可能となり、区画
室の設定温度が凍結温度から非凍結温度(例えば冷蔵温
度)までの広い温度範囲で調節可能な冷蔵庫に対してこ
の冷却貯蔵庫(特にダンパー装置)を適用することがで
きるようになる。また開閉部材を開く時と閉じる時のタ
イミングが被冷却空間の設定温度と検出温度に基づいて
制御され、開く時に停止するタイミングは上述のように
被冷却空間の設定温度により決まる。
(G) Effect of the Invention As described above, according to the present invention, the controller opens the opening degree of the opening / closing member based on the set temperature of the cooled space (that is, the compartment) set by the setting means if the set temperature is high. If the temperature is small and the set temperature is low, the motor drive time is decided to increase the opening / closing member opening, and the stop position (ie open position or opening) when the opening / closing member (ie baffle plate) is opened is set. Since the operation is controlled to a position that is determined based on the temperature, the refrigerator user can simply set the set temperature of the compartment by the setting means and the supply amount of the cool air introduced into the compartment can be set to the set temperature appropriately. The cooling rate of the compartment, which is adjusted to an appropriate amount (if the set temperature of the compartment is low, the supply amount is large, and if the set temperature is high, the supply amount is small), and the supplied cool air amount changes based on the set temperature. Is the simple operation above It is possible to speed up or slow down with this, and this cooling storage (particularly damper device) can be used for refrigerators in which the set temperature of the compartment can be adjusted in a wide temperature range from freezing temperature to non-freezing temperature (eg refrigeration temperature). Will be able to apply. Further, the timing of opening and closing the opening / closing member is controlled based on the set temperature and the detected temperature of the cooled space, and the timing of stopping the opening / closing member is determined by the set temperature of the cooled space as described above.

【図面の簡単な説明】[Brief description of drawings]

各図は本発明の実施例を示し、第1図は区画室の温度制
御用電気回路図、第2図は冷凍室及び冷蔵室の温度制御
用電気回路図、第3図はダンパー装置の一部切欠正面
図、第4図は同側断面図、第5図はダンパー装置の動作
を説明する図、第6図は冷蔵庫の側断面図であり、第7
図は第1図に相当する他の実施例を示し、第8図は第4
図に相当する他の実施例を示し、第9図は第5図に相当
する他の実施例を示す。 (20a)……吐出口、(35)……ダンパー装置、(61)
……モーター、(65)……減速機構、(75)……サーミ
スタ、(T1)(T2)(T3)(T4)……タイマー、(P)
……区画室、(SW1)(SW2)(SW3)(SW4)(SW5)…
…スイッチ。
Each drawing shows an embodiment of the present invention, FIG. 1 is an electric circuit diagram for temperature control of a compartment, FIG. 2 is an electric circuit diagram for temperature control of a freezer compartment and a refrigerating compartment, and FIG. 3 is one of a damper device. Partial cutaway front view, FIG. 4 is a sectional view of the same side, FIG. 5 is a diagram for explaining the operation of the damper device, and FIG. 6 is a sectional side view of the refrigerator.
The drawing shows another embodiment corresponding to FIG. 1, and FIG.
Another embodiment corresponding to the figure is shown, and FIG. 9 shows another embodiment corresponding to FIG. (20a) …… Discharge port, (35) …… Damper device, (61)
...... Motor, (65) ...... Reduction mechanism, (75) …… Thermistor, (T 1 ) (T 2 ) (T 3 ) (T 4 ) …… Timer, (P)
…… Compartments, (SW 1 ) (SW 2 ) (SW 3 ) (SW 4 ) (SW 5 )…
…switch.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】断熱箱と扉とで形成される被冷却空間(F,
P,R)と、冷却器で冷却された冷気をこれら各被冷却空
間へ導びく複数のダクト(18、20、21)と、これら複数
のダクトのうち被冷却空間(P)に冷気を導びくダクト
(20)に形成された冷気吐出口(20a)を開閉する開閉
部材(71)と、この開閉部材を開閉動作させるとともに
任意の位置で止めるモータ(61)と、前記被冷却空間
(P)の温度を設定する設定手段と、設定温度が高けれ
ば開閉部材の開度を小さくし設定温度が低ければ開閉部
材の開度を大きくするように前記設定手段の設定温度に
基づいて前記モータを駆動する時間を決めて前記開閉部
材の開放時の停止位置を制御するとともに、前記設定温
度と前記被冷却空間(P)の温度検出手段の検出温度と
に基づいて前記開閉部材を開く時と閉じる時のタイミン
グを制御する制御装置とを備えたことを特徴とする冷却
貯蔵庫。
1. A cooled space formed by a heat insulating box and a door (F,
P, R), a plurality of ducts (18, 20, 21) for guiding the cool air cooled by the cooler to each of these cooled spaces, and the cool air for the cooled space (P) of these plural ducts. An opening / closing member (71) that opens and closes the cool air discharge port (20a) formed in the drilling duct (20), a motor (61) that opens and closes the opening and closing member and stops at an arbitrary position, and the cooled space (P). ) Setting means for setting the temperature, and if the set temperature is high, the opening degree of the opening / closing member is reduced, and if the setting temperature is low, the opening degree of the opening / closing member is increased. The stop time when the opening / closing member is opened is controlled by deciding the driving time, and the opening / closing member is closed when the opening / closing member is opened based on the set temperature and the temperature detected by the temperature detecting means of the cooled space (P). Equipped with a control device that controls the timing of time Cooling storage, characterized in that the.
JP60165208A 1985-07-25 1985-07-25 Cold storage Expired - Lifetime JPH0776663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60165208A JPH0776663B2 (en) 1985-07-25 1985-07-25 Cold storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165208A JPH0776663B2 (en) 1985-07-25 1985-07-25 Cold storage

Publications (2)

Publication Number Publication Date
JPS6224083A JPS6224083A (en) 1987-02-02
JPH0776663B2 true JPH0776663B2 (en) 1995-08-16

Family

ID=15807895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165208A Expired - Lifetime JPH0776663B2 (en) 1985-07-25 1985-07-25 Cold storage

Country Status (1)

Country Link
JP (1) JPH0776663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101026538B1 (en) * 2006-01-12 2011-04-01 이엠젯-하나우어 게엠베하 운트 체오. 카게아아 Air-flap apparatus for a refrigerator or/and freezer in a kitchen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057902A (en) * 2006-09-01 2008-03-13 Hitachi Appliances Inc Refrigerator
JP7064915B2 (en) * 2018-03-22 2022-05-11 日本電産サンキョー株式会社 Drive device and damper device with anomaly detection mechanism

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887083U (en) * 1981-12-08 1983-06-13 株式会社三協精機製作所 fan electric refrigerator
JPS596192U (en) * 1982-07-05 1984-01-14 松下電工株式会社 Insect repellent edge
JPS603723A (en) * 1983-06-22 1985-01-10 Matsushita Electric Ind Co Ltd Mixing device of hot water and cold water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101026538B1 (en) * 2006-01-12 2011-04-01 이엠젯-하나우어 게엠베하 운트 체오. 카게아아 Air-flap apparatus for a refrigerator or/and freezer in a kitchen

Also Published As

Publication number Publication date
JPS6224083A (en) 1987-02-02

Similar Documents

Publication Publication Date Title
KR0140460B1 (en) Refrigeration air supply control device and its control method
JP2009543999A (en) Refrigerator having cold air circulation device and control method of cold air circulation
JPH09303936A (en) Damper device for refrigerator
JP2005172298A (en) Control method of refrigerator
JPH0776663B2 (en) Cold storage
KR19980086632A (en) Refrigerator
JP2642879B2 (en) Storage
JPH04302976A (en) Control method of electric refrigerator
KR960010666B1 (en) Refrigerator
JPH05196340A (en) Cooled air controller of refrigerator
JPH0680356B2 (en) Cold storage
JPH11101548A (en) Refrigerator
JPS6224084A (en) Cooling storage shed
JPH10332242A (en) Refrigerator
JP2584342B2 (en) Refrigeration / refrigerator cooling control device
JPS62101985A (en) Control device for circulation of cooling air
JPH0610576B2 (en) refrigerator
JPH0282078A (en) Freezing refrigerator
JPH05782Y2 (en)
JPH0445013Y2 (en)
JPH0623636B2 (en) refrigerator
KR20070040120A (en) Apparatus for controlling cooling air in refrigerator's home-bar
JPS60216161A (en) Freezing refrigerator
JPH02126078A (en) Refrigerator
JP2640087B2 (en) Power frequency detector for refrigerator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term