JPH0775454B2 - Power control method for injection molding factory - Google Patents

Power control method for injection molding factory

Info

Publication number
JPH0775454B2
JPH0775454B2 JP60019296A JP1929685A JPH0775454B2 JP H0775454 B2 JPH0775454 B2 JP H0775454B2 JP 60019296 A JP60019296 A JP 60019296A JP 1929685 A JP1929685 A JP 1929685A JP H0775454 B2 JPH0775454 B2 JP H0775454B2
Authority
JP
Japan
Prior art keywords
injection molding
power
intermediate process
average
factory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60019296A
Other languages
Japanese (ja)
Other versions
JPS61180530A (en
Inventor
数利 焼本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP60019296A priority Critical patent/JPH0775454B2/en
Publication of JPS61180530A publication Critical patent/JPS61180530A/en
Publication of JPH0775454B2 publication Critical patent/JPH0775454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複数の射出成形機を有する射出成形工場にお
ける最大需要電力を制御する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for controlling the maximum power demand in an injection molding factory having a plurality of injection molding machines.

〔従来の技術〕 従来、射出成形工場の最大需要電力(1ヶ月中の30分ま
たは1時間平均電力のうちの最大値)または電力量を低
減するには、油圧回路の改良など射出成形機1台毎の電
力を減少させることだけが行なわれてきた。
[Prior Art] Conventionally, in order to reduce the maximum demand power (maximum value of 30 minutes or 1 hour average power in one month) or the amount of power in an injection molding factory, an injection molding machine 1 such as a hydraulic circuit improvement is used. Only reducing the power per stand has been done.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、近年、射出成形工場における射出成形機の台数
が増大し、工場が巨大化するに伴って、その稼動状況に
より工場の1時間あるいは30分当りの平均電力(デマン
ド電力)の変動巾が大きくなってきている。従って、電
力供給企業との契約電力を高く取決めしておけば基本料
金が大となり、逆に低く取決めしておけば最大需要電力
が契約電力を越えた時に追加支払いを課せられる追徴金
が大となるという問題点がある。
However, in recent years, as the number of injection molding machines in the injection molding factory has increased and the factory has become huge, the fluctuation range of the average power (demand power) per hour or 30 minutes of the factory is large depending on the operating status. It has become to. Therefore, if the contract power with the power supply company is set high, the basic charge will be large, and conversely, if the contract power is set low, the additional charge will be levied when the maximum demand power exceeds the contract power. There is a problem.

本発明の目的は、射出成形機の稼動状況を平準化するこ
とによりデマンド電力の変動巾を小さくする電力制御方
法を提供することにある。
An object of the present invention is to provide a power control method that reduces the fluctuation range of demand power by leveling the operating conditions of the injection molding machine.

〔問題点を解決するための手段〕[Means for solving problems]

まず、本発明による電力制御の原理を説明する。 First, the principle of power control according to the present invention will be described.

射出成形工場(以下、工場とする)の1時間当りの平均
電力Xは射出成形機の平均電力xと、それ以外の付帯設
備の平均電力Δxに分けられる。すなわち、X=x+Δ
xである。ところで、大規模な工場の平均電力Xは射出
成形機の平均電力xが大部分を占め、一般にx≫Δxで
ある。従って、1ヶ月中の最大需要電力すなわち、平均
電力Xの1ヶ月中の最大値が契約電力を越えないように
するには、平均電力Xのうち大部分を占める射出成形機
の平均電力xを一定値以下に押えることが必要である。
そこで、この平均電力xを制御する方法を次に説明す
る。
The average electric power X per hour of an injection molding factory (hereinafter referred to as a factory) is divided into the average electric power x of the injection molding machine and the average electric power Δx of other auxiliary equipment. That is, X = x + Δ
x. By the way, the average electric power X of a large-scale factory is dominated by the average electric power x of the injection molding machine, and generally x >> Δx. Therefore, in order to prevent the maximum demand power in one month, that is, the maximum value of the average power X in one month from exceeding the contracted power, the average power x of the injection molding machine that occupies most of the average power X is set to It is necessary to keep it below a certain value.
Therefore, a method of controlling this average power x will be described next.

工場における射出成形機(以下、機械とする)M1〜MN
台数をNとし、各機械Mi(i=1,…,N)に対する成形条
件が予め定まっており、それに伴って各機械Miの1成形
サイクル時間Ti〔sec〕および1成形サイルク電力量wi
〔kwh〕が定まっているものとする。さらに、各機械Mi
の中間工程(1成形サイクルが終了してから次のサイク
ルに入るまでの休止工程、成形品取出工程を含むことも
ある)の平均電力をPci〔kw〕、中間工程時間をTci〔se
c〕とすると、機械Miの中間工程を含む1サイクル消費
電力量Vi(Tci)および1時間当りの平均電力ei(Tci)
はそれぞれ次式のようになる。
The number of injection molding machines (hereinafter referred to as machines) M 1 to MN in a factory is N, and the molding conditions for each machine Mi (i = 1, ..., N) are predetermined, and accordingly, each machine Mi 1 molding cycle time Ti [sec] and 1 molding sylk power amount wi
It is assumed that [kwh] is fixed. In addition, each machine Mi
Pci [kw] is the average power of the intermediate step (sometimes including a pause step from the completion of one molding cycle to the next cycle, and a molded product take-out step), and the intermediate step time is Tci [se
c], one cycle power consumption Vi (Tci) including the intermediate process of machine Mi and average power per hour ei (Tci)
Are as follows:

また、全機械の合計平均電力xは次式で与えられる。 The total average power x of all machines is given by the following equation.

(1)式から明らかに、1サイクル消費電力量Vi(Tc
i)は中間工程時間Tciの単調増加関数でり、通常、中間
工程の平均電力Pciは、 であるので、(2)式から、1時間当りの平均電力ei
(Tci)は中間工程時間Tciの単調減少関数となることが
わかる。すなわち、中間工程時間Tciを延長すれば機械M
iの中間工程を含む1サイクル消費電力量Vi(Tci)は増
大し、逆に1時間当りの平均電力ei(Tci)および合計
平均電力xは減少する。このため、成形品の原単価を下
げるには中間工程時間Tciを延長せぬ方が有利であり、
また、最大需要電力を下げて契約電力を下げ、あるいは
契約電力以内におさめるためには中間工程時間Tciを極
力延長する方が有利であるという、いわゆるトレードオ
フ関係が発生することになる。
Clearly from equation (1), one cycle power consumption Vi (Tc
i) is a monotonically increasing function of the intermediate process time Tci, and normally the average power Pci of the intermediate process is Therefore, from the equation (2), the average power per hour ei
It can be seen that (Tci) is a monotonically decreasing function of the intermediate process time Tci. That is, if the intermediate process time Tci is extended, the machine M
The one-cycle power consumption Vi (Tci) including the intermediate step of i increases, and conversely, the average power ei (Tci) per hour and the total average power x decrease. Therefore, it is more advantageous not to extend the intermediate process time Tci in order to reduce the original unit price of the molded product.
In addition, a so-called trade-off relationship occurs in which it is advantageous to extend the intermediate process time Tci as much as possible in order to reduce the maximum demand power to reduce the contract power, or to keep the contract power within the contract power.

しかし、以上のうち、いずれか一方のみを取るのは効果
が少ないことは自明の理である。よって、最大需要電力
を契約電力以下に押える範囲内で、意図的に設定される
中間工程時間Tciを短かくして1サイクル消費電力量Vi
(Tci)を下げたいという要求が現実的てある。こうし
た要求は、次のような問題として表現され得る。すなわ
ち、 問題I 『設定したい全機械の一時間当り平均電力を とし、0TciZci の制約の下で、 を最小にする中間工程時間Tci*(i=1,…,N)を求め
る。』 ただし、Zciは生産計画上、許される最大延長可能な中
間工程時間であり、機械Miで生産される成形品の数(=
成形サイクル数と仮定する)をNi,許容される生産時間
をUiとして、 と表わされる。
However, it is self-evident that taking only one of the above is less effective. Therefore, within the range where the maximum demand power is kept below the contract power, the intermediate process time Tci that is intentionally set is shortened and the one cycle power consumption Vi
There is a realistic demand for lowering (Tci). Such a requirement can be expressed as the following problem. In other words, Problem I “Set the average power per hour of all the machines you want to set. And under the constraint of 0TciZci, The intermediate process time Tci * (i = 1, ..., N) that minimizes is obtained. However, Zci is the maximum extendable intermediate process time allowed in the production plan, and the number of molded products produced by machine Mi (=
Assuming the number of molding cycles) is Ni, and the allowable production time is Ui, Is represented.

ここで、Li=ei(Tci)とおくと、(1),(2)式よ
すなわち、 となるので、この1サイクル消費電力量Vi(Tci)は変
数Liの関数となり、これをYi(Li)とする。すると、問
題Iは数理的に次のように書替えられる。
Here, if Li = ei (Tci), then from equations (1) and (2) That is, Therefore, this one-cycle power consumption Vi (Tci) becomes a function of the variable Li, and this is designated as Yi (Li). Then, the problem I is mathematically rewritten as follows.

問題II すなわち中間工程時間設定の問題Iは、平均電力Liを各
機械に割りあてる問題II(電力配分問題)に帰結する。
Problem II That is, the problem I of setting the intermediate process time results in the problem II (power distribution problem) of allocating the average power Li to each machine.

次に、この問題IIの解法のアルゴリズムを説明する。本
アルゴリズムは、「動的計画法における最適性の原理」
に基づいて導出されたものである。
Next, an algorithm for solving this problem II will be described. This algorithm is based on the principle of optimality in dynamic programming.
It was derived based on.

まず、ai=ei(Zci), とおく。First, ai = ei (Zci), far.

〈STEP1〉a1<h<b1かつ f1(h)=minY1(L1)とおき、各 a1L1h hに対してf1(h)およびf1(h)=Y1(L1*)を満た
すL1 *を求めて記憶する。
<STEP1> a 1 <h < b 1 and f 1 (h) = minY 1 (L 1) Distant, f 1 (h) and f 1 for each a 1 L 1 h h (h ) = Y 1 Find and store L 1 * that satisfies (L 1 * ).

〈STEP2〉n=2〜Nまで次の逐次計算を行なう。<STEP2> The following sequential calculation is performed from n = 2 to N.

関数方程式 を満たす各hに対して解く。Functional equation Solve for each h that satisfies.

各hに対するfn(h),および ▲L* n▼を求め記憶する。Fn (h) for each h, and Calculate and store L * n .

〈STEP3〉 h=Wとおき、▲L* n▼およびfn(h)を求めれば、fn
(h)が最適値となる。
<STEP3> If h = W and ▲ L * n ▼ and fn (h) are calculated, fn
(H) is the optimum value.

〈STEP4〉n=N〜2まで次の順にて最適解を求める。<STEP4> Obtain an optimal solution in the following order from n = N to 2.

h=h−▲L* n▼とおき、▲L* n-1▼とfn-1(h)を求
める。以上のステップにより、最適解の系列(▲L
* n▼,Ln-1*,…,▲L* n▼,…,▲L* n▼)を求め
る。ところで、(1),(6)式より となるので、最適解を用いて、 より、各機械Miの中間工程時間▲Tc* i▼ (i=1…N)を算出する。
By setting h = h- ▲ L * n ▼, ▲ L * n-1 ▼ and fn- 1 (h) are obtained. Through the above steps, the sequence of optimal solutions (▲ L
* n ▼, Ln -1 * , ..., L * n ▼, ..., L * n ▼) are obtained. By the way, from equations (1) and (6) Therefore, using the optimal solution, Then, the intermediate process time ▲ Tc * i ▼ (i = 1 ... N) of each machine Mi is calculated.

0<▲Tc* i▼<Zciを満たし、かつ、 を満たす中間工程時間となる。 0 <▲ Tc * i ▼ <Zci is satisfied, and It is an intermediate process time that satisfies the condition.

本発明の射出成形工場の電力制御方法は、各射出成形機
の運転時の1成形サイクル電力量、中間工程時の平均電
力および許容される最大の中間工程時間から各射出成形
機の1時間当り平均電力の和を所定の値以下に押さえ、
かつ各射出成形機の中間工程を含む1サイクル消費電力
量の和を最小にする各射出成形機に対応する複数の中間
工程時間を算出し、該複数の中間工程時間をそれぞれ対
応する射出成形機に設定することを特徴とする。
The power control method of the injection molding factory of the present invention is based on one molding cycle power amount during operation of each injection molding machine, average power during intermediate steps, and maximum allowable intermediate step time per hour of each injection molding machine. Keep the sum of average power below a predetermined value,
In addition, a plurality of intermediate process times corresponding to each injection molding machine that minimizes the sum of the one-cycle power consumption including the intermediate process of each injection molding machine is calculated, and the plurality of intermediate process times respectively correspond to the injection molding machine. It is characterized by setting to.

〔実施例〕〔Example〕

本発明の実施例について図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図はオフライン制御の電力制御システムに適用した
本発明の一実施例を示している。電力計11〜1Nはそれぞ
れ射出成形機M1〜MNの1サイクル電力量W1〜WNを計測す
る。コンピュータ2では前記のSTEP1〜4のアルゴリズ
ムをプログラムとして予め格納するとともに、射出成形
機Mi(i=1,…,N)の成形サイクル時間Ti,中間工程平
均電力Pci,最大延長可能な中間工程時間Zciおよび全射
出成形機の1時間当り平均電力Wの各値が予め内部に設
定されており、1サイクル電力量Wiが入力されるとこの
アルゴリズムに基づいて中間工程時間Tciを算出する。
FIG. 1 shows an embodiment of the present invention applied to an offline control power control system. Measuring one cycle power amount W 1 to W-N of each power meter 1 1 to 1 N injection molding machine M 1 ~M N. In the computer 2, the algorithms of STEP1 to STEP4 are stored in advance as a program, and the molding cycle time Ti of the injection molding machine Mi (i = 1, ..., N), the intermediate process average power Pci, and the maximum extendable intermediate process time. Each value of Zci and the average electric power W per hour of all injection molding machines is preset internally, and when one cycle electric energy Wi is input, the intermediate process time Tci is calculated based on this algorithm.

次に、本発明実施例の動作を説明する。Next, the operation of the embodiment of the present invention will be described.

まず、電力計11〜1Nによつて射出成形機M1〜MNの1サイ
クル電力量W1〜WNがそれぞれ計測される。次に、不図示
の入力装置からオペレータによって電力計11〜1Nの計測
値である1サイクル電力量W1〜WNがコンピュータ2に入
力され、さらにプログラムが実行されて、コンピュータ
2から各射出成形機Miの中間工程時間Tciが出力され
る。これらの中間工程時間Tciがオペレータによって各
射出成形機Miの不図示の制御装置に設定される。
First, one cycle power amount W 1 to W-N of the power meter 1 1 to 1 by the N connexion injection molding machine M 1 ~M N are measured, respectively. Then, one cycle power amount W 1 to W-N from the input device is the measurement value of the power meter 1 1 to 1 N by an operator (not shown) is input to the computer 2, is further program execution, each of the computer 2 The intermediate process time Tci of the injection molding machine Mi is output. These intermediate process times Tci are set by the operator in a controller (not shown) of each injection molding machine Mi.

第2図はオンライン制御の電力制御システムに適用した
第2の実施例を示している。電力計11〜1Nはそれぞれ射
出成形機M1〜MNの1サイクル電力量W1〜WNおよび中間工
程平均電力Pci〜Pcnを計測し出力する。MODEM31〜3N
1サイクル電力量W1〜WNおよび中間工程平均電力Pci〜P
cnをデジタル化する。MODEM4はMODEM31〜3Nの各出力を
順次コンピュータ5に接続する。コンピュータ5は前記
のSTEP1〜4のアルゴリズムをプログラムとして予め格
納するとともに、射出成形機Miの成形サイクル時間Ti,
最大延長可能な中間工程時間Zciおよび全射出成形機の
1時間当り平均電力Wの各値が予め内部に設定されてお
り、1サイクル電力量Wiおよび中間工程平均電力Pc1〜P
cNが入力されるとこのアルゴリズムに基づいて中間工程
時間Tciを算出する。
FIG. 2 shows a second embodiment applied to an online control power control system. Wattmeter 1 1 to 1 N may be respectively measured cycle power amount W 1 to W-N and intermediate steps average power Pci~Pcn of the injection molding machine M 1 ~M N output. MODEM3 1 to 3 N is one cycle electric energy W 1 to W N and intermediate process average power Pci to P
Digitize cn. MODEM4 sequentially connects the respective outputs of MODEM3 1 to 3 N to the computer 5. The computer 5 stores the above-mentioned STEP1 to 4 algorithms as a program in advance, and the injection cycle Mi of the injection molding machine Mi, Ti,
The maximum extendable intermediate process time Zci and the average electric power W per hour of all injection molding machines are preset internally, and 1 cycle electric energy Wi and intermediate process average electric power Pc 1 to Pc
When c N is input, the intermediate process time Tci is calculated based on this algorithm.

この場合には、電力計1iで計測された1サイクル電力量
WiがMODEM3i,4を介してコンピュータ5に入力され、さ
らにコンピュータ5で算出された中間工程時間Tciが自
動的に射出成形機Miの不図示の制御装置にセットされ
る。
In this case, one cycle power measured by the power meter 1i
Wi is input to the computer 5 via MODEM 3i, 4 and the intermediate process time Tci calculated by the computer 5 is automatically set in a control device (not shown) of the injection molding machine Mi.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、最大需要電力を所
定の値(契約電力)以下に押さえ、かつ各射出成形機の
中間工程を含む1サイクル消費電力量の和を最小にする
ような中間工程時間が算出され、各射出成形機に設定さ
れる。
As described above, according to the present invention, the maximum demand power is kept below a predetermined value (contracted power) and the sum of the one cycle power consumption including the intermediate process of each injection molding machine is minimized. The process time is calculated and set in each injection molding machine.

このことにより、射出成形工場にて定められた契約電力
に応じて、工場のデマンド電力をコントロールすること
ができる。すなわち、デマンド電力が契約電力を超えな
いようにコントロールできるため、追徴金を回避でき
る。又、契約電力を定める場合には、契約電力を低く抑
えられるため、基本料金を低くできる。以上により、射
出成形工場の電力費用のムダの削減と低減が可能とな
り、大きな経済効果が期待できる。
As a result, the demand power of the factory can be controlled according to the contracted power determined by the injection molding factory. That is, since the demand power can be controlled so as not to exceed the contracted power, the surcharge can be avoided. Further, when the contracted electric power is set, the contracted electric power can be kept low, so that the basic charge can be lowered. From the above, it is possible to reduce and reduce the waste of electric power cost in the injection molding factory, and it is possible to expect a great economic effect.

又、工場の稼動状態も平準化され、設備のアイドルタイ
ムも減少する。
In addition, the operating conditions of the factory will be leveled and the idle time of the equipment will be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図はオフライン制御の電力制御システムに適用した
本発明の一実施例のブロック図、第2図はオンライン制
御の電力制御システムに適用した他の実施例のブロック
図である。 11〜1N……電力計 2,5……コンピュータ 31〜3N,4……MODEM M1〜MN……射出成形機 Tc1〜TcN……中間工程時間
FIG. 1 is a block diagram of an embodiment of the present invention applied to an offline control power control system, and FIG. 2 is a block diagram of another embodiment applied to an online control power control system. 1 1 to 1 N ...... Power meter 2,5 ...... Computer 3 1 to 3 N , 4 ...... MODEM M 1 to MN ...... Injection molding machine Tc 1 to Tc N ...... Intermediate process time

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の射出成形機を有する射出成形工場に
おいて、各射出成形機の運転時の1成形サイクル電力
量、中間工程時の平均電力および許容される最大の中間
工程時間から各射出成形機の1時間当り平均電力の和を
所定の値以下に押さえ、かつ各射出成形機の中間工程を
含む1サイクル消費電力量の和を最小にするような各射
出成形機に対応する複数の中間工程時間を算出し、該複
数の中間工程時間をそれぞれ対応する射出成形機に設定
することを特徴とする射出成形工場の電力制御方法。
1. In an injection molding factory having a plurality of injection molding machines, each injection molding is performed from one molding cycle electric power amount during operation of each injection molding machine, average power during intermediate process, and maximum allowable intermediate process time. A plurality of intermediates corresponding to each injection molding machine that keeps the sum of average electric power per hour of the machine below a predetermined value and minimizes the sum of power consumption of one cycle including the intermediate process of each injection molding machine. An electric power control method for an injection molding factory, comprising calculating a process time and setting the plurality of intermediate process times in respective corresponding injection molding machines.
JP60019296A 1985-02-05 1985-02-05 Power control method for injection molding factory Expired - Lifetime JPH0775454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60019296A JPH0775454B2 (en) 1985-02-05 1985-02-05 Power control method for injection molding factory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019296A JPH0775454B2 (en) 1985-02-05 1985-02-05 Power control method for injection molding factory

Publications (2)

Publication Number Publication Date
JPS61180530A JPS61180530A (en) 1986-08-13
JPH0775454B2 true JPH0775454B2 (en) 1995-08-09

Family

ID=11995460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019296A Expired - Lifetime JPH0775454B2 (en) 1985-02-05 1985-02-05 Power control method for injection molding factory

Country Status (1)

Country Link
JP (1) JPH0775454B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564853Y2 (en) * 1988-01-30 1998-03-11 邦祐 成瀬 Power switch
JPH0458057U (en) * 1990-09-20 1992-05-19
JP4220007B2 (en) * 1998-02-06 2009-02-04 東京電力株式会社 Production scheduling device
JP5147561B2 (en) * 2008-06-20 2013-02-20 東洋機械金属株式会社 Molding machine management apparatus and molding machine management method
JP5420958B2 (en) * 2009-04-02 2014-02-19 ファナック株式会社 Power management system for injection molding machines
JP5356893B2 (en) * 2009-04-06 2013-12-04 ファナック株式会社 Power monitoring device for injection molding machine
JP4643725B2 (en) * 2009-04-17 2011-03-02 ファナック株式会社 Machine tool controller
JP4585613B1 (en) * 2010-01-29 2010-11-24 三菱重工業株式会社 Power consumption control system
JP2014215636A (en) * 2013-04-22 2014-11-17 株式会社松井製作所 Smart operation system for plastic molding process line
JP2014215635A (en) * 2013-04-22 2014-11-17 株式会社松井製作所 Smart operation method and system for plastic molding process line

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513305A (en) * 1974-06-28 1976-01-12 Tokyo Shibaura Electric Co Denkirono demandoseigyohoshiki
JPS5139436A (en) * 1974-09-30 1976-04-02 Tokyo Shibaura Electric Co

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513305A (en) * 1974-06-28 1976-01-12 Tokyo Shibaura Electric Co Denkirono demandoseigyohoshiki
JPS5139436A (en) * 1974-09-30 1976-04-02 Tokyo Shibaura Electric Co

Also Published As

Publication number Publication date
JPS61180530A (en) 1986-08-13

Similar Documents

Publication Publication Date Title
Maly et al. Optimal battery energy storage system (BESS) charge scheduling with dynamic programming
US4055795A (en) Correction system for regulating the power factor of an electrical network
CN107248751B (en) A kind of energy storage station dispatch control method for realizing distribution network load power peak load shifting
US4819180A (en) Variable-limit demand controller for metering electrical energy
CA1221418A (en) Method and machine for metering electric parameters
EP0415280B1 (en) Method for on-line monitoring of an electric arc furnace and method of control
JPH0775454B2 (en) Power control method for injection molding factory
CN100392938C (en) Control system and method for voltage stabilization
CN109986828A (en) A kind of composite material press four-corner leveling system for realizing gross tonnage control
JP2002209336A (en) Power system load frequency control method and system, and computer-readable storage medium
CN103311933A (en) Smooth transition type subsection PID (proportion integration differentiation) control method for chained static var generator
CN109873455A (en) A kind of energy storage auxiliary fired power generating unit AGC frequency modulation method and system
CN107614996B (en) Flickering control to electric arc furnaces
CN109634104A (en) The intelligent optimal control device and its control method of cement raw mix proportioning process
KR102223891B1 (en) Apparatus and method for distributing capacity of energy storage system
EP2776770A1 (en) Electrode consumption monitoring system
JP6549896B2 (en) Electric power demand adjustment device, electric power demand adjustment method and electric power demand adjustment program
CN106354022A (en) Brushless direct current motor and control method and system thereof
JPH03265428A (en) Method and apparatus for controlling working power
CN112838592A (en) Load-source coordinated day-ahead scheduling method, device and system
CA1055117A (en) Correction system for regulating the power factor of an electrical distribution network
JPH09182295A (en) Power factor improvement device
SU1659877A1 (en) Method of selecting electric power consumption condition
JPH07163053A (en) Electric power system monitor system
JP7387928B1 (en) Load leveling device and load leveling method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term