JPH0776237B2 - Modified protein - Google Patents

Modified protein

Info

Publication number
JPH0776237B2
JPH0776237B2 JP63227468A JP22746888A JPH0776237B2 JP H0776237 B2 JPH0776237 B2 JP H0776237B2 JP 63227468 A JP63227468 A JP 63227468A JP 22746888 A JP22746888 A JP 22746888A JP H0776237 B2 JPH0776237 B2 JP H0776237B2
Authority
JP
Japan
Prior art keywords
group
integer
protein
amino
hapten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63227468A
Other languages
Japanese (ja)
Other versions
JPH0278700A (en
Inventor
喜士 升田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP63227468A priority Critical patent/JPH0776237B2/en
Priority to DE1989622015 priority patent/DE68922015T2/en
Priority to EP89106552A priority patent/EP0339377B1/en
Publication of JPH0278700A publication Critical patent/JPH0278700A/en
Priority to US07/880,292 priority patent/US5180815A/en
Publication of JPH0776237B2 publication Critical patent/JPH0776237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はハプテン抗体作成に用いるハプテン(低分子量
抗原)の担体として、或いは種々の免疫分析に用いる多
価化したハプテン抗体作成用担体として用いられる蛋白
質修飾物またはポリペプチド修飾物に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is used as a carrier for a hapten (low molecular weight antigen) used for preparing a hapten antibody, or as a carrier for preparing a multivalent hapten antibody used for various immunoassays. And a modified protein or polypeptide.

(発明の背景) 薬剤などの低分子量化合物を抗原(Ag)とする抗体(A
b)の作成は、これら低分子量抗原(ハプテン)又はそ
の類縁体をBSA(牛血清アルブミン)などの蛋白質担体
に結合した複合体を免疫動物に免疫して行なっている。
担体蛋白質のハプテン結合部位には蛋白質に存在する官
能基のうちアミノ基またはカルボキシル基が考えられる
が、結合反応が容易なことから従来は主としてアミノ基
にハプテンを結合していた。
(Background of the Invention) Antibodies (A) that use low molecular weight compounds such as drugs as antigens (Ag)
The preparation of b) is carried out by immunizing an immunized animal with a complex in which the low molecular weight antigen (hapten) or its analog is bound to a protein carrier such as BSA (bovine serum albumin).
Among the functional groups existing in the protein, an amino group or a carboxyl group may be considered as the hapten binding site of the carrier protein, but conventionally, the hapten was mainly linked to the amino group because of the easy binding reaction.

しかし、ハプテンは蛋白質担体のアミノ基全てに結合す
るわけではなく、ハプテン未結合のアミノ基が多く存在
する領域は、蛋白質本来の立体構造を保持しているの
で、蛋白質本来の抗原決定基(Ag*)として働く。従っ
て、ハプテン担持蛋白質で免疫して得た血清中には担体
蛋白質自体に対応する抗体(Ab*)も生成することにな
る。このため得られたハプテン抗血清(Ab)は、予め担
体自体(Ag*)で吸収する必要がしばしばあった。
However, the hapten does not bind to all amino groups of the protein carrier, and the region where many hapten-unbound amino groups are present retains the protein's original three-dimensional structure, so the protein's original antigenic determinant (Ag * ) Work as. Therefore, an antibody (Ab * ) corresponding to the carrier protein itself is also produced in the serum obtained by immunization with the hapten-carrying protein. Therefore, the obtained hapten antiserum (Ab) often had to be previously absorbed by the carrier itself (Ag * ).

又このような不都合は同じハプテン蛋白質複合体をいわ
ゆる受身凝集に用いた場合にも生じうる。受身凝集と
は、モノエピトープなハプテン(Ag)を複数個、担体に
担持させて、見かけ上多価の抗原として抗原・抗体結合
をさせマトリックス凝集を起させるものである。すなわ
ち、複数のハプテン抗原(Ag)を担持する担体と、抗ハ
プテン抗体(Ab)とを接触させ、抗原抗体マトリックス
を形成させる。その形成量は濁度変化から検出する。こ
のとき1価の遊離ハプテン抗原が共存すると、マトリッ
クス形成は阻害され濁度低下が観察される。この濁度低
下から遊離ハプテン抗原すなわち測定試料中の抗原の量
を定量することができる。この場合にも、担体自体(Ag
*)の抗体(Ab*)が有れば、このAg*-Ab*を介したマト
リックス形成即ち凝集が生じる。従ってここで使用する
抗ハプテン抗体(Ab)は予め担体自体(Ag*)で吸収す
るか、免疫時に使用した担体(Ag*)とは別の担体にハ
プテン(Ag)を結合した複合体を受身凝集反応系に供す
る必要がある。
Further, such inconvenience may occur when the same hapten protein complex is used for so-called passive aggregation. Passive aggregation refers to supporting a plurality of monoepitope haptens (Ag) on a carrier and causing antigen-antibody binding as an apparently multivalent antigen to cause matrix aggregation. That is, a carrier carrying a plurality of hapten antigens (Ag) is contacted with an anti-hapten antibody (Ab) to form an antigen-antibody matrix. The amount formed is detected from the change in turbidity. At this time, when a monovalent free hapten antigen coexists, matrix formation is inhibited and a decrease in turbidity is observed. From this decrease in turbidity, the amount of free hapten antigen, that is, the amount of antigen in the measurement sample can be quantified. In this case as well, the carrier itself (Ag
If the antibody (Ab * ) of * ) is present, this Ag * -Ab * -mediated matrix formation or aggregation occurs. Therefore, the anti-hapten antibody (Ab) used here is either absorbed in advance by the carrier itself (Ag * ), or the complex in which the hapten (Ag) is bound to a carrier other than the carrier (Ag * ) used for immunization is passive. It is necessary to use for the agglutination reaction system.

このような不都合をなくすため蛋白質担体のアミノ基を
全てハプテンでブロックし、蛋白質を事実上完全変性さ
せる方法も考えられるが、その実現はきわめて困難であ
るし、また実現できるとしても多量のハプテンが必要と
なり、ハプテンが微量しかない場合にはこのような方法
がとれないという不都合もあった。
In order to eliminate such inconvenience, a method of blocking all amino groups of the protein carrier with a hapten to denature the protein practically completely can be considered, but it is extremely difficult to realize, and even if it can be realized, a large amount of hapten is required. It was necessary, and there was also the inconvenience that such a method could not be taken if the hapten was in a very small amount.

一方、ハプテンが微量しかない場合や、溶媒への溶解度
が低くて低濃度のハプテン溶液しか使用できない場合な
どには、担体蛋白質にハプテンを充分導入できず、その
結果得られる抗体力価も十分なものとはならなという問
題がある。従って、担体上のハプテン導入部位を出来る
だけ多くして、ハプテン導入効率の高い担体とすること
が望ましい。
On the other hand, when the amount of the hapten is very small, or when the solubility in the solvent is low and only a low concentration hapten solution can be used, the hapten cannot be sufficiently introduced into the carrier protein, and the resulting antibody titer is also sufficient. There is a problem of not being a thing. Therefore, it is desirable to increase the hapten introduction site on the carrier as much as possible so that the carrier has a high hapten introduction efficiency.

(発明の目的) 本発明はこのような事情に鑑みなされたものであり、担
体自体のアミノ基をほぼ完全に修飾、変性し、免疫時に
担体自体の抗体を生成することがなく、受身凝集に用い
る場合にも抗ハプテン抗体(Ab)を予めハプテン担持担
体自体(Ag*)で吸収する必要がなく同じ担体でハプテ
ンを担持できる蛋白質修飾物を提供することを第1の目
的とする。
(Object of the invention) The present invention has been made in view of the above circumstances, and almost completely modifies and denatures the amino group of the carrier itself and does not generate an antibody of the carrier itself at the time of immunization. It is a first object of the present invention to provide a modified protein that can support hapten on the same carrier without the need to previously absorb the anti-hapten antibody (Ab) by the hapten-supporting carrier itself (Ag * ) even when used.

また担体自体の抗体を実質的に生成することがないばか
りか、ハプテン導入効率も高い蛋白質修飾物を提供する
ことを第2の重要な目的とする。
A second important object is to provide a modified protein that not only substantially produces the antibody of the carrier itself but also has a high hapten introduction efficiency.

(発明の構成) 本発明のこのような第1の目的は、構造式 で表わされることを特徴とする蛋白質修飾物、または構
造式 で表わされることを特徴とする蛋白質修飾物により達成
される。
(Structure of the Invention) The first object of the present invention is to provide a structural formula A modified protein or structural formula characterized by being represented by This is achieved by a modified protein characterized by being represented by:

ここで蛋白質修飾物における蛋白質にはポリペプチドも
包含され、式中、 Proは蛋白質またはポリペプチド; Xは脱離可能なアミノ保護基; Yは置換または非置換のメチレン基; ZはSまたはO原子; Rは置換または非置換の炭素数2〜15のアルキル基、ア
リール基またはアラルキル基; mは1〜8の整数であり、 rは非修飾状態のProの有するアミノ基の数を上限とす
る整数、 tは整数1から非修飾状態のProの有するカルボキシル
基数を上限とする数の間の整数である。
Here, the protein in the modified protein also includes a polypeptide, where Pro is a protein or polypeptide; X is a removable amino protecting group; Y is a substituted or unsubstituted methylene group; Z is S or O. Atom; R is a substituted or unsubstituted alkyl group having 2 to 15 carbon atoms, an aryl group or an aralkyl group; m is an integer of 1 to 8; and r is the upper limit of the number of amino groups possessed by the unmodified Pro. The integer t is an integer between the integer 1 and the upper limit of the number of carboxyl groups possessed by the unmodified Pro.

また本発明の第2の目的は、構造式 で表わされることを特徴とする蛋白質修飾物、または構
造式; で表わされることを特徴とする蛋白質修飾物により達成
される。
A second object of the present invention is the structural formula A modified protein or a structural formula characterized by being represented by: This is achieved by a modified protein characterized by being represented by:

式中、Proは蛋白質またはポリペプチド; Xは脱離可能なアミノ保護基; Yは置換または非置換のメチレン基; ZはSまたはO原子; Rは置換または非置換の炭素数2〜15のアルキル基、ア
リール基またはアラルキル基; mは1〜8の整数であり、 rは非修飾状態のProの有するアミノ基の数を上限とす
る整数、 hは整数1からrを上限とする整数、 tは整数1から非修飾状態のProの有するカルボキシル
基数を上限とする数の間の整数である。
In the formula, Pro is a protein or polypeptide; X is a removable amino protecting group; Y is a substituted or unsubstituted methylene group; Z is an S or O atom; R is a substituted or unsubstituted C2-C15 An alkyl group, an aryl group or an aralkyl group; m is an integer of 1 to 8, r is an integer whose upper limit is the number of amino groups that Pro in an unmodified state has, h is an integer whose integers 1 to r are upper limits, t is an integer between the integer 1 and the number having the upper limit of the number of carboxyl groups possessed by the unmodified Pro.

すなわち本発明は、蛋白質(又はポリペプチド)のアミ
ノ基を可逆的に脱離可能な保護基でブロックする一方、
カルボキシル基をジアミンでアミド化して新たなアミノ
基を導入したもので、この導入アミノ基にハプテンを結
合させるようにしたものである。さらにアミノ保護基を
離脱させることにより、蛋白質のアミノ基を再生し、こ
の再生アミノ基と導入アミノ基との双方にハプテンが結
合できるようにしてハプテンの導入効率が向上させたも
のである。
That is, the present invention, while blocking the amino group of the protein (or polypeptide) with a reversibly removable protecting group,
A new amino group is introduced by amidating a carboxyl group with a diamine, and a hapten is bonded to the introduced amino group. Further, by removing the amino-protecting group, the amino group of the protein is regenerated, and the hapten can be bound to both the regenerated amino group and the introduced amino group to improve the hapten introduction efficiency.

蛋白質としては例えばBSA(牛血清アルブミン)、KLH
(キーホール・リンペッド・ヘモシアニン)、IgG、フ
ェリチンなどを用いることができ、また天然或いは合成
ポリペプチドなども担体として用いることができる。
Examples of proteins include BSA (bovine serum albumin), KLH
(Keyhole limped hemocyanin), IgG, ferritin, etc. can be used, and natural or synthetic polypeptides can also be used as a carrier.

担体蛋白質のアミノ基をブロックする保護基Xとしては
以下のようなものが挙げられる。
Examples of the protecting group X that blocks the amino group of the carrier protein include the following.

‐CO-O-R ‐SO2‐R ‐CO-S-R ‐S-R ‐CO-Y-Z-R ‐CHO ‐CO-CF3 ‐CH2-(C6H5) ‐CH-(C6H5)2 ‐C-(C6H5)3 (但し、Rは置換または非置換の炭素数2〜15のアルキ
ル基、アリール基またはアラルキル基; Yは置換または非置換のメチレン基; ZはSまたはO原子; である)。以下具体例を挙げる。
‐CO-OR ‐SO 2 ‐R ‐CO-SR ‐SR ‐CO-YZR ‐CHO ‐CO ‐CF 3 ‐CH 2 ‐ (C 6 H 5 ) ‐CH- (C 6 H 5 ) 2 ‐C- (C 6 H 5 ) 3 (where R is substituted or unsubstituted A C2-C15 alkyl group, aryl group or aralkyl group; Y is a substituted or unsubstituted methylene group; Z is an S or O atom; Specific examples will be given below.

‐CO-O-R(ウレタン型アミノ保護基); アルキルオキシカルボニル基(アルコキシカルボニル
基)、アリールオキシカルボニル基やアラルキルオキシ
カルボニル基等のいわゆるウレタン型アミノ保護基とし
ては、例えば、 t−ブトキシカルボニル(Boc)基、 イソブチルオキシカルボニル基、 ベンジルオキシカルボニル(Z)基、 パラメトキシベンジルオキシカルボニル基、 t−アミルオキシカルボニル基、 d−イソボルニルオキシカルボニル基 アダマンチルオキシカルボニル基 などがある。またこれらは一部置換されたものでもよ
く、例えばパラ位にハロゲン、ニトロ基、メトキシ基な
どを導入した置換ベンジルオキシカルボニル基などがあ
る。
-CO-OR (urethane type amino protecting group); Examples of so-called urethane type amino protecting groups such as alkyloxycarbonyl group (alkoxycarbonyl group), aryloxycarbonyl group and aralkyloxycarbonyl group include, for example, t-butoxycarbonyl (Boc ) Group, isobutyloxycarbonyl group, benzyloxycarbonyl (Z) group, paramethoxybenzyloxycarbonyl group, t-amyloxycarbonyl group, d-isobornyloxycarbonyl group and adamantyloxycarbonyl group. Further, these may be partially substituted, for example, a substituted benzyloxycarbonyl group in which a halogen, a nitro group, a methoxy group or the like is introduced at the para position.

‐SO2‐R(スルホニル型); で表わされるトルエンスルホニル(Tosyl)基がある。-SO 2 -R (sulfonyl type); There is a toluenesulfonyl (Tosyl) group represented by.

‐CO-S-R; フェニルチオオキシカルボニル基 ベンジルチオオキシカルボニル基、 ブチルチオオキシカルボニル基、 ‐S-R(チオ型); o−ニトロフェニルスルフェニル基 o,p−ジニトロフェニルスルフェニル基 ‐CO-Y-Z-R型; (Yは置換または非置換のメチレン基; ZはSまたはO原子) ‐CO-CH2-O-CCH3 アセトアセチル基 ‐CO-CH2-O-C6H5-NO2 オルトフェノキシアセチル基 その他には ‐CHO ホルミル基 ‐CO-CF3 トリフロオロアセチル基 ‐CH2-(C6H5) ベンジル基 ‐CH-(C6H5)2 ジベンジル基 ‐C-(C6H5)3 トリフェニルメチル(トリチル)基 等がある。-CO-SR; Phenylthiooxycarbonyl group Benzylthiooxycarbonyl group, Butylthiooxycarbonyl group, -SR (thio type); o-Nitrophenylsulfenyl group o, p-Dinitrophenylsulfenyl group -CO-YZR type; (Y is a substituted or unsubstituted methylene group; Z is S or O atoms) -CO-CH 2 -O-CCH 3 acetoacetyl group -CO-CH 2 -OC 6 H 5 -NO 2 Orthophenoxyacetyl group Others are -CHO formyl group -CO-CF 3 trifluoroacetyl group -CH 2- (C 6 H 5 ) benzyl group -CH- (C 6 H 5 ) 2 dibenzyl group -C- (C 6 H 5 ). 3 Triphenylmethyl (trityl) group Etc.

以上のアミノ保護基はいずれもアミノ基のN原子と一重
結合を介してブロックするものであるが、アミノ基(-NH
2)を −N=CH−R のようにブロックしてN原子と二重結合を形成してもよ
い。
All of the above amino protecting groups block the N atom of the amino group via a single bond, but the amino group (-NH
2 ) may be blocked such as -N = CH-R to form a double bond with the N atom.

これらアミノ保護基の導入や、その脱離も公知方法に従
って行なうことができる。例えばウレタン型アミノ保護
基の場合はイソシアナート法、アジドホルメート法、混
合カルボナート法、ハロホルメート法などでアミノ基を
ブロックすることができる。またアミノ保護基の脱離の
方法としては、接触還元、Na-NH3処理、酸処理(例え
ば、臭化水素、トリフルオロ酢酸、フッ化水素など)、
アルカリ処理、電気分解、光分解などがある。
Introduction of these amino protecting groups and elimination thereof can be carried out according to known methods. For example, in the case of a urethane type amino protecting group, the amino group can be blocked by an isocyanate method, an azidoformate method, a mixed carbonate method, a haloformate method or the like. Further, as a method for removing the amino protecting group, catalytic reduction, Na—NH 3 treatment, acid treatment (for example, hydrogen bromide, trifluoroacetic acid, hydrogen fluoride, etc.),
Alkaline treatment, electrolysis, photolysis, etc.

以上のアミノ保護基、その導入方法および脱離方法は、 「ペプチド合成」(泉屋他著、丸善、1975年) 「ペプチド合成の基礎と実験」 (泉屋他著、丸善、1985年) 「生化学実験講座1,タンパク質の化学IV」 (日本生化学会編、東京化学同人、1977年) などに詳細に記載されたペプチド合成における公知技術
を使用することができる。
The above-mentioned amino protecting groups, their introduction methods and their elimination methods are described in "Peptide Synthesis" (Izumiya et al., Maruzen, 1975) "Basics and Experiments of Peptide Synthesis" (Izumiya et al., Maruzen, 1985). Known techniques in peptide synthesis described in detail in “Experimental Lecture 1, Protein Chemistry IV” (edited by the Japanese Biochemical Society, Tokyo Kagaku Dojin, 1977) can be used.

このようにして導入されるアミノ保護基Xの数のrは非
修飾状態の蛋白質Proの有するアミノ基の数pと同じか
少ない整数である。
The number r of the amino protecting groups X thus introduced is the same as or smaller than the number p of the amino groups of the unmodified protein Pro.

担体蛋白質のカルボキシル基をアミド化するジアミンは
炭素数1〜8のジアミンが好ましく、この範囲のジアミ
ンを用いることにより得られる蛋白質修飾物の水溶性を
確保できる。またジアミンの炭素数を選択して、担体と
ハプテンとの間の長さ(スペーサ長)を調節することが
できる。このようなジアミンのとしては、例えばメチレ
ンジアミン、エチレンジアミン、トリメチレンジアミン
が好ましい。なおジアミンの代わりとしてトリアミンも
同様な目的に使用することができる。
The diamine that amidates the carboxyl group of the carrier protein is preferably a diamine having 1 to 8 carbon atoms, and by using a diamine in this range, the water solubility of the protein modification product obtained can be secured. Also, the carbon number of the diamine can be selected to adjust the length (spacer length) between the carrier and the hapten. As such a diamine, for example, methylenediamine, ethylenediamine and trimethylenediamine are preferable. Triamine can be used for the same purpose instead of diamine.

ジアミンにより蛋白質に新たに導入されるアミノ基の数
tは少くとも1で、天然状態(すなわちアミド化する以
前の状態)の蛋白質Proの有するカルボキシル基数sを
最大とする。通常のハプテン蛋白質複合体の導入量が通
常10分子/担体以上好ましくは20分子/担体以上である
ことを考慮すれば、導入アミノ基数は通常10以上であ
り、好ましくは20以上である。
The number t of amino groups newly introduced into the protein by the diamine is at least 1, and the number s of carboxyl groups of the protein Pro in the natural state (that is, the state before amidation) is maximized. Considering that the introduction amount of a usual hapten protein complex is usually 10 molecules / carrier or more, preferably 20 molecules / carrier or more, the number of introduced amino groups is usually 10 or more, preferably 20 or more.

従って前述のアミノ保護基Xをほぼ完全に脱離すれば、
蛋白質修飾物上のアミノ基の数は、非修飾蛋白質に比べ
通常10以上、好ましくは20以上多くなり、ハプテンの導
入効率が高くなることになる。
Therefore, if the above amino protecting group X is almost completely eliminated,
The number of amino groups on the modified protein is usually 10 or more, and preferably 20 or more, as compared with the unmodified protein, and the efficiency of hapten introduction is high.

また蛋白質やポリペプチドのように高分子量分子は、ア
ミノ保護基によるブロックにより3次構造が変化する
と、たとえ保護基を除去しても元の高次構造には戻らず
変性したままである。非修飾状態で生じるような担体自
体の抗体を実質的に生じることがなくなる。
Further, when the tertiary structure of a high molecular weight molecule such as a protein or a polypeptide is changed by blocking with an amino protecting group, even if the protecting group is removed, it does not return to the original higher order structure and remains denatured. Substantially no antibodies of the carrier itself will occur as would occur in the unmodified state.

次に本発明の蛋白質修飾物の製造方法について説明す
る。
Next, the method for producing the modified protein of the present invention will be described.

第1図のフローチャート図に示すように、まず蛋白質の
アミノ基を温和な条件下で脱離可能な保護基でブロック
する(ステップ1)。ウレタン型アミノ保護基の場合
は、通常弱アルカリ性下でアミノ基に対し数倍モル量の
保護化剤を使用することにより、アミノ基をほぼ完全に
ブロックすることができる。
As shown in the flowchart of FIG. 1, first, the amino group of the protein is blocked with a protecting group that can be removed under mild conditions (step 1). In the case of a urethane type amino-protecting group, the amino group can be almost completely blocked by using a protecting agent in an amount several times the molar amount of the amino group under weak alkaline conditions.

次にカルボキシル基をジアミンでアミド化する(ステッ
プ2)。ジアミンはmの数に応じてメチレンジアミン、
エチレンジアミン、トリメチレンジアミン等を用いる。
反応に際しては蛋白質のカルボキシル基を予めカルボジ
イミドを活性化して、これを大過剰量の(分子内架橋と
分子間架橋が実質的に生じない程度の過剰量の)ジアミ
ンに添加して行なう。なお蛋白質由来のアミノ基はステ
ップ1で殆どブロックされているから、このステップ2
でのカルボキシル基活性化の際に担体の分子内、分子間
架橋が生じることはない。もしステップ1を行なわない
でステップ2を行なえば、分子間架橋により担体は重合
して不均一な修飾物となる。また水に対する溶解度も一
般に大きく減少するからハプテン導入の反応が困難にな
るという不都合もある。この点、本発明によれば担体の
分子内、分子間架橋が無いので、均一で、また水溶性の
良好な担体用蛋白質修飾物を得ることができる。
Next, the carboxyl group is amidated with a diamine (step 2). Diamine is methylenediamine depending on the number of m,
Ethylenediamine, trimethylenediamine or the like is used.
In the reaction, the carboxy group of the protein is activated by carbodiimide in advance, and this is added to a large excess amount (excess amount of the intramolecular crosslinking and the intermolecular crosslinking) in excess. Note that most of the amino groups derived from proteins are blocked in step 1, so this step 2
No intra- or inter-molecular cross-linking of the carrier occurs during activation of the carboxyl group in. If step 2 is carried out without step 1, the carrier is polymerized by intermolecular cross-linking to give a non-uniform modified product. Further, since the solubility in water is also largely reduced, there is a disadvantage that the reaction of introducing the hapten becomes difficult. In this respect, according to the present invention, since there is no intramolecular or intermolecular cross-linking of the carrier, it is possible to obtain a protein modified product for a carrier that is uniform and has good water solubility.

こうして得られた蛋白質修飾物では、蛋白質由来のアミ
ノ基の殆どがブロックされており、新たに導入されたジ
アミン由来のアミノ基だけが蛋白質に存在する。
In the modified protein thus obtained, most of the amino groups derived from the protein are blocked, and only the newly introduced amino group derived from the diamine exists in the protein.

この導入アミノ基に対しハプテンをそのカルボキシル基
を介して結合させれば、ハプテン担持担体が得られ、免
疫動物への免疫に用いることができる(ステップ4)。
この時必ずしも導入アミノ基の全てにハプテンが結合す
る訳ではないので、ハプテン導入数iは導入アミノ基数
tよりも少ない。但し通常は約10以上である。
A hapten-carrying carrier can be obtained by binding a hapten to the introduced amino group via the carboxyl group, and the carrier can be used for immunization of an immunized animal (step 4).
At this time, since the hapten does not necessarily bond to all of the introduced amino groups, the number i of introduced haptens is smaller than the number t of introduced amino groups. However, it is usually about 10 or more.

一方、前述のアミノ保護基Xを温和な条件下で可逆的に
脱離させる(ステップ3)と、得られた蛋白質修飾物に
は再生されたアミノ基とステップ2で導入された導入ア
ミノ基との双方が存在することになる。ステップ1,2で
のアミノ基の保護・脱離が理想的に行なわれれば、再生
アミノ基の数hは非修飾蛋白質本来のアミノ基pとほぼ
同数まで回復するから、蛋白質修飾物には非修飾の場合
に比較しておよそカルボキシル基に導入されたアミノ基
の数tだけ多くのアミノ基が存在することになる。従っ
てハプテンの導入反応点は最大限の増加して効率的にハ
プテンを導入することができ、高力価の抗体産生に適し
たハプテン担体コンジュゲートを得ることができる(ス
テップ5)。
On the other hand, when the above-mentioned amino-protecting group X is reversibly released under mild conditions (step 3), the modified protein obtained has the regenerated amino group and the introduced amino group introduced in step 2. Both will exist. If the protection / elimination of the amino group in Steps 1 and 2 is ideally performed, the number h of regenerated amino groups is restored to almost the same number as the original amino group p of the unmodified protein. As compared with the case of modification, there will be as many amino groups as the number t of amino groups introduced into the carboxyl group. Therefore, the number of reaction sites for hapten introduction can be maximized to efficiently introduce hapten, and a hapten carrier conjugate suitable for high titer antibody production can be obtained (step 5).

この場合でもアミノ基の全てにハプテンが結合するわけ
ではなく、再生・導入アミノ基に結合するハプテン数j
およびkはそれぞれ再生アミノ基数hや導入アミノ基数
tよりも少ないが、非修飾蛋白質やステップ2で得られ
る蛋白質本来のアミノ基をブロックした担体を用いる場
合よりもアミノ基の総数(h+t)は多くなるから、ハ
プテン導入効率は高いものとなる。免疫に必要なハプテ
ン導入数は通常は10以上/担体分子であるといわれてい
るが、本発明のようにハプテンン導入点を最大限にした
蛋白質修飾物では、容易にその数を超えることができ
る。
Even in this case, the hapten does not bond to all the amino groups, and the number of haptens bonded to the regenerated / introduced amino group j
And k are smaller than the number of regenerated amino groups h and the number of introduced amino groups t, respectively, but the total number of amino groups (h + t) is larger than that in the case of using an unmodified protein or a carrier obtained by blocking the original amino groups of the protein obtained in step 2. Therefore, the hapten introduction efficiency is high. It is said that the number of hapten introductions required for immunization is usually 10 or more / carrier molecule, but the number of hapten introductions can be easily exceeded in a protein modification product that maximizes the hapten introduction point as in the present invention. .

また本発明による蛋白質修飾物を受身凝集による複数の
ハプテン抗原(Ag)を担持する担体として用いれば、蛋
白質がステップ1の修飾反応により充分変性し元の蛋白
質に対する抗原性を失っているため、複数の抗ハプテン
抗体(Ab)を担持する担体と接触させても、その抗体
(Ab)は担体自体(Ag*)とは結合しない。従って用い
る抗血清(Ab)を予め担体自体(Ag*)で吸収する必要
もなく、またここで用いた担体以外の担体を用いる必要
もない。
When the modified protein of the present invention is used as a carrier carrying a plurality of hapten antigens (Ag) by passive aggregation, the protein is sufficiently denatured by the modification reaction in step 1 and loses its antigenicity to the original protein. The antibody (Ab) does not bind to the carrier itself (Ag * ) when brought into contact with the carrier carrying the anti-hapten antibody (Ab). Therefore, it is not necessary to previously absorb the antiserum (Ab) used by the carrier itself (Ag * ), and it is not necessary to use a carrier other than the carrier used here.

このことはステップ3でアミノ基を再生した場合でも同
様である。すなわち低分子量ペプチドではアミノ保護基
の離脱により完全に元の構造の戻ることができるが、蛋
白質やポリペプチドのような高分子量分子では、アミノ
保護基によるブロックにより3次構造が一度変化する
と、たとえ保護基を除去しても元の高次構造には戻らず
に変性したままである。従って再生アミノ基をハプテン
導入点として用いても、非修飾状態で生じるような担体
自体の抗体を実質的に生じることがない。
This also applies when the amino group is regenerated in step 3. That is, in the case of a low molecular weight peptide, the original structure can be completely restored by the removal of the amino protecting group, but in the case of a high molecular weight molecule such as a protein or a polypeptide, if the tertiary structure is changed once by the block by the amino protecting group, Even if the protecting group is removed, it remains denatured without returning to the original higher-order structure. Therefore, even if the regenerated amino group is used as a hapten introduction point, substantially no antibody of the carrier itself is generated as in the unmodified state.

(発明の効果) 以上のように第1の発明は、蛋白質のアミノ基を脱離可
能な保護基でブロックする一方、カルボキシル基をジア
ミンでアミド化して新たなアミノ基を導入した。このた
め、蛋白質由来のアミノ基を消失或いは少なくして蛋白
質の変性度を高めることができ、担体蛋白質自体の抗体
(Ab*)を実質的に生成することがない。
(Effects of the Invention) As described above, in the first invention, the amino group of a protein is blocked by a removable protecting group, while the carboxyl group is amidated with a diamine to introduce a new amino group. Therefore, the amino group derived from the protein can be eliminated or reduced to enhance the denaturation degree of the protein, and the antibody (Ab * ) of the carrier protein itself is not substantially generated.

従ってハプテンが微量の場合でも効率的に抗体(Ab)を
作製することができる。
Therefore, an antibody (Ab) can be efficiently produced even when the amount of hapten is very small.

また受身凝集に用いる場合にも抗ハプテン抗体(Ab)を
予め担体自体(Ag*)で吸収する必要がない。また免疫
時と同じ担体で多価ハプテン抗原複合体を作成できる。
Also, when used for passive agglutination, it is not necessary to previously absorb the anti-hapten antibody (Ab) with the carrier itself (Ag * ). In addition, a polyvalent hapten antigen complex can be prepared using the same carrier used for immunization.

また第2の発明は、一度ブロックしたアミノ基を再生し
て、再生アミノ基と導入アミノ基の双方のハプテンを結
合できるようにしたので、非修飾蛋白質よりもハプテン
結合部位が多くなり、ハプテン導入効率が高い。従って
微量のハプテンでも効率的に抗体(Ab)を作製すること
ができる。またアミノ基保護のため一度修飾されている
ので変性度が高く、担体自体の抗体(Ab*)を実質的に
生成することもない。
In the second invention, the once blocked amino group is regenerated so that the hapten of both the regenerated amino group and the introduced amino group can be bound, so that the number of hapten binding sites becomes larger than that of the unmodified protein, and the hapten introduction is increased. High efficiency. Therefore, an antibody (Ab) can be efficiently produced even with a small amount of hapten. Further, since it is once modified to protect the amino group, it has a high degree of denaturation and does not substantially form the antibody (Ab * ) of the carrier itself.

(実施例) 以下実施例により説明する。(Example) An example will be described below.

実施例1;Boc化BSAの調製 BSAのアミノ基を混合カルボナート法によりt−ブトキ
シカルボニル(Boc)化してブロックした。
Example 1 Preparation of Boc-modified BSA The amino group of BSA was blocked by t-butoxycarbonyl (Boc) conversion by the mixed carbonate method.

BSA(シグマ社製)1gを、100mlの50mM燐酸緩衝液(pH
9)に溶かし、これにトリエチルアミン0.6mlを加え、さ
らにt−ブチル(4,6−ジメチルピリミジル−2−チオ
ール)カルボナート(アルドリッチ社製)の2%ジオキ
サン溶液50mlを滴下混合した。室温下で終夜撹拌反応し
た後、水100mlを加えて反応を停止した。未反応のカル
ボナートを酢酸エチルで抽出・除去した後、水層を流水
に対し透析して脱塩した。凍結乾燥後のBoc化BSAの収量
は1.08gであった。反応後の残存アミノ基の数をフルオ
レサミン(fluorescamine;F・ホフマン・ラ・ロシュ社
製)で定量したところ、反応前BSAの0.1%以下であっ
た。
1 g of BSA (manufactured by Sigma) is added to 100 ml of 50 mM phosphate buffer (pH
This was dissolved in 9), 0.6 ml of triethylamine was added thereto, and 50 ml of a 2% dioxane solution of t-butyl (4,6-dimethylpyrimidyl-2-thiol) carbonate (manufactured by Aldrich) was further added dropwise. After reacting with stirring at room temperature overnight, 100 ml of water was added to stop the reaction. After unreacted carbonate was extracted and removed with ethyl acetate, the aqueous layer was dialyzed against running water to desalt. The yield of Boc-modified BSA after freeze-drying was 1.08 g. When the number of residual amino groups after the reaction was quantified with fluorescamine (fluorescamine; manufactured by F. Hoffmann-La Roche), it was 0.1% or less of BSA before the reaction.

実施例2:Boc化BSAへのアミノ基導入 Boc化BSAのカルボキシル基とエチレンジアミンとを縮合
させて新たなアミノ基を導入した。
Example 2: Introduction of amino group into Boc-modified BSA A carboxyl group of Boc-modified BSA was condensed with ethylenediamine to introduce a new amino group.

実施例1で調製したBoc化BSA1gを50mlの50mM燐酸緩衝液
(pH8)に溶かし、これに水溶性カルボジイミド(1−
エチル−3−(3−ジメチルアミノプロピル)−カルボ
ジイミド)の5%水溶液5mlを氷冷下、滴下混合して、B
oc化BSAのカルボキシル基を活性化した。本液を、50ml
の1Mエチレンジアミン水溶液(pH8)に氷冷下撹拌しな
がら滴下・混合し反応させた。室温に戻して1時間反応
させた後、反応液を流水に対して透析・脱塩し、その後
凍結乾燥した。得られた標品の導入アミノ基の量をフル
オレサミンで定量したところ、BSA1分子当り約60分子の
新しいアミノ基(エチレンジアミン由来)が導入された
ことが分かった。
1 g of Boc-modified BSA prepared in Example 1 was dissolved in 50 ml of 50 mM phosphate buffer (pH 8), and water-soluble carbodiimide (1-
5 ml of a 5% aqueous solution of ethyl-3- (3-dimethylaminopropyl) -carbodiimide) was added dropwise under ice-cooling, and B was added.
The carboxyl group of ocylated BSA was activated. 50 ml of this solution
1M ethylenediamine aqueous solution (pH 8) was added dropwise and mixed under ice-cooling with stirring to react. After returning to room temperature and reacting for 1 hour, the reaction solution was dialyzed against running water, desalted, and then freeze-dried. The amount of introduced amino groups in the obtained preparation was quantified with fluoresamine, and it was found that about 60 molecules of new amino groups (derived from ethylenediamine) were introduced per one molecule of BSA.

実施例3:BSA修飾物へのハプテン結合及び抗体作製 1−カルボキシブチル−フェノバルビタールをハプテン
としてBSA修飾物に結合させた。
Example 3: Hapten binding to BSA modified product and antibody preparation 1-carboxybutyl-phenobarbital was bound to the BSA modified product as a hapten.

実施例2で得たBSA修飾物100mgを10mlの50mMトリス塩酸
緩衝液(pH9)に溶解した。一方、1−カルボキシブチ
ル−フェノバルビタール100mgをジメチルスルホキシド5
mlに溶かし、これに1.1倍当量のトリエチルアミン及び
1.1倍当量のイソブチルクロロ蟻酸を加え混合酸無水物
を形成して活性化した。この混合酸無水物溶液を上記BS
A修飾物溶液に添加し反応させた。4℃で30分、さらに
室温下で1時間反応させた後、反応液を流水に対し透析
して脱塩した。凍結乾燥後の標品について、フェノバル
ビタール導入量を紫外吸収スペクトル(280nmおよび300
nmの2波長で測定)より定量した。導入量はBSA1分子当
り43モルという高値であった。
100 mg of the modified BSA obtained in Example 2 was dissolved in 10 ml of 50 mM Tris-HCl buffer (pH 9). On the other hand, 100 mg of 1-carboxybutyl-phenobarbital was added to dimethyl sulfoxide 5
Dissolve it in ml and add 1.1 times equivalent of triethylamine and
1.1 times equivalent of isobutylchloroformic acid was added to form a mixed acid anhydride for activation. This mixed acid anhydride solution was added to the above BS.
A-modified product was added and reacted. After reacting at 4 ° C. for 30 minutes and further at room temperature for 1 hour, the reaction solution was dialyzed against running water to desalt. The amount of phenobarbital introduced in the freeze-dried sample was measured by UV absorption spectrum (280 nm and 300 nm).
(measured at two wavelengths of nm). The amount introduced was as high as 43 mol per BSA molecule.

得られたハプテン担持BSAを常法に従い家兎に免疫した
ところ、高力価の抗フェノバルビタール血清が得られ
た。
When the obtained hapten-supporting BSA was immunized into a rabbit according to a conventional method, a high titer anti-phenobarbital serum was obtained.

実施例4:BSA修飾物のアミノ保護基の脱離 実施例2で得たBSA修飾物500mgを50mlの臭化水素/氷酢
酸に溶解し、室温下20分間反応させた。反応後、溶媒を
減圧留去した後、100mlの水を加え、これを流水透析し
て脱塩し、その後凍結乾燥した。得られた標品は約440m
gであった。フルオレサミンを用いてアミノ基を定量し
たところBSA1分子当り約120分子のアミノ基が検出さ
れ、実施例2での値約60との差から、120−60=60個の
アミノ基が再生されたことがわかった。
Example 4: Removal of amino protecting group of BSA modified product 500 mg of the BSA modified product obtained in Example 2 was dissolved in 50 ml of hydrogen bromide / glacial acetic acid and reacted at room temperature for 20 minutes. After the reaction, the solvent was distilled off under reduced pressure, 100 ml of water was added, and this was dialyzed with running water for desalting and then freeze-dried. The obtained standard is about 440m
It was g. When quantifying amino groups with fluoresamine, about 120 molecules of amino groups were detected per one molecule of BSA, and from the difference from the value of about 60 in Example 2, 120-60 = 60 amino groups were regenerated. I understood.

実施例5:アミノ基再生BSAへのハプテン結合及び抗体作
製 実施例4で得られたアミノ基を再生したBSA100mgに,実
施例3と同様の方法で、1−カルボキシブチル−フェノ
バルビタールを結合させた。BSA1分子当りのフェノバル
ビタール導入量は65モルとアミノ基再生前の担体への導
入量(実施例2;43モル)の値より高値を示していた。
Example 5: Hapten binding to amino group-regenerated BSA and antibody preparation 100 mg of amino group-regenerated BSA obtained in Example 4 was bound with 1-carboxybutyl-phenobarbital in the same manner as in Example 3. . The amount of phenobarbital introduced per BSA molecule was 65 mol, which was higher than the amount introduced into the carrier before amino group regeneration (Example 2; 43 mol).

得られたハプテン担持BSAを家兎に免疫したところ、高
力価の抗フェノバルビタール血清が得られた。
When the rabbit thus obtained was immunized with the obtained hapten-supporting BSA, a high titer anti-phenobarbital serum was obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による蛋白質修飾物の製造方法及び使用
方法を説明するフローチャート図である。
FIG. 1 is a flow chart illustrating the method for producing and using the modified protein according to the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】構造式; (式中、Proは蛋白質またはポリペプチド; Xは脱離可能なアミノ保護基; mは1〜8の整数であり、 rは非修飾状態のProの有するアミノ基の数を上限とす
る整数、 tは整数1から非修飾状態のProの有するカルボキシル
基数を上限とする数の間の整数である) で表わされることを特徴とする蛋白質修飾物。
1. A structural formula; (In the formula, Pro is a protein or polypeptide; X is a removable amino-protecting group; m is an integer of 1 to 8; r is an integer with the upper limit being the number of amino groups possessed by the unmodified Pro; t is an integer between 1 and a number up to the number of carboxyl groups possessed by the unmodified Pro).
【請求項2】前記アミノ保護基Xが以下の構造式から選
ばれたものであることを特徴とする請求項1記載の蛋白
質修飾物。 ‐CO-O-R ‐SO2‐R ‐CO-S-R ‐S-R ‐CHO ‐CO-CF3 ‐CH2-(C6H5) ‐CH-(C6H5)2 ‐C-(C6H5)3 (但し、Rは置換または非置換の炭素数2〜15のアルキ
ル基、アリール基またはアラルキル基である)
2. The modified protein according to claim 1, wherein the amino protecting group X is selected from the following structural formulas. ‐CO-OR ‐SO 2 ‐R ‐CO-SR ‐SR -CHO -CO-CF 3 -CH 2- (C 6 H 5 ) -CH- (C 6 H 5 ) 2 -C- (C 6 H 5 ) 3 (wherein R is a substituted or unsubstituted carbon number 2 ~ 15 alkyl groups, aryl groups or aralkyl groups)
【請求項3】構造式; (式中、Proは蛋白質またはポリペプチド; Yは置換または非置換のメチレン基; ZはSまたはO原子; Rは置換または非置換の炭素数2〜15のアルキル基、ア
リール基またはアラルキル基; mは1〜8の整数であり、 rは非修飾状態のProの有するアミノ基の数を上限とす
る整数、 tは整数1から非修飾状態のProの有するカルボキシル
基数を上限とする数の間の整数である) で表わされることを特徴とする蛋白質修飾物。
3. A structural formula; (Wherein Pro is a protein or polypeptide; Y is a substituted or unsubstituted methylene group; Z is an S or O atom; R is a substituted or unsubstituted C2-C15 alkyl group, aryl group or aralkyl group; m is an integer of 1 to 8, r is an integer whose upper limit is the number of amino groups possessed by Pro in an unmodified state, t is an integer from 1 to a number whose upper limit is the number of carboxyl groups possessed by Pro in an unmodified state The modified protein is characterized by being represented by
【請求項4】構造式; (式中、Proは蛋白質またはポリペプチド; Xは脱離可能なアミノ保護基; mは1〜8の整数であり、 rは非修飾状態のProの有するアミノ基の数を上限とす
る整数、 hは整数1からrを上限とする整数、 tは整数1から非修飾状態のProの有するカルボキシル
基数を上限とする数の間の整数である) で表わされることを特徴とする蛋白質修飾物。
4. A structural formula; (In the formula, Pro is a protein or polypeptide; X is a removable amino-protecting group; m is an integer of 1 to 8; r is an integer with the upper limit being the number of amino groups possessed by the unmodified Pro; h is an integer with an upper limit of 1 to r, and t is an integer between the integer 1 and a number with an upper limit of the number of carboxyl groups possessed by the unmodified Pro).
【請求項5】前記アミノ保護基Xが以下の構造式から選
ばれたものであることを特徴とする請求項4記載の蛋白
質修飾物。 ‐CO-O-R ‐SO2‐R ‐CO-S-R ‐S-R ‐CHO ‐CO-CF3 ‐CH2-(C6H5) ‐CH-(C6H5)2 ‐C-(C6H5)3 (但し、Rは置換または非置換の炭素数2〜15のアルキ
ル基、アリール基またはアラルキル基である)
5. The modified protein product according to claim 4, wherein the amino protecting group X is selected from the following structural formulas. ‐CO-OR ‐SO 2 ‐R ‐CO-SR ‐SR -CHO -CO-CF 3 -CH 2- (C 6 H 5 ) -CH- (C 6 H 5 ) 2 -C- (C 6 H 5 ) 3 (wherein R is a substituted or unsubstituted carbon number 2 ~ 15 alkyl groups, aryl groups or aralkyl groups)
【請求項6】構造式; (式中、Proは蛋白質またはポリペプチド; Yは置換または非置換のメチレン基; ZはSまたはO原子; Rは置換または非置換の炭素数2〜15のアルキル基、ア
リール基またはアラルキル基; mは1〜8の整数であり、 rは非修飾状態のProの有するアミノ基の数を上限とす
る整数、 hは整数1からrを上限とする整数、 tは整数1から非修飾状態のProの有するカルボキシル
基数を上限とする数の間の整数である) で表わされることを特徴とする蛋白質修飾物。
6. A structural formula; (Wherein Pro is a protein or polypeptide; Y is a substituted or unsubstituted methylene group; Z is an S or O atom; R is a substituted or unsubstituted C2-C15 alkyl group, aryl group or aralkyl group; m is an integer of 1 to 8, r is an integer whose upper limit is the number of amino groups possessed by Pro in an unmodified state, h is an integer whose integers are from 1 to r, and t is an integer of 1 to unmodified It is an integer between the upper limit of the number of carboxyl groups possessed by Pro) and a modified protein.
JP63227468A 1988-04-13 1988-09-13 Modified protein Expired - Fee Related JPH0776237B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63227468A JPH0776237B2 (en) 1988-09-13 1988-09-13 Modified protein
DE1989622015 DE68922015T2 (en) 1988-04-13 1989-04-13 Protein modified to carry a hapten.
EP89106552A EP0339377B1 (en) 1988-04-13 1989-04-13 Modified protein for carrying hapten
US07/880,292 US5180815A (en) 1988-04-13 1992-05-05 Modified protein for carrying hapten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227468A JPH0776237B2 (en) 1988-09-13 1988-09-13 Modified protein

Publications (2)

Publication Number Publication Date
JPH0278700A JPH0278700A (en) 1990-03-19
JPH0776237B2 true JPH0776237B2 (en) 1995-08-16

Family

ID=16861351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227468A Expired - Fee Related JPH0776237B2 (en) 1988-04-13 1988-09-13 Modified protein

Country Status (1)

Country Link
JP (1) JPH0776237B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2557458B1 (en) * 1983-12-30 1987-09-04 Centre Nat Rech Scient NOVEL ANTIBODIES CAPABLE OF SPECIFICALLY RECOGNIZING HAPTENIC GROUPS, THEIR PREPARATION AND THEIR APPLICATION, AND NOVEL ANTIGENS FOR PREPARING THEM
US4670406A (en) * 1984-01-06 1987-06-02 Becton Dickinson And Company Tracers for use in assays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
泉屋信夫他「ペプチド合成の基礎と実験」(昭62−4−20)丸善P.146

Also Published As

Publication number Publication date
JPH0278700A (en) 1990-03-19

Similar Documents

Publication Publication Date Title
EP0458841B1 (en) Method for the use and synthesis of peptides
JP2640438B2 (en) Catamarer with antigen activity of foot-and-mouth disease virus
AU634154B2 (en) Decoupled fiber optic feedthrough assembly
US5785973A (en) Synthetic peptides representing a T-cell epitope as a carrier molecule for conjugate vaccines
US4554101A (en) Identification and preparation of epitopes on antigens and allergens on the basis of hydrophilicity
FI104374B (en) T-cell epitope oligopeptides and preparation of conjugates containing them
CA2004810A1 (en) Synthetic antigens, a process for the preparation thereof and the use thereof
JPH063445B2 (en) Method for determining antigenically active amino acid chain
Tuchscherer et al. Total chemical synthesis, characterization, and immunological properties of an MHC class I model using the TASP concept for protein de novo design
US5449601A (en) Process for the identification or determination of proteins and its applications
Elsayed et al. Synthetic allergenic epitopes from the amino-terminal regions of the major allergens of hazel and birch pollen
JPH03503047A (en) Polymers and polymer-peptide complexes
WO1991008220A1 (en) A method for the stepwise, controlled synthesis of chemical species, particularly peptides, coupled products obtained by the method and the use of these coupled products, e.g. as vaccines
Schechter et al. Synthetic Antigens with Sequential and Conformation‐Dependent Determinants Containing the Same l‐Tyrosyl‐l‐alanyl‐l‐glutamyl Sequence
FR2717081A1 (en) Retropeptides, antibodies against them, and their uses for vaccination and in vitro diagnosis.
JPH0776237B2 (en) Modified protein
US5180815A (en) Modified protein for carrying hapten
Boersma et al. Antibodies to short synthetic peptides for specific recognition of partly denatured protein
JPH02111798A (en) Modified substance of protein
EP0339377B1 (en) Modified protein for carrying hapten
Maeji et al. Simultaneous multiple synthesis of peptide-carrier conjugates
JPH0776236B2 (en) Modified protein
Levin et al. Antigenicity of p‐Azobenzenearsonate‐Containing Oligopeptides in Rabbits
WO2006117007A1 (en) Methods for obtaining antigen specific antibodies
JP2004340722A (en) Polyamino acid carrier

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070816

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees