JPH0775895A - Material of electrode for welding and manufacture thereof - Google Patents

Material of electrode for welding and manufacture thereof

Info

Publication number
JPH0775895A
JPH0775895A JP22028093A JP22028093A JPH0775895A JP H0775895 A JPH0775895 A JP H0775895A JP 22028093 A JP22028093 A JP 22028093A JP 22028093 A JP22028093 A JP 22028093A JP H0775895 A JPH0775895 A JP H0775895A
Authority
JP
Japan
Prior art keywords
welding
hardness
ingot
temperature
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22028093A
Other languages
Japanese (ja)
Other versions
JP2568032B2 (en
Inventor
Shigeru Kuramoto
繁 蔵本
Hideharu Ito
秀晴 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYOSHI GOKIN KOGYO KK
Original Assignee
MIYOSHI GOKIN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYOSHI GOKIN KOGYO KK filed Critical MIYOSHI GOKIN KOGYO KK
Priority to JP5220280A priority Critical patent/JP2568032B2/en
Publication of JPH0775895A publication Critical patent/JPH0775895A/en
Application granted granted Critical
Publication of JP2568032B2 publication Critical patent/JP2568032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the material of electrodes for welding where the heat resistance, especially, the softening temperature of the hardness is elevated without impairing the mechanical property and electrical conductivity by specifying the alloy content of BeCu alloy. CONSTITUTION:The material of electrodes has the composition consisting of, by weight, 0.2-0.4% Be, 1.20-2.1% Ni, 0.1-0.3% Ag, 0.05-0.4% Zr, 0.05-0.1% Si, and the balance mainly Cu. This ingot is manufactured, hot-worked, heat treated at the solution heat treatment of 880-950 deg.C, and at the aging temperature of 430-500 deg.C. This constitution provides the heat resistant material of electrodes for welding with little softening in the temperature range of 300-400 deg.C without impairing the mechanical property of the conventional BeCu alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ステンレス鋼板、耐熱
鋼板の抵抗溶接、またフラッシュバット溶接等の溶接電
極材料及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding electrode material such as resistance welding of stainless steel plate and heat resistant steel plate, flash butt welding and the like, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来は、JISZ3234の抵抗溶接用銅合
金電極材料第3種該当品として、Be0.2〜0.4wt%、N
i1.4〜2.1wt%、Ag0.1〜0.3wt%、及び残部Cuより
成るものが知られている。
2. Description of the Related Art Conventionally, as a product of JIS Z3234, a copper alloy electrode material for resistance welding of the third type, Be 0.2 to 0.4 wt%, N
It is known that i consists of 1.4 to 2.1 wt%, Ag of 0.1 to 0.3 wt%, and the balance Cu.

【0003】また、特公昭36−19813号には、B
e0.03〜0.5%、Ni0.5〜2.0%、Zr0.02〜1.0%、C
u残部から成るものが開示されている。
In Japanese Patent Publication No. 36-19813, B
e0.03-0.5%, Ni0.5-2.0%, Zr0.02-1.0%, C
A u balance is disclosed.

【0004】そして、これらの従来方法は、ステンレス
鋼板等を使用して化学薬品用容器のシーム溶接や、製鉄
の鋼板圧延用ラインでのフラッシュバット溶接等に使用
されている。
These conventional methods are used for seam welding of chemical containers using stainless steel plates and the like, flash butt welding in steel plate rolling lines for steelmaking, and the like.

【0005】そして、これらの溶接用電極材料として要
求される従来の特性は、JIS規格では、引張り強さ6
90N/mm2で伸び率9%以上、導電率45%以上
で、しかも、抵抗溶接時の軟化温度が高い事である。
The conventional characteristics required for these welding electrode materials are that the JIS standard specifies tensile strength of 6
At 90 N / mm 2 , the elongation is 9% or more, the conductivity is 45% or more, and the softening temperature during resistance welding is high.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、溶接用
電極材料の場合は、製造ラインに組込まれる溶接工程で
使用される事がほとんどである為、被溶接材と接触する
電極部分が高温と成るために軟化され、バリが出たり、
ひどい時は変形を生じたりする。このような事態が生じ
ると、ラインを止めてドレッシング加工を余儀なくされ
るものとなる。
However, in the case of the electrode material for welding, since it is mostly used in the welding process incorporated in the production line, the temperature of the electrode portion in contact with the material to be welded becomes high. It is softened to burr,
When it is terrible, it may deform. When such a situation occurs, the line must be stopped and the dressing process must be performed.

【0007】本発明は上述のごとき課題を解決しようと
するものであって、高温によっても出来るだけ軟化しに
くい電極材を得ることにより、ライン停止の度合いを少
なくする事を目的とする。
The present invention is intended to solve the above problems, and an object thereof is to reduce the degree of line stoppage by obtaining an electrode material which is not easily softened even at high temperatures.

【0008】そこで本発明は、高温に於いても従来品よ
りも軟化しにくい溶接用電極材料を得ようとするもの
で、高温における硬さが従来品と比較して高いものを得
る事を目的としている。
Therefore, the present invention is intended to obtain a welding electrode material which is less likely to be softened than a conventional product even at a high temperature, and an object thereof is to obtain a material having a high hardness at a high temperature as compared with the conventional product. I am trying.

【0009】その為には、引張り強さ690N/mm2
以上、伸び率9%以上、硬さHRB92以上、(HB 1
0/500 163以上)、導電率(IACS%)50以上をク
リアーし、400℃迄の高温硬さの硬度低下がブリネル
硬さで常温硬さと比較して3%以内であるものを提供す
る事である。
Therefore, the tensile strength is 690 N / mm 2
Above, elongation rate 9% or more, hardness HRB92 or more, (HB 1
(0/500 163 or more), conductivity (IACS%) of 50 or more, and decrease in high temperature hardness up to 400 ° C within 3% of Brinell hardness compared to room temperature hardness. Is.

【0010】[0010]

【課題を解決するための手段】本発明は上述のごとき課
題を解決するため、Be0.2〜0.4wt%、Ni1.4〜2.1wt
%、Ag0.1〜0.3wt%、Zr0.05〜0.4wt%、及び残部
Cuより成るものである。
In order to solve the above problems, the present invention has a Be of 0.2 to 0.4 wt% and a Ni of 1.4 to 2.1 wt.
%, Ag 0.1 to 0.3 wt%, Zr 0.05 to 0.4 wt%, and the balance Cu.

【0011】また、Be0.2〜0.4wt%、Ni1.4〜2.1wt
%、Ag0.1〜0.3wt%、Zr0.05〜0.4wt%、Si0.05
〜0.1wt%及び残部Cuよりなるものである。
Further, Be 0.2 to 0.4 wt% and Ni 1.4 to 2.1 wt
%, Ag 0.1 to 0.3 wt%, Zr 0.05 to 0.4 wt%, Si 0.05
.About.0.1 wt% and the balance Cu.

【0012】また、Be0.2〜0.4wt%、Ni1.4〜2.1wt
%、Ag0.1〜0.3wt%、Zr0.05〜0.4wt%、及び残部
Cuよりなる鋳塊を製作し、所定の熱間加工を加え、溶
体化温度880〜950℃にて処理し、時効温度430〜500℃の
熱処理を行うことにより形成する事を特徴とするもので
ある。
Further, Be 0.2 to 0.4 wt%, Ni 1.4 to 2.1 wt
%, Ag 0.1 to 0.3 wt%, Zr 0.05 to 0.4 wt%, and the balance Cu are produced, subjected to predetermined hot working, treated at a solution temperature of 880 to 950 ° C, and aged. It is characterized by being formed by performing a heat treatment at a temperature of 430 to 500 ° C.

【0013】また、Be0.2〜0.4wt%、Ni1.4〜2.1wt
%、Ag0.1〜0.3wt%、Zr0.05〜0.4wt%、Si0.05
〜0.1wt%及び残部Cuよりなる鋳塊を製作し、所定の
熱間加工を加え、溶体化温度880〜950℃にて処理し、時
効温度430〜500℃の熱処理を行うことにより形成する事
を特徴とするものである。
Further, Be 0.2 to 0.4 wt%, Ni 1.4 to 2.1 wt
%, Ag 0.1 to 0.3 wt%, Zr 0.05 to 0.4 wt%, Si 0.05
〜0.1wt% and the balance Cu are produced, the hot working is applied, the solution treatment temperature is 880 ~ 950 ℃, and the aging temperature is 430 ~ 500 ℃. It is characterized by.

【0014】[0014]

【作用】本発明者は前記課題を解決する為、種々実験を
行った結果、従来のBeCu合金の機械的性質及び導電
率を下げずに、300℃〜600℃の範囲の高温特性を向上さ
せることができたものである。その為には、BeCu合
金にZrを0.05〜0.4wt%の範囲で添加した鋳塊を製作
し、所定の熱間加工を加え、溶体化温度880〜950℃にて
処理し、時効温度430〜500℃の熱処理を行う事により解
決出来る知見を得たものである。
In order to solve the above problems, the present inventor has conducted various experiments and as a result, improved the high temperature characteristics in the range of 300 ° C to 600 ° C without lowering the mechanical properties and conductivity of conventional BeCu alloys. I was able to do it. For that purpose, an ingot containing Zr added to the BeCu alloy in the range of 0.05 to 0.4 wt% is manufactured, subjected to predetermined hot working, treated at a solution temperature of 880 to 950 ° C., and an aging temperature of 430 to We have obtained the knowledge that can be solved by heat treatment at 500 ℃.

【0015】また、上記の配合に加えて、Si0.05〜0.
1wt%を配合し、これに上記と同様の処理を行うもので
あってもよい。
In addition to the above composition, Si0.05-0.
You may mix | blend 1 wt% and perform a process similar to the above to this.

【0016】従来公知のBeCu合金は、機械的性質及
び導電率の面からは満足できるものとなっている。しか
し、300℃〜600℃の範囲の高温硬さにおいて前述の如く
難点がある。本発明は、従来公知のBeCu合金の機械
的性質および導電率の性能を保持しながら、高温硬さの
難点を解決しようとするものである。
Conventionally known BeCu alloys are satisfactory in terms of mechanical properties and electrical conductivity. However, there are drawbacks in the high temperature hardness in the range of 300 ° C to 600 ° C as described above. The present invention intends to solve the problem of high temperature hardness while maintaining the mechanical properties and conductivity performance of the conventionally known BeCu alloy.

【0017】そのために本発明の電極材料は、Be0.2
〜0.4wt%、Ni1.4〜2.1wt%、Ag0.1〜0.3wt%、Z
r0.05〜0.4wt%、及び残部Cuよりなるものとする事
により、耐熱性特に硬度の軟化温度を上げる事を可能と
したものである。
Therefore, the electrode material of the present invention is Be0.2
~ 0.4wt%, Ni1.4-2.1wt%, Ag0.1-0.3wt%, Z
By using r of 0.05 to 0.4 wt% and the balance of Cu, it is possible to increase the heat resistance, especially the softening temperature of hardness.

【0018】また、異なる発明に於いては、上記配合
に、さらにSi0.05〜0.1wt%を配合するものとしてい
る。
Further, in another invention, 0.05 to 0.1 wt% of Si is further added to the above composition.

【0019】AgとZr添加による相乗効果により、40
0℃迄の硬度低下がブリンネル硬さで、常温硬さに対し
て3%以内となる。また、析出硬化処理後、硬さがHR
B92以上であり、導電率をIACS%50以上とな
る。
Due to the synergistic effect of adding Ag and Zr, 40
The decrease in hardness up to 0 ° C is the Brinnel hardness, which is within 3% of the room temperature hardness. After the precipitation hardening treatment, the hardness is HR.
It is B92 or more, and the electrical conductivity is IACS% 50 or more.

【0020】次に各添加元素について説明する。Be
は、高温に於ける酸化防止の役目をするものであって、
配合量を0.2wt%未満とすると、機械的強度および硬さ
が出ないものとなる。また、配合量が0.4wt%を超える
ものとすると、導電率をさげるものとなるする。
Next, each additive element will be described. Be
Has the role of preventing oxidation at high temperatures,
If the blending amount is less than 0.2 wt%, mechanical strength and hardness will not be obtained. Further, if the blending amount exceeds 0.4 wt%, the conductivity will be reduced.

【0021】また、Niは、機械的強度を上げる目的で
用いられ、ヤング率を上げることができる。そして、配
合量を1.4wt%未満とすると、規格の機械的強度を上げ
ることが出来ない。また、配合量を2.1wt%を超えるも
のとすると、導電率を下げるものとなる。
Further, Ni is used for the purpose of increasing mechanical strength and can increase Young's modulus. If the blending amount is less than 1.4 wt%, the standard mechanical strength cannot be increased. Further, if the blending amount exceeds 2.1 wt%, the conductivity will be lowered.

【0022】また、Agは、高温に於ける酸化及び軟化
防止の目的で用いられる。そして、配合量を0.1wt%未
満とすると、酸化及び軟化防止効果が生じない。また、
配合量を0.3wt%を超えるものとすると、酸化及び軟化
防止効果の向上がそれ程望めないものとなり不経済とな
る。
Further, Ag is used for the purpose of preventing oxidation and softening at high temperatures. When the blending amount is less than 0.1 wt%, the effect of preventing oxidation and softening does not occur. Also,
If the amount is more than 0.3 wt%, the effect of preventing oxidation and softening cannot be improved so much, which is uneconomical.

【0023】また、Zrは、耐熱効果を上げ、銅と混合
した時に、導電率を下げずに耐熱性特に高温硬さを向上
出来る。そして、配合量が0.05wt%以下では耐熱性の向
上がない。また、配合量が0.4wt%を超えると、導電率
を下げると共に機械的性質を低下させる。
Further, Zr enhances the heat resistance effect and, when mixed with copper, can improve the heat resistance, especially the high temperature hardness, without lowering the conductivity. If the blending amount is 0.05 wt% or less, the heat resistance is not improved. On the other hand, if the blending amount exceeds 0.4 wt%, the conductivity is lowered and the mechanical properties are lowered.

【0024】また、Siは溶湯の脱酸効果を促進するこ
とができる。その配合量が0.05wt%未満ではその効果が
無い。また、配合量が0.1wt%を超えると導電率を低下さ
せるものとなる。
Further, Si can promote the deoxidizing effect of the molten metal. If the blending amount is less than 0.05 wt%, the effect will not be obtained. Further, if the blending amount exceeds 0.1 wt%, the conductivity will be reduced.

【0025】[0025]

【実施例】【Example】

【表1】 表1の配合により、所定のフラックスを使用し、大気溶
解にて鋳塊(φ80×200L)を製作した。そしてその鋳
塊を面削(φ77×200L)した。これを熱間鍛造(φ30
×L)した後、切断面削(φ21×200L−2本)を行っ
た。次に、これを溶体化処理(920℃×1Hr)、時効処
理(460℃×1.5Hr)を経て、各種テストピースを製作
した。
[Table 1] According to the composition in Table 1, a predetermined flux was used, and an ingot (φ80 × 200L) was produced by melting in air. Then, the ingot was chamfered (φ77 × 200L). This is hot forged (φ30
XL), and then cut surface cutting (φ21 × 200L-2 pieces). Next, this was subjected to solution treatment (920 ° C. × 1 Hr) and aging treatment (460 ° C. × 1.5 Hr) to produce various test pieces.

【0026】そして、鋳塊製作後に鋳塊の分析を行った
結果、Agを添加したBZ−2、BZ−3及びBZ−4
の分析値は添加歩留まりも良く、ほぼ目標通りの成分が
検出され、特にZrの歩留が良い。しかし、BZ−1の
Agを添加していないものは、Zrの歩留まりが悪かっ
た。
After the ingot was manufactured, the ingot was analyzed. As a result, Ag-added BZ-2, BZ-3 and BZ-4
As for the analysis value of, the addition yield is good, and the component almost as intended is detected, and the Zr yield is particularly good. However, BZ-1 in which Ag was not added had a poor Zr yield.

【0027】[0027]

【表2】 また、機械的性質および導電率について考察すると、機
械的性質については一様な数値を示しており、比較例、
実施例ともに、顕著な差は認められないが、導電率に関
してはSiが0.1wt%を超えると著しく低下している。
[Table 2] In addition, considering the mechanical properties and the electrical conductivity, the mechanical properties show uniform numerical values.
In each of the examples, no remarkable difference is observed, but the conductivity is remarkably reduced when Si exceeds 0.1 wt%.

【0028】[0028]

【表3】 また、高温硬さについて考察するとZrを添加したもの
は明らかに、BFSのスタンダート品と比較して高温硬
さの低下が少ない。また、Agを添加しているものと、
添加していないものでは、300〜400℃において差が出て
いる。本実施例のBZ−2、BZー3及びBZー4は、
ZrとAgとの相乗効果により、300〜400℃において軟
化しないものと思われる。
[Table 3] Further, when considering the high temperature hardness, the one to which Zr is added is obviously less decreased in the high temperature hardness as compared with the standard product of BFS. Also, with the addition of Ag,
With no addition, there is a difference at 300-400 ° C. BZ-2, BZ-3 and BZ-4 of this embodiment are
It is considered that it does not soften at 300 to 400 ° C due to the synergistic effect of Zr and Ag.

【0029】また、500℃においてSiを添加したBS
−1〜BS−3と、BFSとの間に差が出ているのは、
BS−1〜BS−3に幾分Ni2Siが形成されている
ため、少し耐熱性が良く成っているものと考えられる。
Also, BS containing Si at 500 ° C.
The difference between -1 to BS-3 and BFS is that
Since some Ni 2 Si was formed on BS-1 to BS-3, it is considered that the heat resistance was slightly improved.

【0030】この本発明実施例のBZ−2、BZ−3及
びBZ−4の材料を電極材として使用した場合、常温か
ら温度が上昇していく途中の300℃付近に於いて、Ag
を添加していないものに比較し、軟化の度合いが少ない
ものとなる。
When the materials of BZ-2, BZ-3 and BZ-4 of this embodiment of the present invention are used as the electrode material, Ag at about 300 ° C. during the temperature rising from room temperature
The degree of softening is small as compared with the case where no is added.

【0031】[0031]

【発明の効果】本発明は上述のごとく、従来のBeCu
合金の機械的性質及び導電率を下げずに、耐熱性を向上
させることができたものである。
As described above, the present invention is based on the conventional BeCu.
It was possible to improve the heat resistance without lowering the mechanical properties and conductivity of the alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】比較例と実施例の高温硬さ比較図である。FIG. 1 is a high temperature hardness comparison diagram of a comparative example and an example.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月10日[Submission date] September 10, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0025】[0025]

【実施例】【Example】

【表1】 表1の配合により、所定のフラックスを使用し、大気溶
解にて鋳塊(φ80×200L)を製作した。そしてその鋳塊
を面削(φ77×200L)した。これを熱間鍛造(φ30×
L)した後、切断面削(φ21×200L−2本)を行った。
次に、これを溶体化処理(920℃×1Hr)、時効処理
(460℃×1.5Hr)を経て、各種テストピースを製作し
た。 ─────────────────────────────────────────────────────
[Table 1] According to the composition in Table 1, a predetermined flux was used, and an ingot (φ80 × 200L) was produced by melting in air. Then, the ingot was chamfered (φ77 × 200L). This is hot forged (φ30 ×
After L), cutting surface cutting (φ21 × 200L-2 pieces) was performed.
Next, this was subjected to solution treatment (920 ° C. × 1 Hr) and aging treatment (460 ° C. × 1.5 Hr) to produce various test pieces. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年10月29日[Submission date] October 29, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】 次に各添加元素について説明する。Be
は、高温に於ける酸化防止の役目をするものであって、
配合量を0.2wt%未満とすると、機械的強度および硬さ
が出ないものとなる。また、配合量が0.4wt%を超える
ものとすると、導電率をさげるものとなる。
Next, each additive element will be described. Be
Has the role of preventing oxidation at high temperatures,
If the blending amount is less than 0.2 wt%, mechanical strength and hardness will not be obtained. Further, if the blending amount exceeds 0.4 wt%, the conductivity will be reduced.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】[0027]

【表2】 また、機械的性質および導電率について考察すると、機
械的性質については一様な数値を示しており、比較例、
実施例ともに、顕著な差は認められないが、導電率に関
してはSiが0.1wt%を超えると著しく低下している。
[Table 2] In addition, considering the mechanical properties and the electrical conductivity, the mechanical properties show uniform numerical values.
In each of the examples, no remarkable difference is observed, but the conductivity is remarkably reduced when Si exceeds 0.1 wt%.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】[0028]

【表3】 また、高温硬さについて考察するとZrを添加したもの
は明らかに、BFSのスタンダード品と比較して高温硬
さの低下が少ない。また、Agを添加しているものと、
添加していないものでは、300〜400℃において差が出て
いる。本実施例のBZ−2、BZー3及びBZー4は、
ZrとAgとの相乗効果により、300〜400℃において軟
化しないものと思われる。 ─────────────────────────────────────────────────────
[Table 3] Further, considering the high temperature hardness, the one to which Zr is added is obviously less deteriorated in the high temperature hardness as compared with the standard product of BFS. Also, with the addition of Ag,
With no addition, there is a difference at 300-400 ° C. BZ-2, BZ-3 and BZ-4 of this embodiment are
It is considered that it does not soften at 300 to 400 ° C due to the synergistic effect of Zr and Ag. ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月30日[Submission date] June 30, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Be0.2〜0.4wt%、Ni1.4〜2.1wt%、
Ag0.1〜0.3wt%、Zr0.05〜0.4wt%、及び残部Cu
よりなる溶接用電極材料。
1. Be 0.2 to 0.4 wt%, Ni 1.4 to 2.1 wt%,
Ag 0.1 to 0.3 wt%, Zr 0.05 to 0.4 wt% and balance Cu
Made of welding electrode material.
【請求項2】 Be0.2〜0.4wt%、Ni1.4〜2.1wt%、
Ag0.1〜0.3wt%、Zr0.05〜0.4wt%、Si0.05〜0.1
wt%及び残部Cuよりなる溶接用電極材料。
2. Be 0.2 to 0.4 wt%, Ni 1.4 to 2.1 wt%,
Ag0.1-0.3wt%, Zr0.05-0.4wt%, Si0.05-0.1
A welding electrode material consisting of wt% and the balance Cu.
【請求項3】 Be0.2〜0.4wt%、Ni1.4〜2.1wt%、
Ag0.1〜0.3wt%、Zr0.05〜0.4wt%、及び残部Cu
よりなる鋳塊を製作し、この鋳塊に熱間加工を加え、溶
体化温度880〜950℃にて処理し、時効温度430〜500℃の
熱処理を行うことにより形成する事を特徴とする溶接用
電極材料の製造方法。
3. Be 0.2 to 0.4 wt%, Ni 1.4 to 2.1 wt%,
Ag 0.1 to 0.3 wt%, Zr 0.05 to 0.4 wt% and balance Cu
Welding characterized in that an ingot made of is produced, hot working is applied to the ingot, the solution is treated at a solution temperature of 880 to 950 ° C, and heat treatment is performed at an aging temperature of 430 to 500 ° C. Of manufacturing electrode material for automobile.
【請求項4】 Be0.2〜0.4wt%、Ni1.4〜2.1wt%、
Ag0.1〜0.3wt%、Zr0.05〜0.4wt%、Si0.05〜0.1
wt%及び残部Cuよりなる鋳塊を製作し、この鋳塊に熱
間加工を加え、溶体化温度880〜950℃にて処理し、時効
温度430〜500℃の熱処理を行うことにより形成する事を
特徴とする溶接用電極材料の製造方法。
4. Be 0.2 to 0.4 wt%, Ni 1.4 to 2.1 wt%,
Ag0.1-0.3wt%, Zr0.05-0.4wt%, Si0.05-0.1
It is formed by producing an ingot composed of wt% and the balance Cu, subjecting the ingot to hot working, treating at a solution temperature of 880 to 950 ° C, and performing heat treatment at an aging temperature of 430 to 500 ° C. A method of manufacturing an electrode material for welding, comprising:
JP5220280A 1993-09-03 1993-09-03 Welding electrode material and manufacturing method thereof Expired - Lifetime JP2568032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5220280A JP2568032B2 (en) 1993-09-03 1993-09-03 Welding electrode material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5220280A JP2568032B2 (en) 1993-09-03 1993-09-03 Welding electrode material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0775895A true JPH0775895A (en) 1995-03-20
JP2568032B2 JP2568032B2 (en) 1996-12-25

Family

ID=16748702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5220280A Expired - Lifetime JP2568032B2 (en) 1993-09-03 1993-09-03 Welding electrode material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2568032B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816948A (en) * 2012-08-02 2012-12-12 烟台万隆真空冶金有限公司 Copper alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816948A (en) * 2012-08-02 2012-12-12 烟台万隆真空冶金有限公司 Copper alloy

Also Published As

Publication number Publication date
JP2568032B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
JPH0625388B2 (en) High strength, high conductivity copper base alloy
US4865662A (en) Aluminum-manganese-iron stainless steel alloy
JP6958765B1 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
CN112281043B (en) High fracture toughness Ti2AlNb-based alloy and preparation method and application thereof
CA1106650A (en) Machine shapable cu-ni-sn alloys
JPH07138719A (en) Method for forging ni-based superalloy forged part
JP3355132B2 (en) Machine structural steel with excellent fracture separation and durability
US3046167A (en) Heat-treating method and product
JP2568032B2 (en) Welding electrode material and manufacturing method thereof
JPH0819890A (en) Electrode material for welding and its production
JPS5989744A (en) Weldable titanium alloy
JPS63317647A (en) Cold-rolled steel sheet excellent in strength and toughness in weld zone and its production
JPH02236239A (en) Manufacture of high temperature wear-resistant co base alloy having excellent hot workability
CN114555283A (en) Wire rod for welding rod and method for manufacturing same
JPS63270446A (en) Production of al-mg base alloy thick plate for welded structure
JPH11138262A (en) Tig welding method and tig welding consumables
KR960015217B1 (en) Making method of cu-cr-zr-mg-ce-la-nd-pd alloy
JP3563311B2 (en) Copper alloy electrode material for resistance welding and method for producing the same
US2892704A (en) Titanium base alloys
JPS6326192B2 (en)
KR0182223B1 (en) Cu-cr-zr-mg-mischmetal alloy and the heat treatment thereof
JPS5959863A (en) Austenitic steel with favorable weldability and favorable strength at high temperature
JPH0672256B2 (en) Method for producing austenitic stainless clad steel sheet
JP3202738B2 (en) Non-heat treated steel for hot forging with excellent fracture surface smoothness
JPS63310946A (en) Production of copper alloy for resistance welding electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20091003

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20111003

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20111003

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20121003

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20131003