JPH0776253B2 - Polymerization method of propylene - Google Patents
Polymerization method of propyleneInfo
- Publication number
- JPH0776253B2 JPH0776253B2 JP11598187A JP11598187A JPH0776253B2 JP H0776253 B2 JPH0776253 B2 JP H0776253B2 JP 11598187 A JP11598187 A JP 11598187A JP 11598187 A JP11598187 A JP 11598187A JP H0776253 B2 JPH0776253 B2 JP H0776253B2
- Authority
- JP
- Japan
- Prior art keywords
- propylene
- catalyst component
- transition metal
- metal catalyst
- polypropylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプロピレンの重合方法に関する。詳しくは、特
定の触媒を用いることにより高結晶性のポリプロピレン
を製造する方法に関する。TECHNICAL FIELD The present invention relates to a method for polymerizing propylene. Specifically, it relates to a method for producing highly crystalline polypropylene by using a specific catalyst.
〔従来の技術〕 ポリプロピレンは剛性に優れた重合体であり、種々に使
用されている。しかしながら、成形物の結晶化度が比較
的低く、本来期待される物性に比べ通常の成形物の物性
は劣るという問題がある。これに対して、通常種々の核
剤を添加して改良することが試みられ、剛性や透明性に
優れた成形体が得られている。[Prior Art] Polypropylene is a polymer having excellent rigidity and is used in various ways. However, there is a problem in that the crystallinity of the molded product is relatively low, and the physical properties of ordinary molded products are inferior to those originally expected. On the other hand, it has been attempted to add various nucleating agents for improvement, and a molded product excellent in rigidity and transparency has been obtained.
核剤を添加する方法は簡便でしかも効果的であるが、核
材を比較的多量に添加する必要があり、そのため核剤の
分散不良による成形物の物性のばらつきとか、添加した
核剤がブリードする問題があり、特定の高分子化合物を
添加して改良することが試みられているが充分でなく、
更に効果的な方法が望まれている。The method of adding the nucleating agent is simple and effective, but it is necessary to add a relatively large amount of the nucleating agent. Therefore, the dispersion of the nucleating agent may cause variations in the physical properties of the molded product or the added nucleating agent may bleed. There is a problem to do, it has been attempted to improve by adding a specific polymer compound, but not enough,
A more effective method is desired.
本発明者らはより効果的な方法について鋭意探索し、本
発明に到達した。The present inventors earnestly searched for a more effective method and arrived at the present invention.
すなわち、本発明は、遷移金属触媒成分とRnAlX3-n(R:
アルキル基、X:C1、Br又はI、n=1〜3)で表される
有機アルミニウム化合物からなる触媒を用いてプロピレ
ンを重合する方法において、遷移金属触媒成分がタルク
の存在下に超音波を照射しながらハロゲン化炭化水素化
合物とグリニヤー試薬とを反応して得た担体に三塩化チ
タン又は四塩化チタンを担持して得た固体触媒成分であ
ることを特徴とする高結晶性ポリプロピレンの製造方法
である。That is, the present invention is a transition metal catalyst component and R n AlX 3-n (R:
In a method for polymerizing propylene using a catalyst consisting of an alkylaluminum group, X: C1, Br or I, an organoaluminum compound represented by n = 1 to 3), a transition metal catalyst component is ultrasonicated in the presence of talc. A method for producing a highly crystalline polypropylene, which is a solid catalyst component obtained by supporting titanium trichloride or titanium tetrachloride on a carrier obtained by reacting a halogenated hydrocarbon compound with a Grignard reagent while irradiating Is.
本発明においては、使用する遷移金属触媒成分に特徴が
あり、詳しくは、特定の担体に三塩化チタン又は四塩化
チタンを担持した触媒を用いる点にある。In the present invention, the transition metal catalyst component to be used is characterized, and more specifically, the catalyst having titanium trichloride or titanium tetrachloride supported on a specific carrier is used.
三塩化チタン又は四塩化チタンを担持する担体の製造方
法としては、ハロゲン化炭化水素化合物とグリニヤー試
薬をタルクの存在下に超音波の照射下に反応させること
で製造される。The carrier for supporting titanium trichloride or titanium tetrachloride is manufactured by reacting a halogenated hydrocarbon compound with a Grignard reagent in the presence of talc under ultrasonic irradiation.
ハロゲン化炭化水素化合物としては炭素数1〜20の塩化
物が好ましい。また、グリニヤー試薬としては、ハロゲ
ン化炭化水素化合物、好ましくは炭素数1〜20の臭化物
あるいは沃化物と金属マグネシウムを通常エーテルを含
有する溶媒中で反応せしめて製造したものが用いられ
る。As the halogenated hydrocarbon compound, chloride having 1 to 20 carbon atoms is preferable. As the Grignard reagent, a halogenated hydrocarbon compound, preferably one produced by reacting bromide or iodide having 1 to 20 carbon atoms with metallic magnesium in a solvent containing ether is usually used.
超音波の照射は、ハロゲン化炭化水素とグリニヤー試薬
の反応中常時行う必要はなく、断続的にあるいは反応の
最初にのみ行うだけでも良い。Irradiation with ultrasonic waves need not be always performed during the reaction between the halogenated hydrocarbon and the Grignard reagent, and may be performed intermittently or only at the beginning of the reaction.
タルク、即ちマグネシウムの含水ケイ酸塩(通常カッ石
と称される岩石を必要に応じ精製し微粉末化したもの)
は、上記反応で製造された担体中1/1000〜1/2、好まし
くは1/100〜1/3程度占めるような量比と成るように添加
する。Talc, a hydrous silicate of magnesium (a rock commonly referred to as cobblestone that is refined and pulverized as needed)
Is added to the carrier produced by the above reaction so that the amount ratio occupies 1/1000 to 1/2, preferably 1/100 to 1/3.
本発明においては、上記反応で得られた担体を三塩化チ
タン又は四塩化チタンを担持するに先立ち、または、担
持に際し、電子供与性化合物、具体的には、エステル、
エーテル、オルソエステル、アルコキシ硅素等の含酸素
化合物、アミン、アミドの含窒素化合物、リン酸エステ
ル、亜リン酸エステル等の含リン化合物等で処理してお
くと、得られた触媒を用いてプロピレンを重合するに際
し、得られたポリプロピレンの立体規則性あるいは遷移
金属触媒成分当たりの活性を向上させることもできる。In the present invention, prior to supporting the carrier obtained in the above reaction with titanium trichloride or titanium tetrachloride, or during supporting, an electron-donating compound, specifically, an ester,
When treated with oxygen-containing compounds such as ethers, orthoesters and alkoxy silicons, nitrogen-containing compounds such as amines and amides, phosphorus-containing compounds such as phosphoric acid esters and phosphorous acid esters, propylene is obtained using the resulting catalyst. It is also possible to improve the stereoregularity of the obtained polypropylene or the activity per transition metal catalyst component when polymerizing the above.
担持に用いる三塩化チタン又は四塩化チタンとしては、
四塩化チタン、あるいは三塩化チタンを電子供与性化合
物等によって炭化水素溶剤に可溶化したもの等液状の三
塩化チタンが好ましく用いられる。As titanium trichloride or titanium tetrachloride used for supporting,
Liquid titanium trichloride is preferably used, such as titanium tetrachloride or titanium trichloride solubilized in a hydrocarbon solvent with an electron-donating compound or the like.
担持は三塩化チタン又は四塩化チタンと上述の担体を単
に接触するだけでも可能であるが、加熱下に液状の三塩
化チタン又は四塩化チタンに担体を分散し接触処理する
のが好ましい。The carrier can be supported by simply contacting the above-mentioned carrier with titanium trichloride or titanium tetrachloride, but it is preferable to disperse the carrier in liquid titanium trichloride or titanium tetrachloride under heating and carry out contact treatment.
本発明においては上記遷移金属触媒とRnA1X3-n(R:アル
キル基、X:C1、Br又はI、n=1〜3)で表される有機
アルミニウム化合物からなる触媒を用いてプロピレンは
重合される。In the present invention, propylene is prepared by using the above transition metal catalyst and a catalyst composed of an organoaluminum compound represented by R n A1X 3-n (R: alkyl group, X: C1, Br or I, n = 1 to 3). Polymerized.
ここでRnA1X3-n(R:アルキル基、X:C1、Br又はI、n=
1〜3)で表される有機アルミニウム化合物としては、
トリアルキルアルミニウム、ジアルキルアルミニウムハ
ライド、アルキルアルミニウムセスキハライド、アルキ
ルアルミニウムジハライドが例示でき、アルキル基とし
てはメチル基、エチル基、プロピル基、ブチル基、ヘキ
シル基などが例示でき、ハライドとしては塩素、臭素、
沃素である。Where R n A1X 3-n (R: alkyl group, X: C1, Br or I, n =
As the organoaluminum compound represented by 1 to 3),
Examples include trialkylaluminum, dialkylaluminum halides, alkylaluminum sesquihalides, and alkylaluminum dihalides, examples of alkyl groups include methyl, ethyl, propyl, butyl, and hexyl groups, and examples of halides include chlorine and bromine. ,
It is iodine.
この際立体規則性向上剤、例えば、上記電子供与性化合
物として挙げた化合物のうち重合に際し併用してポリプ
ロピレンの立体規則性を向上するに効果的なものを併用
することもでき、例えば、通常エーテル、エステル、オ
ルソエステル、アルコキシ硅素化合物などの含酸素化合
物が好ましい。At this time, a stereoregularity improver, for example, the compounds listed as the above-mentioned electron-donating compounds can also be used in combination during the polymerization, which is effective for improving the stereoregularity of polypropylene. , Oxygen-containing compounds such as esters, orthoesters and alkoxy silicon compounds are preferable.
本発明において、プロピレンの重合は炭化水素溶剤、例
えば、ペンタン、ヘキサン、ヘプタン、デカン、ベンゼ
ン、トルエン、キシレンなどの不活性媒体中で行うこと
も、プロピレン自身を液状媒体とする塊状重合法、或い
は実質的に液状媒体の存在しない気相重合法で行うこと
もでき、重合温度としては常温〜100℃、重合圧力とし
ては常圧〜50kg/cm2ゲージで行われる。In the present invention, the polymerization of propylene may be carried out in a hydrocarbon solvent, for example, in an inert medium such as pentane, hexane, heptane, decane, benzene, toluene, xylene, etc., or a bulk polymerization method using propylene itself as a liquid medium, or It can also be carried out by a gas phase polymerization method in which substantially no liquid medium exists, and the polymerization temperature is room temperature to 100 ° C. and the polymerization pressure is normal pressure to 50 kg / cm 2 gauge.
本発明は、プロピレンの単独重合のみならず、数%まで
の少量のエチレン等の他のα−オレフィンとの共重合
や、後段でエチレン或いは必要に応じ他のα−オレフィ
ンが該部での重合体の20〜95wt%を占めるような共重合
を行う、所謂ブロック共重合体の製造の際にも適用でき
る。The present invention is not limited to homopolymerization of propylene, but also copolymerization with a small amount up to several% of other α-olefins such as ethylene, and in the latter stage, ethylene or other α-olefin, if necessary, is not added to the polymerized polymer. It can also be applied to the production of a so-called block copolymer, which is a copolymerization that accounts for 20 to 95 wt% of the coalescence.
以下、実施を挙げ本発明をさらに説明する。 Hereinafter, the present invention will be further described with reference to examples.
実施例1 300mlのフラスコにタルク1g、四塩化炭素16gおよびジエ
チルエーテル50mlを入れ、マグネシウム2gとメチルブロ
ミド9.5gから得たグリニヤー試薬を撹拌しながら超音波
発生器(BRANSONモデル1200J、45kHz、30W)中で反応開
始から10分間だけ超音波を照射し、エチルエーテルの沸
騰下に1時間かけて滴下し固体成分を得た。一部を分析
したところタルクを5wt%含有していた。固体部を分離
した後5gを200mlのフラスコに入れ、四塩化チタン50m
l、トルエン50ml、フタル酸ジイソブチル0.8mlを加え、
110℃で1時間撹拌し、静置分離して上澄みを除去し、
さらに四塩化チタン50ml、トルエン50mlを加え、110℃
で撹拌し、再び上澄みを静置分離した。ついで固形分を
n−ヘプタンで洗浄して遷移金属触媒成分を得た。一部
を取りだし分析したところチタンを3.2wt%含有してい
た。Example 1 A 300 ml flask was charged with 1 g of talc, 16 g of carbon tetrachloride and 50 ml of diethyl ether, and an ultrasonic generator (BRANSON model 1200J, 45 kHz, 30 W) while stirring a Grignard reagent obtained from 2 g of magnesium and 9.5 g of methyl bromide. Ultrasonic waves were irradiated for 10 minutes from the start of the reaction, and the mixture was added dropwise over 1 hour under boiling ethyl ether to obtain a solid component. Partial analysis revealed that it contained 5 wt% talc. After separating the solid part, put 5g into a 200ml flask and add 50m of titanium tetrachloride.
l, toluene 50 ml, diisobutyl phthalate 0.8 ml,
Stir at 110 ° C. for 1 hour, let stand and remove the supernatant,
Further, add 50 ml of titanium tetrachloride and 50 ml of toluene, and add 110 ° C.
The mixture was stirred with, and the supernatant was again allowed to stand and separate. Then, the solid content was washed with n-heptane to obtain a transition metal catalyst component. When a part of it was taken out and analyzed, it contained 3.2 wt% of titanium.
この遷移金属触媒成分20mg、トリエチルアルミニウム0.
15ml、トリメトキシフェニルシラン0.03mlとn−ヘプタ
ン100mlを混合して触媒スラリーとし、内容積5のオ
ートクレーブに入れ、プロピレン1.8kg、水素3.3Nlを加
え、75℃で2時間重合反応を行った。重合反応の後未反
応のプロピレンをパージしたのち取りだした重合体を80
℃、60mmHgで12時間乾燥して、640gのパウダーを得た。This transition metal catalyst component 20 mg, triethylaluminum 0.
15 ml, 0.03 ml of trimethoxyphenylsilane and 100 ml of n-heptane were mixed to prepare a catalyst slurry, which was placed in an autoclave having an internal volume of 5, 1.8 kg of propylene and 3.3 Nl of hydrogen were added, and a polymerization reaction was carried out at 75 ° C for 2 hours. After the polymerization reaction, the unreacted propylene was purged and the polymer was taken out to 80
After drying at 60 ° C. and 60 mmHg for 12 hours, 640 g of powder was obtained.
得られた重合体の極限粘度(135℃のテトラリン溶液で
測定した。以下、ηと略記する。)及び沸騰n−ヘプタ
ンで6時間ソックスレー抽出器で抽出した時の抽出残率
(以下、IIと略記する。抽出後パウダー重量/抽出前パ
ウダー重量を100分率で表示)を測定した。また一部の
パウダーにフェノール系の安定剤10/10000重量比とステ
アリン酸カルシウムを15/10000重量比加え、造粒したの
ち、メルトフローインデックス(以下、MIと略記す
る。)を測定した。また、厚さ1mmのインジェクション
シートを作り、曲げ剛性度を測定した。The intrinsic viscosity of the obtained polymer (measured with a tetralin solution at 135 ° C., hereinafter abbreviated as η) and the extraction residual ratio when extracted with a Soxhlet extractor for 6 hours with boiling n-heptane (hereinafter referred to as II and The powder weight after extraction / the powder weight before extraction is expressed as a percentage) was measured. Further, a phenol-based stabilizer (10,000 weight ratio) and calcium stearate (15/10000 weight ratio) were added to some powders, and the mixture was granulated, and then the melt flow index (hereinafter abbreviated as MI) was measured. In addition, a 1 mm thick injection sheet was prepared and the bending rigidity was measured.
MI ASTM D−1238(230℃) 曲げ剛性度 ASTM D−747−63(20℃) さらに示差熱分析装置を用い、10℃/minて昇温或いは降
温して、融点及び結晶化温度を最大ピークを示す温度と
して測定した。MI ASTM D-1238 (230 ° C) Flexural rigidity ASTM D-747-63 (20 ° C) Furthermore, using a differential thermal analyzer, the temperature is raised or lowered at 10 ° C / min, and the melting point and crystallization temperature are the maximum peaks. Was measured as the temperature.
結果を表に示す。The results are shown in the table.
比較例1 タルクを用いず、しかも超音波を照射せずに実施例1と
同様にして作成した遷移金属触媒成分を用いる他は実施
例1と同様にしてプロピレンの重合を行いポリプロピレ
ン608gを得た。得られたポリプロピレンの物性を測定し
た。Comparative Example 1 Propylene was polymerized in the same manner as in Example 1 except that the transition metal catalyst component prepared in the same manner as in Example 1 was used without using talc and without irradiating ultrasonic waves to obtain 608 g of polypropylene. . The physical properties of the obtained polypropylene were measured.
結果を表に示す。The results are shown in the table.
比較例2 比較例1で得たポリプロピレンパウダーにタルクを300p
pmと成るように添加し、実施例1と同様に造粒したのち
物性を測定した。Comparative Example 2 The polypropylene powder obtained in Comparative Example 1 was supplemented with 300 p of talc.
It was added so as to be pm, and after granulating in the same manner as in Example 1, the physical properties were measured.
結果を表に示す。The results are shown in the table.
比較例3 超音波を照射することなく担体を合成し、以下実施例1
と同様にして、重合体585gを得た。Comparative Example 3 A carrier was synthesized without irradiating ultrasonic waves, and the following Example 1 was used.
In the same manner as above, 585 g of a polymer was obtained.
その他の結果を表に示す。The other results are shown in the table.
実施例2 四塩化炭素16gに代え、四臭化炭素4gと塩化プロパン20g
の混合物を用いた他は実施例1と同様にして作成した遷
移金属触媒成分を用い、しかも重合に際し水素を4.2Nl
用いる他は実施例1と同様にプロピレンを重合してポリ
プロピレン570gを得た。得られたパウダーを用いて実施
例1と同様に評価した。Example 2 Instead of 16 g of carbon tetrachloride, 4 g of carbon tetrabromide and 20 g of propane chloride
The transition metal catalyst component prepared in the same manner as in Example 1 was used except that the mixture of
Propylene was polymerized in the same manner as in Example 1 except that it was used to obtain 570 g of polypropylene. The obtained powder was used and evaluated in the same manner as in Example 1.
結果を表に示す。The results are shown in the table.
実施例3 四塩化炭素16gに代え、ヨウ化エタン16gを用いた他は実
施例1と同様にしたところ、ポリプロピレン520gを得
た。得られたパウダー及び成形物の物性は極限粘度1.59
dl/g、かさ比重0.46g/ml、II98.0wt%、融点162.3℃、
結晶化温度120.5℃、MI6.9g/10分、曲げ剛性度12700kg/
cm2であった。Example 3 In the same manner as in Example 1 except that 16 g of ethane iodide was used instead of 16 g of carbon tetrachloride, 520 g of polypropylene was obtained. The physical properties of the obtained powder and molded product are those with an intrinsic viscosity of 1.59.
dl / g, bulk specific gravity 0.46g / ml, II 98.0wt%, melting point 162.3 ° C,
Crystallization temperature 120.5 ℃, MI 6.9g / 10min, flexural rigidity 12700kg /
It was cm 2 .
〔発明の効果〕 本発明の方法を実施することによって物性に優れたポリ
プロピレンを製造することが可能であり工業的に極めて
価値がある。 [Effects of the Invention] By carrying out the method of the present invention, it is possible to produce polypropylene having excellent physical properties, which is extremely valuable industrially.
第1図は本発明の理解を助けるためのフロー図である。 FIG. 1 is a flow chart for helping understanding of the present invention.
Claims (1)
基、X:C1、Br又はI、n=1〜3)で表される有機アル
ミニウム化合物からなる触媒を用いてプロピレンを重合
する方法において、遷移金属触媒成分がタルクの存在下
に超音波を照射しながらハロゲン化炭化水素化合物とグ
リニヤー試薬とを反応して得た担体に三塩化チタン又は
四塩化チタンを担持して得た固体触媒成分であることを
特徴とする高結晶性ポリプロピレンの製造方法。1. Propylene using a catalyst comprising a transition metal catalyst component and an organoaluminum compound represented by R n AlX 3-n (R: alkyl group, X: C1, Br or I, n = 1 to 3). In the method of polymerizing the above, the transition metal catalyst component is reacted with a halogenated hydrocarbon compound and a Grignard reagent while irradiating ultrasonic waves in the presence of talc, and titanium trichloride or titanium tetrachloride is supported on the carrier obtained. A method for producing a highly crystalline polypropylene, which is the obtained solid catalyst component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11598187A JPH0776253B2 (en) | 1987-05-14 | 1987-05-14 | Polymerization method of propylene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11598187A JPH0776253B2 (en) | 1987-05-14 | 1987-05-14 | Polymerization method of propylene |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63280706A JPS63280706A (en) | 1988-11-17 |
JPH0776253B2 true JPH0776253B2 (en) | 1995-08-16 |
Family
ID=14675921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11598187A Expired - Lifetime JPH0776253B2 (en) | 1987-05-14 | 1987-05-14 | Polymerization method of propylene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0776253B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100668042B1 (en) | 2005-06-30 | 2007-01-15 | 서강대학교산학협력단 | Preparation method for high melting strength polypropylene with a side branch |
-
1987
- 1987-05-14 JP JP11598187A patent/JPH0776253B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63280706A (en) | 1988-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0052471B1 (en) | Process and catalyst for polymerization of olefins | |
JPS5817204B2 (en) | α-olefin polymerization method | |
JPH0725820B2 (en) | Polymerization method of propylene | |
JPH0776253B2 (en) | Polymerization method of propylene | |
JPH0788408B2 (en) | Polymerization method of propylene | |
JPH0745550B2 (en) | Polymerization method of propylene | |
JP2683363B2 (en) | Propylene polymerization method | |
JPS6234245B2 (en) | ||
JPH0680101B2 (en) | Process for producing block copolymer of propylene | |
JPS60152511A (en) | Polymerization of alpha-olefin | |
JPS63132906A (en) | Polymerization of olefin | |
JP2710796B2 (en) | Method for producing polyolefin resin composition | |
JPS6323202B2 (en) | ||
JPS64966B2 (en) | ||
JPH0745549B2 (en) | Polymerization method of propylene | |
JPH0774295B2 (en) | Method for producing polypropylene resin composition | |
JPH0717794B2 (en) | Polypropylene resin composition | |
JPH0725958B2 (en) | Method for producing polypropylene resin composition | |
JPS5949241B2 (en) | Method for producing stereoregular polyolefin | |
JPS64408B2 (en) | ||
JPH0751605B2 (en) | Method for producing ethylene-based polymer | |
JPH0745548B2 (en) | Olefin Polymerization Method | |
JPH0349921B2 (en) | ||
JPS63314213A (en) | Polymerization of propylene | |
JPH0745544B2 (en) | Olefin Polymerization Method |