JPH077582Y2 - Engine ignition - Google Patents

Engine ignition

Info

Publication number
JPH077582Y2
JPH077582Y2 JP1989135745U JP13574589U JPH077582Y2 JP H077582 Y2 JPH077582 Y2 JP H077582Y2 JP 1989135745 U JP1989135745 U JP 1989135745U JP 13574589 U JP13574589 U JP 13574589U JP H077582 Y2 JPH077582 Y2 JP H077582Y2
Authority
JP
Japan
Prior art keywords
magnet
core
flywheel
distance
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989135745U
Other languages
Japanese (ja)
Other versions
JPH0330577U (en
Inventor
昭 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP1989135745U priority Critical patent/JPH077582Y2/en
Publication of JPH0330577U publication Critical patent/JPH0330577U/ja
Application granted granted Critical
Publication of JPH077582Y2 publication Critical patent/JPH077582Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、エンジンの点火時期を、フライホイールと一
体に回転する磁石の磁束に鎖交するパルサーコイルある
いは点火コイルに誘起される電圧を利用して決定する構
造のエンジンの点火装置に関するものである。
[Detailed Description of the Invention] (Industrial field of application) The present invention utilizes an ignition timing of an engine by using a voltage induced in a pulsar coil or an ignition coil interlinking with a magnetic flux of a magnet rotating integrally with a flywheel. The present invention relates to an engine ignition device having a structure determined by

(従来の技術) 例えばCDI方式やトランジスタ点火方式のマグネト点火
装置等のように、エンジンの点火時期を、フライホイー
ルと一体に回転する磁石の磁束に鎖交するパルサーコイ
ルに誘起される電圧を利用して決定する構造のエンジン
の点火装置においては、アナログ方式で進角させるとき
は、第10図のようにパルサーコイルによりレベルの異な
る電圧波形を発生させ、トリガーレベルを破線のように
設定して、低速時には第10図(a)のように遅れ波形B
を検出してP1点で点火し、高速時には第10図(b)のよ
うに進み波形Aを検出してP2点で点火する方式が採用さ
れていた。
(Prior Art) For example, in the case of a CDI type or a transistor ignition type magneto ignition device, the ignition timing of the engine is utilized by using the voltage induced in the pulsar coil interlinking with the magnetic flux of the magnet rotating integrally with the flywheel. In the engine ignition device of the structure determined by the above, when advancing in an analog manner, voltage waveforms with different levels are generated by the pulsar coil as shown in FIG. 10, and the trigger level is set as shown by the broken line. , The delay waveform B at low speed as shown in FIG. 10 (a)
Is detected and the ignition is performed at the P1 point, and at the time of high speed, as shown in FIG. 10 (b), the method of detecting the waveform A and igniting at the P2 point is adopted.

そして上記のような進角用の波形を得るために、従来の
例えばCDI方式を採用した点火装置は、第11図のよう
に、フライホイール31の内周に複数の磁石32を取付け、
フライホイール31の内周側に磁石32に近接対向するコア
33を有するエキサイタコイル34を配置すると共に、磁石
32の磁束を鉄片35によりフライホイール31の外周に導出
し、フライホイール31の外周側にE字状のコア36を有す
るパルサーコイル37を配置して、エキサイタコイル34と
パルサーコイル37とをイグナイタ38の入力端に接続し、
イグナイタ38の出力端を点火コイル39に接続していた。
Then, in order to obtain the waveform for the advance angle as described above, the conventional ignition device adopting, for example, the CDI method, as shown in FIG. 11, has a plurality of magnets 32 attached to the inner circumference of the flywheel 31,
A core that closely faces the magnet 32 on the inner peripheral side of the flywheel 31.
Place the exciter coil 34 with 33 and magnet
The magnetic flux of 32 is led to the outer circumference of the flywheel 31 by the iron piece 35, the pulsar coil 37 having the E-shaped core 36 is arranged on the outer circumferential side of the flywheel 31, and the exciter coil 34 and the pulsar coil 37 are connected to the igniter 38. Connect to the input end of
The output end of the igniter 38 was connected to the ignition coil 39.

一方、エンジンの点火時期を、フライホイールと一体に
回転する磁石の磁束に鎖交する点火コイルに誘起される
電圧を利用して決定する構造のエンジンの点火装置にお
いては、第12図のように、フライホイール41の外周に切
欠部42を形成し、切欠部42に磁石43を配置して、フライ
ホイール41の外周に点火コイル44のコア45を近接対向さ
せた構造であり、切欠部42の一方の壁面42aと磁石43の
一方の端面43aとの間隙て、切欠部42の他方の壁面42bと
磁石43の他方の端面43bとの間隙とを同じ寸法に設定し
ていた。
On the other hand, in the engine ignition device having a structure in which the ignition timing of the engine is determined by using the voltage induced in the ignition coil that interlinks with the magnetic flux of the magnet that rotates integrally with the flywheel, as shown in FIG. The notch 42 is formed on the outer periphery of the flywheel 41, the magnet 43 is arranged in the notch 42, and the core 45 of the ignition coil 44 is closely opposed to the outer periphery of the flywheel 41. The gap between one wall surface 42a and one end surface 43a of the magnet 43 and the gap between the other wall surface 42b of the cutout portion 42 and the other end surface 43b of the magnet 43 are set to have the same size.

(考案が解決しようとする課題) パルサーコイル37を用いた上記従来の点火装置では、パ
ルサーコイル37のコア36をE字状に形成し、コア36の中
央の突出部の両側に巻線を巻回する等、パルサーコイル
37の構造が複雑であった。また鉄片35により磁石32の磁
束をフライホイール31の外周側に導出する等、フライホ
イール31の構造が複雑であった。そして以上のことか
ら、製作コストが高価であった。
(Problems to be Solved by the Invention) In the above-described conventional ignition device using the pulsar coil 37, the core 36 of the pulsar coil 37 is formed in an E shape, and windings are wound on both sides of the central protruding portion of the core 36. Turning, pulsar coil
The structure of 37 was complicated. Further, the structure of the flywheel 31 is complicated, such that the magnetic flux of the magnet 32 is guided to the outer peripheral side of the flywheel 31 by the iron piece 35. From the above, the manufacturing cost was high.

なお従来の点火装置として、例えば実開昭60-188874号
公報あるいは特開昭61-112776号公報に記載されたもの
がある。
As a conventional ignition device, there is, for example, one described in Japanese Utility Model Laid-Open No. 60-188874 or Japanese Patent Laid-Open No. 61-112776.

一方、点火コイル44を用いた上記従来の点火装置では、
第13図のように、点火コイル44の1次巻線に鎖交する磁
束φや、点火コイル44の1次巻線に誘起される電圧eお
よび電流iは、1周期の前半部と後半部とが同じ大きさ
になる。しかも高圧発生に用いる電流iの後半部が、中
心線に対してほぼ左右対称の波形になる。したがって電
流iの遮断によって点火を行い、進角させるに際して、
フライホイール41の回転数nと遮断電流iとの関係は第
14図のようになり、フライホイール41の高速回転(回転
数n13)あるいは中速回転(回転数n12)のときの遮断電
流i13あるいはi12と比較して、低速回転(回転数n11)
のときの遮断電流i11が非常に小さくなる。すなわち進
角幅wを大きくするほど低速時の遮断電流が小さくな
り、点火性能が低下する。
On the other hand, in the above conventional ignition device using the ignition coil 44,
As shown in FIG. 13, the magnetic flux φ interlinking with the primary winding of the ignition coil 44, the voltage e and the current i induced in the primary winding of the ignition coil 44 are the first half and the second half of one cycle. And become the same size. Moreover, the latter half of the current i used to generate the high voltage has a substantially symmetrical waveform with respect to the center line. Therefore, when igniting by advancing the current i and advancing the angle,
The relationship between the rotation speed n of the flywheel 41 and the breaking current i is
As shown in Fig. 14, the flywheel 41 rotates at low speed (rotation speed n11) compared to the cutoff current i13 or i12 at high speed (rotation speed n13) or medium speed rotation (rotation speed n12).
The cutoff current i11 at is very small. That is, the larger the advance width w, the smaller the breaking current at low speed, and the lower the ignition performance.

この問題を解決するため、例えば実開昭63-40587号公報
に記載されているように、点火コイルのヨークの形状を
非対称にする提案がなされているが、この場合、コスト
が増加するという不都合がある。
In order to solve this problem, for example, as disclosed in Japanese Utility Model Laid-Open No. 63-40587, it has been proposed to make the yoke of the ignition coil asymmetrical, but in this case, the cost increases. There is.

(課題を解決するための手段) 上記課題を解決するため、第1の考案によるエンジンの
点火装置は、エンジンの点火時期を、強磁性体のフライ
ホイールに設けられた磁石の磁束に鎖交するパルサーコ
イルに誘起される電圧を利用して決定する構造のエンジ
ンの点火装置において、フライホイール1の外周に、円
周方向所定長さにわたって所定深さの切欠部2を形成
し、該切欠部2に磁石3を固着し、パルサーコイル4の
コア5を、コの字形に形成すると共にフライホイール中
心側に向って開口するように配置し、磁石3の回転方向
前方側端縁3aと切欠部2の回転方向前方側端縁2aとの間
の進み側距離L11を、コア5の両突出部間の距離L12より
も長く、かつ、コア5の円周方向全長距離(L12+2L1
3)よりも短く設定し、磁石3の回転方向後側端縁3bと
切欠部2の回転方向後方側端縁2bとの間の遅れ側距離L1
4を、コア5の両突出部間の距離L12よりも短く設定する
ことにより、磁石3の磁束とパルサーコイル4との鎖交
期間の前半における前記空隙長を後半における空隙長よ
りも大きくし、コア5とフライホイール1あるいは磁石
3との間の空隙とで形成される磁気回路の磁気抵抗を、
フライホイールの進み側が遅れ側よりも大きくなるよう
にしたものである。
(Means for Solving the Problems) In order to solve the above problems, the engine ignition device according to the first invention links the ignition timing of the engine with the magnetic flux of a magnet provided on a ferromagnetic flywheel. In an engine ignition device having a structure that is determined by using a voltage induced in a pulsar coil, a cutout 2 having a predetermined depth is formed on a circumference of a flywheel 1 over a predetermined length in a circumferential direction, and the cutout 2 is formed. The magnet 3 is fixedly attached to the pulsar coil 4, and the core 5 of the pulsar coil 4 is formed in a U-shape and is arranged so as to open toward the center side of the flywheel. The leading side distance L11 from the front edge 2a in the rotation direction of the core 5 is longer than the distance L12 between the two projecting portions of the core 5, and the total length of the core 5 in the circumferential direction (L12 + 2L1
It is set shorter than 3) and the delay side distance L1 between the rotation direction rear end 3b of the magnet 3 and the rotation direction rear end 2b of the notch 2
By setting 4 to be shorter than the distance L12 between both protrusions of the core 5, the gap length in the first half of the interlinking period between the magnetic flux of the magnet 3 and the pulsar coil 4 is made larger than the gap length in the latter half, The magnetic resistance of the magnetic circuit formed by the air gap between the core 5 and the flywheel 1 or the magnet 3,
The leading side of the flywheel is made larger than the lagging side.

また本願の第2の考案によるエンジンの点火装置は、エ
ンジンの点火時期を、強磁性体のフライホイールに設け
られた磁石の磁束に鎖交する点火コイルの1次巻線に誘
起される電圧を利用して決定し、1次巻線の電流の遮断
によって点火を行う構造のエンジンの点火装置におい
て、フライホール1の外周に、円周方向所定長さにわた
って所定深さの切欠部22を形成し、該切欠部22に磁石23
を固着し、点火コイル24のコア25を、コの字形に形成す
ると共にフライホイール中心側に向って開口するように
配置し、磁石23の回転方向前方側端縁23aと切欠部22の
回転方向前方側端縁22aとの間の進み側距離L21を、コア
25の両突出部間の距離L22よりも長く、かつ、コア25の
円周方向全長距離(L22+2L23)よりも短く設定し、磁
石23の回転方向後側端縁23bと切欠部22の回転方向後方
側端縁22bとの間の遅れ側距離L24を、コア25の両突出部
間の距離L22よりも短く設定することにより、磁石23の
磁束と点火コイル24との鎖交期間の前半における前記空
隙長を後半における空隙長よりも大きくし、コア25と前
記強磁性体あるいは磁石との間の空隙とで形成される磁
気回路の磁気抵抗を、フライホイールの進み側が遅れ側
よりも大きくなるようにしたものである。
In the engine ignition device according to the second invention of the present application, the ignition timing of the engine is determined by the voltage induced in the primary winding of the ignition coil that is linked to the magnetic flux of the magnet provided in the ferromagnetic flywheel. In an ignition device for an engine having a structure which is determined by utilizing the current of the primary winding to ignite, a cutout portion 22 having a predetermined depth is formed on the outer circumference of the flyhole 1 over a predetermined length in the circumferential direction. , The magnet 23 in the notch 22
The core 25 of the ignition coil 24 is formed so as to have a U-shape, and is arranged so as to open toward the center of the flywheel. The direction of rotation of the magnet 23 is the front side edge 23a and the direction of rotation of the notch 22. The leading side distance L21 from the front edge 22a is set to
25 is longer than the distance L22 between both protrusions and shorter than the total length of the core 25 in the circumferential direction (L22 + 2L23), and the rear end edge 23b of the magnet 23 in the rotational direction and the rear side of the cutout 22 in the rotational direction are set. By setting the delay side distance L24 with the side edge 22b to be shorter than the distance L22 between both protrusions of the core 25, the air gap in the first half of the interlinking period between the magnetic flux of the magnet 23 and the ignition coil 24. The length is made larger than the air gap length in the latter half, and the magnetic resistance of the magnetic circuit formed by the air gap between the core 25 and the ferromagnetic material or magnet is set so that the leading side of the flywheel is larger than the trailing side. It was done.

(作用) 第1の考案においては、磁気回路の磁気抵抗を、進み側
が遅れ側よりも大きくなるようにしたので、パルサーコ
イルのコアを通る磁束は遅れ側の方が大きく、したがっ
てパルサーコイルの巻線に誘起される電圧も遅れ側の方
が大きい。
(Operation) In the first invention, the magnetic resistance of the magnetic circuit is set to be larger on the leading side than on the lagging side. Therefore, the magnetic flux passing through the core of the pulsar coil is larger on the lagging side, and accordingly, the winding of the pulsar coil is larger. The voltage induced in the line is also larger on the delay side.

第2の考案においては、磁気回路の磁気抵抗を、進み側
が遅れ側よりも大きくなるようにしたので、点火コイル
のコアを通る磁束は遅れ側の方が大きく、したがって点
火コイルの1次巻線の電流も遅れ側の方が大きい。すな
わち遮断電流が大きくなる。
In the second invention, since the magnetic resistance of the magnetic circuit is set to be larger on the leading side than on the lagging side, the magnetic flux passing through the core of the ignition coil is larger on the lagging side, and therefore the primary winding of the ignition coil is formed. The current of is also larger on the delay side. That is, the breaking current becomes large.

いずれの考案も、コイルのコアをコの字形とし、フライ
ホイールの切欠部内に設けられる磁石の配置を変更調整
することにより、簡単に点火時期を所望の時期までに進
め或は遅らせることができ、コストが低減される。
In any of the inventions, the core of the coil is U-shaped, and by changing and adjusting the arrangement of the magnets provided in the cutout portion of the flywheel, it is possible to easily advance or delay the ignition timing to a desired timing, Cost is reduced.

(第1の実施例) 第1の考案の一実施例を第1図〜第3図に基づいて説明
する。
(First Embodiment) An embodiment of the first invention will be described with reference to FIGS.

第1図はエンジンの点火装置の要部の構成図で、鉄等の
強磁性体からなりかつエンジンの回転により矢印α方向
に回転するフライホイール1の外周部には円周方向所定
長さにわたって所定深さの切欠部2が形成されており、
切欠部2の適所には磁石3が固着されている。磁石3の
外周はフライホイール1の外周と同一円筒面上に位置し
ており、フライホイール1の外周近傍にはパルサーコイ
ル4が配置されている。パルサーコイル4のコア5はコ
字状で、両突出部がフライホイール1の円周方向に互い
に所定間隔をあけて位置し、かつ両突出部の先端面が磁
石3あるいはフライホイール1の外周に近接対向してい
る。パルサーコイル4のコア5に巻回された巻線6は図
外のイグナイタに接続されている。
FIG. 1 is a configuration diagram of a main part of an engine ignition device. The flywheel 1 is made of a ferromagnetic material such as iron and rotates in the direction of an arrow α when the engine rotates. The notch 2 having a predetermined depth is formed,
A magnet 3 is fixed to the cutout portion 2 at an appropriate position. The outer circumference of the magnet 3 is located on the same cylindrical surface as the outer circumference of the flywheel 1, and a pulsar coil 4 is arranged near the outer circumference of the flywheel 1. The core 5 of the pulsar coil 4 is U-shaped, and both protrusions are located at predetermined intervals in the circumferential direction of the flywheel 1, and the tip surfaces of both protrusions are on the magnet 3 or the outer periphery of the flywheel 1. Close proximity to each other. The winding 6 wound around the core 5 of the pulsar coil 4 is connected to an igniter (not shown).

切欠部2のフライホイール1の回転方向両壁面2a,2bの
うち一方の壁面2aと、磁石3のフライホイール1の回転
方向両端面3a,3bのうち一方の端面3aとの間の距離L11
は、コア5の両突出部間の距離L12よりも長く、かつ両
突出部間の距離L12に各突出部の厚さL13を加えた距離L1
2+2L13よりも短く設定されている。また切欠部2の他
方の壁面2bと磁石3の他方の端面3bとの間の距離L14
は、コア5の両突出部間の距離L12よりも短く設定され
ている。
The distance L11 between one wall surface 2a of the two wall surfaces 2a, 2b in the rotational direction of the flywheel 1 of the cutout portion 2 and one end surface 3a of both end surfaces 3a, 3b of the magnet 3 in the rotational direction of the flywheel 1.
Is longer than the distance L12 between both protrusions of the core 5 and is a distance L1 obtained by adding the thickness L13 of each protrusion to the distance L12 between both protrusions.
It is set shorter than 2 + 2L13. Also, the distance L14 between the other wall surface 2b of the cutout portion 2 and the other end surface 3b of the magnet 3
Is set to be shorter than the distance L12 between both protrusions of the core 5.

次に動作を説明する。フライホイール1が矢印α方向に
回転して磁石3が第1図に示す位置の近傍に達すると、
磁石3と、フライホイール1と、コア5と、フライホイ
ール1とコア5との間の空隙S11と、コア5と磁石3と
の間の空隙S12とにより磁気回路が形成され、磁石3の
磁束がコア5を通って巻線6と鎖交し、パルサーコイル
4の巻線6に電圧が誘起される。ここで、距離L11は距
離L12よりも大きいので、コア5の両突出部の先端面が
磁石3あるいはフライホイール1の外周と近接対向する
のは厚さL13のうちの一部であり、空隙S11,S12の実質的
な空隙長はコア5の突出部の先端面と磁石3あるいはフ
ライホイール1の外周との対向面間の距離よりも大き
い。したがって磁気回路の磁気抵抗が大きいので、鎖交
磁束は小さく、誘起される電圧も小さい。フライホイー
ル1がさらに回転して第2図に示す位置の近傍に達する
と、距離L14は距離L12よりも短いので、コア5の両突出
部の先端面全体が磁石3あるいはフライホイール1の外
周に近接対向し、空隙S13,S14の空隙長が空隙S11,S12の
実質的な空隙長よりも短くなって、磁気回路の磁気抵抗
が減少し、誘起される電圧が大きくなる。すなわちフラ
イホイール1の回転に伴なってパルサーコイル4のコア
5を通る磁束φ11は第3図に実線で示すように変化し、
それによりパルサーコイル4の巻線6に誘起される電圧
e11は第3図に破線で示すように変化する。すなわち第1
0図(a)と同様に低速時には小さな進み波形Aと大き
な遅れ波形Bとが得られ、トリガーレベルを一点鎖線で
示すレベルに設定することにより、イグナイタでP1点を
検出して点火させることができる。もちろん高速時には
進み波形Aが大きくなってトリガーレベルを越えるの
で、進み波形Aを検出して点火させることができる。
Next, the operation will be described. When the flywheel 1 rotates in the direction of the arrow α and the magnet 3 reaches the vicinity of the position shown in FIG. 1,
A magnetic circuit is formed by the magnet 3, the flywheel 1, the core 5, the air gap S11 between the flywheel 1 and the core 5, and the air gap S12 between the core 5 and the magnet 3, and the magnetic flux of the magnet 3 is generated. Crosses the winding 6 through the core 5, and a voltage is induced in the winding 6 of the pulsar coil 4. Here, since the distance L11 is larger than the distance L12, it is only a part of the thickness L13 that the tip surfaces of both projecting portions of the core 5 closely face the outer periphery of the magnet 3 or the flywheel 1, and the gap S11 The substantial air gap length of S12 is larger than the distance between the facing surfaces of the tip of the protruding portion of the core 5 and the outer circumference of the magnet 3 or the flywheel 1. Therefore, since the magnetic resistance of the magnetic circuit is large, the interlinkage magnetic flux is small and the induced voltage is also small. When the flywheel 1 further rotates and reaches the vicinity of the position shown in FIG. 2, the distance L14 is shorter than the distance L12, so that the entire tip surfaces of both projecting portions of the core 5 are located on the outer periphery of the magnet 3 or the flywheel 1. The air gap lengths of the air gaps S13 and S14 are close to each other and are shorter than the substantial air gap lengths of the air gaps S11 and S12, the magnetic resistance of the magnetic circuit is reduced, and the induced voltage is increased. That is, as the flywheel 1 rotates, the magnetic flux φ11 passing through the core 5 of the pulsar coil 4 changes as shown by the solid line in FIG.
As a result, the voltage induced in the winding 6 of the pulsar coil 4
e11 changes as shown by the broken line in FIG. Ie first
As in Fig. 0 (a), a small advance waveform A and a large delay waveform B are obtained at low speed, and by setting the trigger level to the level shown by the alternate long and short dash line, the P1 point can be detected and ignited by the igniter. it can. Of course, at high speed, the advance waveform A becomes large and exceeds the trigger level, so that the advance waveform A can be detected and ignited.

このように、距離L11,L12,L14の関係を上記のように設
定して空隙S11,S12を空隙S13,S14よりも大きくするだけ
で低速時にパルサーコイル4に第10図(a)と同様な第
3図のような波形の電圧を得ることができるので、従来
のようにパルサーコイル37やフライホイール31を複雑な
形状にする必要がなく、製作コストを良好に低減でき
る。
In this way, the relationship between the distances L11, L12, L14 is set as described above and the gaps S11, S12 are made larger than the gaps S13, S14. Since the voltage having the waveform as shown in FIG. 3 can be obtained, it is not necessary to form the pulsar coil 37 and the flywheel 31 in a complicated shape as in the conventional case, and the manufacturing cost can be favorably reduced.

(別の実施例) 第4図は第2の考案を適用した実施例を示しており、鉄
等の強磁性体からなりかつエンジンの回転により矢印γ
方向に回転するフライホイール21の外周部には、円周方
向所定長さにわたって所定深さの切欠部22が形成されて
いる。切欠部22の適所には磁石23が固着されている。磁
石23の外周はフライホイール21の外周と同一円周面上に
位置しており、フライホイール21の外周近傍には点火コ
イル24が配置されている。点火コイル24のコア25はほぼ
コ字状で、両突出部がフライホイール21の円周方向に互
いに所定間隔をあけて位置し、かつ両突出部の先端面が
磁石23あるいはフライホイール21の外周に近接対向して
いる。
(Another embodiment) FIG. 4 shows an embodiment to which the second invention is applied, which is made of a ferromagnetic material such as iron, and is indicated by an arrow γ by the rotation of the engine.
A notch 22 having a predetermined depth is formed on the outer peripheral portion of the flywheel 21 that rotates in a predetermined direction over a predetermined length in the circumferential direction. A magnet 23 is fixed to the cutout portion 22 at an appropriate position. The outer circumference of the magnet 23 is located on the same circumferential surface as the outer circumference of the flywheel 21, and an ignition coil 24 is arranged near the outer circumference of the flywheel 21. The core 25 of the ignition coil 24 is substantially U-shaped, and both projecting portions are located at predetermined intervals in the circumferential direction of the flywheel 21, and the tip surfaces of both projecting portions are the magnet 23 or the outer periphery of the flywheel 21. Close to each other.

切欠部22のフライホイール21の回転方向両壁面22a,22b
のうち一方の壁面22aと、磁石23のフライホイール21の
回転方向両端面23a,23bのうち一方の端面23aとの間の距
離L21は、コア25の両突出部間の距離L22よりも長く、か
つ両突出部間の距離L22に各突出部の厚さL23を加えた距
離L22+2L23よりも短く設定されている。また切欠部22
の他方の壁面22bと磁石23の他方の端面23bとの間の距離
L24は、コア25の両突出部間の距離L22よりも短く設定さ
れている。
Rotational direction both walls 22a, 22b of the flywheel 21 of the notch 22
One of the wall surfaces 22a, the distance L21 between the two end faces 23a, 23b of the magnet 23 in the rotation direction of the flywheel 21 is longer than the distance L22 between the protrusions of the core 25. Moreover, it is set to be shorter than the distance L22 + 2L23 obtained by adding the thickness L23 of each protrusion to the distance L22 between both protrusions. Notch 22
Between the other wall surface 22b of the magnet and the other end surface 23b of the magnet 23
L24 is set shorter than the distance L22 between both protrusions of the core 25.

この実施例では、フライホイール21が矢印γ方向に回転
して磁石23が第4図に示す位置の近傍に達すると、磁石
23と、フライホイール21と、コア25と、フライホイール
21とコア25との間の空隙S21と、コア25と磁石23との間
の空隙S22とにより磁気回路が形成され、磁石23の磁束
がコア25を通って点火コイル24の1次巻線と鎖交し、点
火コイル24の1次巻線に電圧が誘起される。ここで、距
離L21は距離L22よりも大きいので、コア25の両突出部の
先端面が磁石23あるいはフライホイール21の外周と近接
対向するのは厚さL23のうちの一部であり、空隙S21,S22
の実質的な空隙長はコア25の突出部の先端面と磁石23あ
るいはフライホイール21の外周との対向面間の距離より
も大きい。したがって磁気回路の磁気抵抗が大きいの
で、鎖交磁束は小さく、誘起される電圧も小さい。フラ
イホイール21がさらに回転して第5図に示す位置の近傍
に達すると、距離L24は距離L22よりも短いので、コア25
の両突出部の先端面全体が磁石23あるいはフライホイー
ル21の外周に近接対向し、空隙S23,S24の空隙長が空隙S
21,S22の実質的な空隙長よりも短くなって、磁気回路の
磁気抵抗が減少し、誘起される電圧が大きくなる。これ
により点火コイル24の1次巻線の電流は、1周期の後半
部が前半部よりも大きくなり、しかも後半部の終端部分
で急峻に立上がる波形になる。すなわちフライホイール
21の回転に伴なって点火コイル24のコア25を通る磁束φ
31は第6図に実線で示すように変化し、それにより点火
コイル24の1次巻線に誘起される電圧e31は第6図に破
線で示すように変化し、それにより点火コイル24の1次
巻線の電流i2は第6図に一点鎖線で示すように変化す
る。
In this embodiment, when the flywheel 21 rotates in the direction of the arrow γ and the magnet 23 reaches the vicinity of the position shown in FIG.
23, flywheel 21, core 25, flywheel
A magnetic circuit is formed by the air gap S21 between the core 21 and the core 25 and the air gap S22 between the core 25 and the magnet 23, and the magnetic flux of the magnet 23 passes through the core 25 and the primary winding of the ignition coil 24. A voltage is induced in the primary winding of the ignition coil 24 by interlinking. Here, since the distance L21 is larger than the distance L22, it is a part of the thickness L23 that the tip surfaces of both projecting portions of the core 25 closely face the outer periphery of the magnet 23 or the flywheel 21, and the gap S21 , S22
The substantial air gap length is larger than the distance between the facing surfaces of the projecting portion of the core 25 and the magnet 23 or the outer circumference of the flywheel 21. Therefore, since the magnetic resistance of the magnetic circuit is large, the interlinkage magnetic flux is small and the induced voltage is also small. When the flywheel 21 further rotates and reaches the vicinity of the position shown in FIG. 5, the distance L24 is shorter than the distance L22, so the core 25
The entire tip surfaces of both of the protruding portions of the two closely face the outer circumference of the magnet 23 or the flywheel 21, and the gap length of the gaps S23 and S24 is the gap S
It becomes shorter than the substantial air gap length of 21, S22, the magnetic resistance of the magnetic circuit decreases, and the induced voltage increases. As a result, the current of the primary winding of the ignition coil 24 has a waveform in which the latter half of one cycle is larger than the former half, and moreover has a steep rise at the end of the latter half. Ie flywheel
The magnetic flux φ passing through the core 25 of the ignition coil 24 with the rotation of 21
31 changes as shown by the solid line in FIG. 6, whereby the voltage e31 induced in the primary winding of the ignition coil 24 changes as shown by the broken line in FIG. The current i2 of the next winding changes as shown by the alternate long and short dash line in FIG.

したがって点火コイル24の1次巻線の電流iの遮断によ
って点火を行い、進角させるに際して、フライホイール
21の回転数と遮断電流との関係は第7図のようになり、
フライホイール21の高速回転(回転数n23)あるいは中
速回転(回転数n22)のときの遮断電流i23あるいはi22
と比較して、低速回転(回転数n21)のときの遮断電流i
21が第14図に示す従来装置の場合ほど小さくならない。
すなわち進角幅w1を大きくしても低速時の遮断電流があ
まり小さくならず、点火性能の低下がない。
Therefore, when the ignition coil 24 is ignited by cutting off the current i in the primary winding of the ignition coil 24 and is advanced, a flywheel is used.
The relation between the rotation speed of 21 and the breaking current is as shown in Fig. 7,
Breaking current i23 or i22 when flywheel 21 rotates at high speed (rotation speed n23) or medium speed (rotation speed n22)
Comparing with, breaking current i at low speed rotation (rotation speed n21)
21 does not become smaller than in the case of the conventional device shown in FIG.
That is, even if the advance angle width w1 is increased, the breaking current at low speed does not become so small, and the ignition performance does not deteriorate.

なおこの実施例では、低速時の遮断電流を第12図の従来
装置と同じにした場合、第8図のように従来装置の進角
幅w1に対し進角幅w2は大幅に大きくなる。
In this embodiment, when the breaking current at low speed is the same as that of the conventional device shown in FIG. 12, the advance width w2 is significantly larger than the advance width w1 of the conventional device as shown in FIG.

またこの実施例では、第12図の従来装置と比較して、点
火性能を示す三針火花間隙が第9図(A)のように向上
し、進角性能を示す点火時期も第9図(B)のように向
上する。第9図においては、この実施例の場合を実線で
示し、従来装置の場合を破線で示している。
Further, in this embodiment, the three-needle spark gap showing the ignition performance is improved as shown in FIG. 9 (A), and the ignition timing showing the advance angle performance is also shown in FIG. 9 ( It improves like B). In FIG. 9, the case of this embodiment is shown by a solid line, and the case of the conventional device is shown by a broken line.

このように、距離L21,L22,L24の関係を上記のように設
定して空隙S21,S22を空隙S23,S24よりも大きくするだけ
で低速時に点火コイル24の1次巻線に第6図に1点鎖線
で示すような波形の電流i2を得ることができるので、従
来のように点火コイルのヨークを非対称の特別な形状に
することなく低速時の点火性能を確保でき、したがって
製作コストを良好に低減できる。
In this way, the relationship between the distances L21, L22, L24 is set as described above, and the gaps S21, S22 are made larger than the gaps S23, S24. Since the current i2 having the waveform as shown by the one-dot chain line can be obtained, the ignition performance at low speed can be secured without the asymmetric special shape of the yoke of the ignition coil unlike the conventional case, and therefore the manufacturing cost is good. Can be reduced to

なお上記各実施例においては、強磁性体からなるフライ
ホイール1,21を用いたが、本考案はこのような構成に限
定されるものではなく、磁路を構成する強磁性体をフラ
イホイール1,21に固着してもよい。
Although the flywheels 1 and 21 made of a ferromagnetic material are used in each of the above-described embodiments, the present invention is not limited to such a configuration, and the ferromagnetic material forming the magnetic path is made to the flywheel 1 , 21 may be fixed.

(考案の効果) 以上説明したように第1の考案は、コの字形のコア5を
有するパルサーコイル4を備えた点火装置において、上
記各距離及び寸法(L11,L12,L13,L14)の関係を所定の
関係に設定することにより、第1図に示す鎖交期間前半
の空隙S11,S12を第2図に示す鎖交期間後半の空隙S13,S
14よりも大きくすることができ、それにより、簡単に、
低速時にパルサーコイル4に第10図(a)と同様な第3
図のような波形の電圧を得ることができ、従来のように
パルサーコイルやフライホイールを複雑な形状にする必
要がなく、製作コストを良好に低減できる。
(Effect of Device) As described above, the first device is the ignition device including the pulsar coil 4 having the U-shaped core 5, and the relationship between the distances and the dimensions (L11, L12, L13, L14) described above. Are set to a predetermined relationship, the voids S11, S12 in the first half of the interlinking period shown in FIG. 1 are changed to the voids S13, S in the latter half of the interlinking period shown in FIG.
It can be greater than 14, which makes it easier
At the time of low speed, the pulsar coil 4 has a third No. 3 similar to Fig.
The voltage having the waveform as shown in the figure can be obtained, and it is not necessary to form the pulser coil and the flywheel in a complicated shape as in the conventional case, and the manufacturing cost can be favorably reduced.

また第2の考案は、エネルギーの蓄積と信号とを、同じ
点火コイル24の1次巻線で行なう構造であって、点火コ
イル24のコア25として、コの字形コア25を備えている場
合において、上記コア25の各寸法L22,L23と磁石23の前
後両側の空隙距離L21,L24等との関係を、所定の関係に
設定することにより、第4図に示す鎖交期間前半の空隙
S21,S22を第5図に示す鎖交期間後半の空隙S23,S24より
も大きくすることができ、それにより、簡単に、低速時
に点火コイル24の1次巻線に第6図に1点鎖線で示すよ
うな波形の電流i2を得ることができ、従来のように点火
コイルのヨークを非対称の特別な形状にすることなく低
速時の点火性能を確保でき、したがって製作コストを良
好に低減できる。
The second invention is a structure in which energy is stored and signals are performed by the same primary winding of the ignition coil 24, and the U-shaped core 25 is provided as the core 25 of the ignition coil 24. By setting the relationship between each dimension L22, L23 of the core 25 and the air gap distances L21, L24, etc. on both front and rear sides of the magnet 23 to a predetermined relationship, the air gap in the first half of the interlinking period shown in FIG.
It is possible to make S21 and S22 larger than the air gaps S23 and S24 in the latter half of the interlinking period shown in FIG. 5, so that the primary winding of the ignition coil 24 can easily be indicated by the one-dot chain line in FIG. 6 at low speed. It is possible to obtain the current i2 having a waveform as shown in (3), and it is possible to secure the ignition performance at low speeds without making the yoke of the ignition coil asymmetrical and have a special shape as in the conventional case. Therefore, the manufacturing cost can be favorably reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例におけるエンジンの点火装置
の要部の構成図、第2図は同点火装置の動作説明図、第
3図は同点火装置のパルサーコイルのコアを通る磁束お
よび巻線に誘起される電圧の波形図、第4図は別の実施
例におけるエンジンの点火装置の要部の構成図、第5図
は同点火装置の動作説明図、第6図は同点火装置の点火
コイルのコアを通る磁束や点火コイルの1次巻線に誘起
される電圧および電流の波形図、第7図は同点火装置の
遮断電流と進角幅との関係の説明図、第8図は同点火装
置の従来装置との比較における進角幅の説明図、第9図
(A)は同点火装置の従来装置との比較における三針火
花間隙の説明図、第9図(B)は同点火装置の従来装置
との比較における点火時期の説明図、第10図は従来の点
火装置のパルサーコイルに誘起される電圧の波形図、第
11図は同点火装置の全体構成図、第12図は別の従来の点
火装置の要部の構成図、第13図は同点火装置の点火コイ
ルのコアを通る磁束や点火コイルの1次巻線に誘起され
る電圧および電流の波形図、第14図は同点火装置の遮断
電流と進角幅との関係の説明図である。 1,21……フライホイール(強磁性体)、3,23……磁石、
4……パルサーコイル、5,25……コア、24……点火コイ
FIG. 1 is a configuration diagram of a main part of an engine ignition device according to an embodiment of the present invention, FIG. 2 is an operation explanatory diagram of the ignition device, and FIG. 3 is a magnetic flux passing through a core of a pulsar coil of the ignition device and FIG. 4 is a waveform diagram of the voltage induced in the winding, FIG. 4 is a configuration diagram of a main part of an engine ignition device in another embodiment, FIG. 5 is an operation explanatory diagram of the ignition device, and FIG. 6 is the ignition device. Of the voltage and current induced in the magnetic flux passing through the core of the ignition coil and in the primary winding of the ignition coil, FIG. 7 is an explanatory view of the relationship between the breaking current and the advance width of the ignition device, and FIG. FIG. 9 is an explanatory view of an advance angle width in comparison with the conventional device of the ignition device, FIG. 9 (A) is an explanatory view of a three-needle spark gap in comparison with the conventional device of the ignition device, and FIG. 9 (B). Is an explanatory diagram of the ignition timing in comparison with the conventional ignition device, and FIG. 10 is a pulser of the conventional ignition device. Waveform diagram of the voltage induced in yl, first
FIG. 11 is an overall configuration diagram of the ignition device, FIG. 12 is a configuration diagram of a main part of another conventional ignition device, and FIG. 13 is a magnetic flux passing through a core of the ignition coil of the ignition device and a primary winding of the ignition coil. FIG. 14 is a waveform diagram of the voltage and current induced in the line, and FIG. 14 is an explanatory diagram of the relationship between the breaking current and the advance width of the ignition device. 1,21 ...... flywheel (ferromagnetic material), 3,23 ... magnet,
4 ... Pulsar coil, 5,25 ... Core, 24 ... Ignition coil

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】エンジンの点火時期を、強磁性体のフライ
ホイールに設けられた磁石の磁束に鎖交するパルサーコ
イルに誘起される電圧を利用して決定する構造のエンジ
ンの点火装置において、フライホール(1)の外周に、
円周方向所定長さにわたって所定深さの切欠部(2)を
形成し、該切欠部(2)に磁石(3)を固着し、パルサ
ーコイル(4)のコア(5)を、コの字形に形成すると
共にフライホイール中心側に向って開口するように配置
し、磁石(3)の回転方向前方側端縁(3a)と切欠部
(2)の回転方向前方側端縁(2a)との間の進み側距離
(L11)を、コア5の両突出部間の距離(L12)よりも長
く、かつ、コア(5)の円周方向全長距離(L12+2L1
3)よりも短く設定し、磁石(3)の回転方向後側端縁
(3b)と切欠部(2)の回転方向後方側端縁(2b)との
間の遅れ側距離(L14)を、コア(5)の両突出部間の
距離(L12)よりも短く設定することにより、磁石
(3)の磁束パルサーコイル(4)との鎖交期間の前半
における前記空隙長を後半における空隙長よりも大きく
し、コア(5)とフライホイール(1)あるいは磁石
(3)との間の空隙とで形成される磁気回路の磁気抵抗
を、フライホイールの進み側が遅れ側よりも大きくなる
ようにしたことを特徴とするエンジンの点火装置。
1. An engine ignition device having a structure for determining an engine ignition timing by utilizing a voltage induced in a pulsar coil interlinking with a magnetic flux of a magnet provided on a ferromagnetic flywheel. On the outer circumference of the hole (1),
A notch (2) having a predetermined depth is formed over a predetermined length in the circumferential direction, a magnet (3) is fixed to the notch (2), and a core (5) of a pulsar coil (4) is formed into a U-shape. And is arranged so as to open toward the center side of the flywheel, and the front edge (3a) of the magnet (3) in the rotational direction and the front edge (2a) of the notch (2) in the rotational direction are formed. The leading side distance (L11) is longer than the distance (L12) between both protrusions of the core 5, and the total length of the core (5) in the circumferential direction (L12 + 2L1
Set shorter than 3), the delay side distance (L14) between the rotation direction rear side edge (3b) of the magnet (3) and the rotation direction rear side edge (2b) of the notch (2), By setting the gap shorter than the distance (L12) between both protrusions of the core (5), the gap length in the first half of the interlinking period of the magnet (3) with the magnetic flux pulsar coil (4) is set to be smaller than the gap length in the latter half. The magnetic resistance of the magnetic circuit formed by the air gap between the core (5) and the flywheel (1) or the magnet (3) is made larger on the leading side of the flywheel than on the lagging side. An engine ignition device characterized by the above.
【請求項2】エンジンの点火時期を、強磁性体のフライ
ホイールに設けられた磁石の磁束に鎖交する点火コイル
の1次巻線に誘起される電圧を利用して決定し、1次巻
線の電流の遮断によって点火を行う構造のエンジンの点
火装置において、フライホイール(1)の外周に、円周
方向所定長さにわたって所定深さの切欠部(22)を形成
し、該切欠部(22)に磁石(23)を固着し、点火コイル
(24)のコア(25)を、コの字形に形成すると共にフラ
イホイール中心側に向って開口するように配置し、磁石
(23)の回転方向前方側端縁(23a)と切欠部(22)の
回転方向前方側端縁(22a)との間の進み側距離(L21)
を、コア(25)の両突出部間の距離(L22)よりも長
く、かつ、コア(25)の円周方向全長距離(L22+2L2
3)よりも短く設定し、磁石(23)の回転方向後側端縁
(23b)と切欠部(22)の回転方向後方側端縁(22b)と
の間の遅れ側距離(L24)を、コア(25)の両突出部間
の距離(L22)よりも短く設定することにより、磁石(2
3)の磁束と点火コイル(24)との鎖交期間の前半にお
ける前記空隙長を後半における空隙長よりも大きくし、
コア(25)と前記強磁性体あるいは磁石との間の空隙と
で形成される磁気回路の磁気抵抗を、フライホイールの
進み側が遅れ側よりも大きくなるようにしたことを特徴
とするエンジンの点火装置。
2. An ignition timing of an engine is determined by using a voltage induced in a primary winding of an ignition coil interlinking with a magnetic flux of a magnet provided on a ferromagnetic flywheel, and the primary winding is determined. In an engine ignition device having a structure in which ignition is performed by interrupting a line current, a cutout portion (22) having a predetermined depth is formed on a periphery of a flywheel (1) over a predetermined length in a circumferential direction, and the cutout portion (22) is formed. The magnet (23) is fixed to the (22), the core (25) of the ignition coil (24) is formed in a U shape and is arranged so as to open toward the center side of the flywheel, and the magnet (23) rotates. Distance (L21) between the front edge (23a) in the front direction and the front edge (22a) in the rotational direction of the notch (22)
Is longer than the distance (L22) between both protrusions of the core (25), and is the total circumferential length of the core (25) (L22 + 2L2
Set it shorter than 3), and set the delay side distance (L24) between the rotation direction rear edge (23b) of the magnet (23) and the rotation direction rear edge (22b) of the notch (22), By setting the core (25) shorter than the distance (L22) between both protrusions, the magnet (2
The air gap length in the first half of the interlinking period between the magnetic flux of 3) and the ignition coil (24) is made larger than the air gap length in the second half,
Ignition of an engine characterized in that the magnetic resistance of a magnetic circuit formed by the air gap between the core (25) and the ferromagnetic material or magnet is set so that the leading side of the flywheel is larger than the trailing side. apparatus.
JP1989135745U 1989-04-25 1989-11-22 Engine ignition Expired - Lifetime JPH077582Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989135745U JPH077582Y2 (en) 1989-04-25 1989-11-22 Engine ignition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-49205 1989-04-25
JP4920589 1989-04-25
JP1989135745U JPH077582Y2 (en) 1989-04-25 1989-11-22 Engine ignition

Publications (2)

Publication Number Publication Date
JPH0330577U JPH0330577U (en) 1991-03-26
JPH077582Y2 true JPH077582Y2 (en) 1995-02-22

Family

ID=31718012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989135745U Expired - Lifetime JPH077582Y2 (en) 1989-04-25 1989-11-22 Engine ignition

Country Status (1)

Country Link
JP (1) JPH077582Y2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175830A (en) * 1974-12-27 1976-06-30 Yamaha Motor Co Ltd NAINENKIKANNOTENKASHINKAKUSEIGYOSOCHI
JPS5641163U (en) * 1979-09-07 1981-04-16
JPS606882U (en) * 1983-06-27 1985-01-18 三菱電機株式会社 engine ignition system

Also Published As

Publication number Publication date
JPH0330577U (en) 1991-03-26

Similar Documents

Publication Publication Date Title
CA1107348A (en) Breakerless magneto device
US4892079A (en) Magnetogenerator
JPS55140118A (en) Knocking detector for internal combustion engine
JPH077582Y2 (en) Engine ignition
US3447004A (en) Breakerless ignition control distributor
US3741186A (en) Electric generator for spark ignited engine
US4483306A (en) Magneto having transistor ignition circuit for engines
US4157702A (en) Automatic ignition timing advancing device in ignition system
US3775627A (en) Ignition timing signal generator
US3851198A (en) Electrical discharge advance system and method
JPS5938434B2 (en) Power generator for ignition timing control in non-contact ignition system
JP3146848B2 (en) Ignition control method for multi-cylinder internal combustion engine
JP3334580B2 (en) Ignition device for internal combustion engine
JP3498503B2 (en) Ignition method for internal combustion engine and ignition device for internal combustion engine
JP3414266B2 (en) Two-cylinder internal combustion engine
JPS6349565Y2 (en)
JP3062669U (en) Ignition device for internal combustion engine
JP4482712B2 (en) Non-contact ignition device for internal combustion engine
JPS585098Y2 (en) Non-contact ignition device
JP2827559B2 (en) Magnet generator rotation detector
JPS6145343Y2 (en)
JP2565547Y2 (en) Signal generator for internal combustion engine ignition system
JP2834498B2 (en) Reverse rotation prevention device for vehicle engine
JPS6233990Y2 (en)
JPH04362276A (en) Ignition device for internal combustion engine