JPH0775272A - Cooling structure for rotor winding head of rotating electric machine - Google Patents

Cooling structure for rotor winding head of rotating electric machine

Info

Publication number
JPH0775272A
JPH0775272A JP29109293A JP29109293A JPH0775272A JP H0775272 A JPH0775272 A JP H0775272A JP 29109293 A JP29109293 A JP 29109293A JP 29109293 A JP29109293 A JP 29109293A JP H0775272 A JPH0775272 A JP H0775272A
Authority
JP
Japan
Prior art keywords
refrigerant gas
rotor
zigzag
electric machine
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29109293A
Other languages
Japanese (ja)
Inventor
Toru Hase
長谷  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29109293A priority Critical patent/JPH0775272A/en
Publication of JPH0775272A publication Critical patent/JPH0775272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To control temperature rise of coil ends and increase an output of a rotating electric machine without enlargement of cross-section of a conductor by comprising an insulating material separation wall defined in a coolant gas supply chamber, an insulating material having constant projected portions and a particular through hole. CONSTITUTION:The space between coil ends 4H and a rotor axis 7 is divided into a plurality of sections in the circumferencial direction thereof to provide insulation material separation wall 21 to be defined in a coolant gas supply chamber 26 and an exhaust chamber. Moreover, an insulation material 22 having projections is also provided in such a manner that it is provided between the gap of the coil ends 4H provided in the form of multiple rings to hold such gap and form a zig-zag coolant gas supply path 24 with respect to the coil. In addition, a through hole 23 is provided at the essential portion of the insulation material separation wall 21 as a coolant gas supply path extended to the zig-zag coolant gas supply path 24 from the coolant gas supply chamber 26. Thereby, the zig-zag coolant gas flow may be formed and compulsory blowing is conducted for the cooling purpose for the coil end 4H. As a result, higher cooling performance can be obtained and allowable current density can also be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、タ−ビン発電機など
の回転子巻線の冷却構造、ことに最も大きな温度上昇を
示す回転子巻線頭部(コイルエンド)の冷却構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure for a rotor winding of a turbine generator or the like, and more particularly to a cooling structure for a rotor winding head (coil end) showing the greatest temperature rise.

【0002】[0002]

【従来の技術】図7はタ−ビン発電機全体の冷却構造を
模式化して示す断面図であり、回転子2はケ−シング6
および図示しない軸受け機構部を介して固定子1に回転
自在に支持され、回転子鉄心8の両端に突出した図示し
ない回転子巻線頭部(コイルエンド)はその外周側が保
持環9で覆われ、回転子が回転する際コイルエンドに作
用する強大な遠心力でコイルエンドが変形しないよう保
護される。また、固定子および回転子の冷却装置として
回転子軸7の両端に対称に設けたファン11および吸気
ダクト12,および固定子鉄心を包囲する排気ダクト1
3と、回転子鉄心8内に形成された通気孔14,および
固定子鉄心の積層面に形成された通気ダクト16とで構
成され、ファン11で加圧された冷媒ガス15は保持環
9により固定子側冷媒ガス流15Sと回転子側冷媒ガス
流15Rとに分岐し、固定子側冷媒ガス15Sは通気ダ
クト16を通る過程で回転子1を冷却し排気ダクト13
を通って外部に排出され、回転子側冷媒ガス15Rは回
転子軸7の周囲からコイルエンドの隙間に流入し、通気
孔14を通って固定子側に放出される過程でコイルエン
ドを含む回転子2を冷却し、回転子2の外周側で固定子
側の冷媒ガス15Sと合流し、通気ダクト16および排
気ダクト13を通って排出される。
2. Description of the Related Art FIG. 7 is a schematic sectional view showing a cooling structure of a turbine generator as a whole.
Also, a rotor winding head (coil end) (not shown) rotatably supported by the stator 1 via a bearing mechanism portion (not shown) and projecting at both ends of the rotor core 8 is covered with a retaining ring 9 on the outer peripheral side. , When the rotor rotates, the coil end is protected from being deformed by the strong centrifugal force acting on the coil end. Further, as a cooling device for the stator and the rotor, fans 11 and intake ducts 12 symmetrically provided at both ends of the rotor shaft 7 and an exhaust duct 1 surrounding the stator core.
3 and a ventilation hole 14 formed in the rotor core 8 and a ventilation duct 16 formed in the laminated surface of the stator core. The refrigerant gas 15 pressurized by the fan 11 is retained by the retaining ring 9. The stator-side refrigerant gas flow 15S and the rotor-side refrigerant gas flow 15R are branched, and the stator-side refrigerant gas 15S cools the rotor 1 while passing through the ventilation duct 16 to exhaust the exhaust duct 13
Is discharged to the outside through the rotor side refrigerant gas 15R, flows into the gap of the coil end from the periphery of the rotor shaft 7, and is discharged to the stator side through the ventilation hole 14 to rotate including the coil end. The child 2 is cooled, merges with the stator-side refrigerant gas 15S on the outer peripheral side of the rotor 2, and is discharged through the ventilation duct 16 and the exhaust duct 13.

【0003】図8はタ−ビン発電機の従来の回転子巻線
頭部冷却構造を示す斜視断面図、図9は図5の要部にお
ける冷媒ガスの流れ方を示す説明図であり、回転子2は
その回転子軸7が貫通する回転子鉄心8と、そのスロッ
トに鞍形コイルを多重環状に複数タ−ン巻回した回転子
巻線4とを備え、その回転子鉄心8の軸方向両端に突出
した回転子巻線頭部(コイルエンド)4Hの外周は図示
しない保持環で覆われるとともに、コイルエンド4H相
互の隙間には絶縁間隔片5を配して間隔を保持すること
により、回転子2の回転に伴ってコイルエンドに作用す
る加速度および遠心力に耐える回転子巻線4が形成され
る。
FIG. 8 is a perspective sectional view showing a conventional rotor winding head cooling structure of a turbine generator, and FIG. 9 is an explanatory view showing the flow of refrigerant gas in the main part of FIG. The rotor 2 is provided with a rotor core 8 through which a rotor shaft 7 penetrates, and a rotor winding 4 in which a saddle-shaped coil is wound in multiple turns in multiple rings in its slot. The outer periphery of the rotor winding head (coil end) 4H protruding at both ends in the direction is covered with a retaining ring (not shown), and insulating gap pieces 5 are arranged in the gaps between the coil ends 4H to maintain the gap. A rotor winding 4 is formed that withstands the acceleration and centrifugal force acting on the coil ends as the rotor 2 rotates.

【0004】また、回転子側の冷媒ガス流15Rは絶縁
間隔片5によって保持された冷却通路をジグザグ状に流
れてコイルエンドを冷却した後、回転子鉄心8に複数条
設けられた通気孔14を通って巻線を冷却し、回転子鉄
心の外周面から固定子側に放出する熱サイフォン方式に
よりコイルエンド4Hの冷却が行われる。すなわち、冷
媒ガス15Rはコイルエンドを冷却する過程で温度が上
昇し、これに伴って冷媒ガスに比重差が生ずるので、回
転子の回転によって冷媒ガスに作用する遠心力にガス温
度依存性が発生する。その結果、図9に示すように外周
側が保持環9で塞がれたコイルエンド4H相互の隙間で
は、流入した冷風は強い遠心力を受けて回転子軸側から
保持環側に向けて流れ、巻線の熱を奪って温度が上昇し
た冷媒ガスは遠心力が低下して保持環側から回転子軸側
に向けて戻る対流を形成する。従って、冷媒ガス流15
Rはコイルエンドの表面をジグザグ状に流れてその流路
を延長し、コイルエンド4Hを効率よく対流冷却するこ
とができる。
Further, the refrigerant gas flow 15R on the rotor side flows in a zigzag shape through the cooling passages held by the insulating spacing pieces 5 to cool the coil ends, and then a plurality of vent holes 14 are provided in the rotor core 8. The coil end 4H is cooled by a thermosyphon method in which the winding is cooled to cool the winding and is discharged from the outer peripheral surface of the rotor core to the stator side. That is, the temperature of the refrigerant gas 15R rises in the process of cooling the coil end, and the specific gravity difference occurs in the refrigerant gas accordingly, so that the centrifugal force acting on the refrigerant gas due to the rotation of the rotor has a gas temperature dependency. To do. As a result, as shown in FIG. 9, in the gap between the coil ends 4H whose outer peripheral side is closed by the retaining ring 9, the inflowing cool air receives a strong centrifugal force and flows from the rotor shaft side toward the retaining ring side. The refrigerant gas, which has taken the heat of the winding and increased in temperature, has a centrifugal force that decreases and forms convection returning from the retaining ring side toward the rotor shaft side. Therefore, the refrigerant gas flow 15
The R flows in a zigzag manner on the surface of the coil end to extend its flow path, and the coil end 4H can be efficiently convectively cooled.

【0005】図10は従来の回転子巻線頭部冷却構造に
おける回転子巻線の温度分布を示す特性線図であり、図
の横軸にはコイルエンド4Hの端部から回転子巻線中央
迄の長さがとってある。従来の冷却方式では回転子巻線
の最高温度が回転子鉄心の両端に突出したコイルエンド
4Hの部分にあることを示している。
FIG. 10 is a characteristic diagram showing the temperature distribution of the rotor winding in the conventional rotor winding head cooling structure. The horizontal axis of the figure is from the end of the coil end 4H to the center of the rotor winding. It has a length up to. In the conventional cooling method, it is shown that the maximum temperature of the rotor winding is at the coil end 4H projecting at both ends of the rotor core.

【0006】[0006]

【発明が解決しようとする課題】回転電機の巻線の可使
用寿命時間は、コイル導体を絶縁被覆する絶縁材料の耐
熱寿命特性によって決まることは公知であり、耐熱性に
優れた絶縁被覆材料を用いて絶縁被覆の耐熱寿命特性を
向上することが技術上の重要な課題とされている。一
方、前述のタ−ビン発電機のように回転子コイルがその
長手方向に大きな温度差を有する場合には、最高温度と
なる回転子巻線頭部が耐熱寿命特性の弱点部となり、回
転子頭部の温度が絶縁被覆の許容耐熱温度を越えない範
囲でコイル導体の電流密度を決める必要になるため、こ
れが原因でコイル導体の断面積の増大,言い換えれば回
転電機の大型化を招くか、あるいは回転電機の出力の抑
制を余儀無くされるという問題がある。
It is well known that the usable life time of a winding of a rotary electric machine is determined by the heat resistant life characteristics of the insulating material that insulates and coats the coil conductor. It is an important technical issue to improve the heat-resistant life property of the insulating coating by using it. On the other hand, when the rotor coil has a large temperature difference in the longitudinal direction as in the above-mentioned turbine generator, the head portion of the rotor, which has the highest temperature, becomes the weak point of the heat resistance life characteristic, and Since it is necessary to determine the current density of the coil conductor within the range in which the temperature of the head does not exceed the allowable heat resistance temperature of the insulation coating, this causes an increase in the cross-sectional area of the coil conductor, in other words, an increase in the size of the rotating electric machine. Alternatively, there is a problem that the output of the rotating electric machine must be suppressed.

【0007】この発明の目的は、巻線頭部冷却構造の改
善により巻線頭部の温度上昇を抑制し、導体断面積の増
大を招くことなく回転電機の出力を増大することにあ
る。
An object of the present invention is to suppress the temperature rise of the winding head by improving the winding head cooling structure, and to increase the output of the rotating electric machine without increasing the conductor cross-sectional area.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、多重環状に回転子鉄心に巻装さ
れた複数の鞍形コイルからなる回転子巻線の巻線頭部
(コイルエンド)を、回転子軸端部に設けたファンから
コイルエンドの内周側に供給される冷媒ガスにより冷却
するものにおいて、前記コイルエンドと回転子軸との間
の空間をその周方向に複数分割して冷媒ガス供給室およ
び排気室に画成する絶縁材隔壁と、多重環状に配置され
たコイルエンド相互の隙間に介装されて間隔を保持し,
かつコイルとの間にジグザグ状の冷媒ガス通路を形成す
る突起付絶縁材と、前記絶縁材隔壁の要所に形成されて
冷媒ガス供給室からジグザグ状の冷媒ガス通路への冷媒
ガス通路となる貫通孔とを備えてなるものとする。
In order to solve the above-mentioned problems, according to the present invention, a winding head of a rotor winding composed of a plurality of saddle-shaped coils wound around a rotor core in a multiple annular shape. (Coil end) is cooled by a refrigerant gas supplied to the inner peripheral side of the coil end from a fan provided at the end of the rotor shaft, and the space between the coil end and the rotor shaft is circumferentially defined. Insulating material partition walls which are divided into a plurality of parts to define the refrigerant gas supply chamber and the exhaust gas chamber, and the gaps between the coil ends arranged in multiple rings are held to maintain a space,
And an insulating material with protrusions forming a zigzag-shaped refrigerant gas passage between the coil and the coil, which is formed at a key part of the insulating material partition wall to become a refrigerant gas passage from the refrigerant gas supply chamber to the zigzag-shaped refrigerant gas passage. And a through hole.

【0009】ジグザグ状の冷媒ガス通路が、コイルエン
ドの回転子軸に並行する面に沿ってジグザグ状に流れる
冷媒ガスを回転子鉄心に形成された通気孔を介して外部
に排出する系統と、コイルエンドの回転子軸に直交する
面に沿ってジグザグ状に流れる冷媒ガスを排気室を介し
て外部に排出する系統との2系統からなるものとする。
A system in which the zigzag-shaped refrigerant gas passage discharges the refrigerant gas flowing in a zigzag shape along a surface parallel to the rotor axis of the coil end to the outside through a ventilation hole formed in the rotor core, The system is composed of two systems, that is, a system that discharges the refrigerant gas that flows in a zigzag shape along a plane orthogonal to the rotor axis of the coil end to the outside through the exhaust chamber.

【0010】突起付絶縁材が板状絶縁材からなる基材
と、その表面に一定の厚みで凸に形成された複数の突起
とからなり、複数の突起の間にジグザグ状の冷媒ガス通
路を形成してなるものとする。複数の突起がそれぞれ頂
点を有する山形状に形成され、その頂点がジグザグ状に
位置がずれて交互に対向するようその配設パタ−ンを形
成してなるものとする。
The insulating material with protrusions is composed of a base material made of a plate-like insulating material, and a plurality of protrusions formed on the surface of the insulating material so as to have a certain thickness. A zigzag-shaped refrigerant gas passage is provided between the plurality of protrusions. Shall be formed. It is assumed that the plurality of protrusions are formed in a mountain shape having respective apexes, and the arrangement patterns are formed so that the apexes are displaced in a zigzag pattern and alternately face each other.

【0011】複数の突起が基材の幅に対して一定の寸法
比を有する長方形に形成され、その一方の短辺が基材の
異なる縁に交互に位置するよう基材の長手方向に位置を
ずらしてジグザグ状に固定されてなるものとする。長方
形に形成された突起の一定の寸法比が、基材の幅を1と
した場合、長辺の寸法が0.5から0.6、短辺の寸法
が0.15から0.25の範囲にそれぞれあるものとす
る。
A plurality of protrusions are formed in a rectangular shape having a fixed dimensional ratio with respect to the width of the base material, and one of the short sides thereof is positioned in the longitudinal direction of the base material so as to be alternately located at different edges of the base material. It shall be shifted and fixed in a zigzag shape. When the width of the base material is 1, the fixed dimensional ratio of the rectangular projections is 0.5 to 0.6 for the long side and 0.15 to 0.25 for the short side. In each case.

【0012】基材の表面に一定の厚みで凸に形成された
複数の突起が、その表面に基材の長手方向に沿って形成
された凹溝からなるバイパス冷媒ガス通路を有するもの
とする。
It is assumed that a plurality of projections formed on the surface of the base material with a certain thickness to have a convex shape have a bypass refrigerant gas passage formed on the surface thereof with concave grooves formed along the longitudinal direction of the base material.

【0013】[0013]

【作用】この発明において、コイルエンドと回転子軸と
の間の空間をその周方向に複数分割して冷媒ガス供給室
および排気室に画成する絶縁材隔壁と、多重環状に配置
されたコイルエンド相互の隙間に介装されて間隔を保持
し,かつコイルとの間にジグザグ状の冷媒ガス通路を形
成する突起付絶縁材と、絶縁材隔壁の要所に形成されて
冷媒ガス供給室からジグザグ状の冷媒ガス通路への冷媒
ガス通路となる貫通孔とを備えるよう構成したことによ
り、ファンから供給される冷媒ガスが冷媒ガス供給室内
で加圧され、加圧された冷媒ガスが絶縁材隔壁に形成さ
れた貫通孔を介して突起付絶縁材の突起パタ−ンにより
形成されるジグザグ状の冷媒ガス通路に流入し、コイル
エンドの表面を強制的にジグザグ状に流れる冷媒ガス流
を形成し、コイルエンドとの間で強制送風冷却を行うの
で、冷媒ガスの比重差を利用した従来の熱サイフォン冷
却方式に比べて高い冷却性能を得ることが可能となり、
コイルエンドの温度上昇を抑制し、許容電流密度の増大
を可能にするので、導体断面積の増大を招くことなく回
転電機の出力を増大する機能が得られる。
According to the present invention, the space between the coil end and the rotor shaft is divided into a plurality of spaces in the circumferential direction to define the refrigerant gas supply chamber and the exhaust chamber, and an insulating material partition wall, and coils arranged in a multiple annular shape. Insulating material with protrusions that is interposed in the gap between the ends to maintain a gap and forms a zigzag-like refrigerant gas passage between the coil and the insulating material partition wall, and is formed from the refrigerant gas supply chamber. The zigzag-shaped refrigerant gas passage is configured to have a through hole that serves as a refrigerant gas passage, so that the refrigerant gas supplied from the fan is pressurized in the refrigerant gas supply chamber, and the pressurized refrigerant gas is an insulating material. Through the through hole formed in the partition wall, it flows into the zigzag-shaped refrigerant gas passage formed by the projection pattern of the insulating material with projections, and forcibly forms the zigzag-shaped refrigerant gas flow on the surface of the coil end. And coil Since the forced air cooling between the command, it is possible to obtain a high cooling performance as compared with conventional thermosiphon cooling system utilizing difference in specific gravity between the refrigerant gas,
Since the temperature rise of the coil end is suppressed and the allowable current density is increased, the function of increasing the output of the rotary electric machine can be obtained without increasing the conductor cross-sectional area.

【0014】また、ジグザグ状の冷媒ガス通路を、コイ
ルエンドの回転子軸に並行する面に沿ってジグザグ状に
流れる冷媒ガスを回転子鉄心に形成された通気孔を介し
て外部に排出する系統と、コイルエンドの回転子軸に直
交する面に沿ってジグザグ状に流れる冷媒ガスを排気室
を介して外部に排出する系統との2系統の組合せで構成
すれば、冷媒ガス流の方向が90°異なる熱交換面に無
理なく冷媒ガスを分流させて熱交換効率の高い強制ガス
冷却を行う機能が得られる。
Further, a system for discharging the refrigerant gas flowing in the zigzag-shaped refrigerant gas passage in a zigzag shape along the surface parallel to the rotor axis of the coil end to the outside through the ventilation hole formed in the rotor core. And a system that discharges the refrigerant gas flowing in a zigzag shape along the plane orthogonal to the rotor axis of the coil end to the outside through the exhaust chamber, the direction of the refrigerant gas flow is 90 ° The function of performing forced gas cooling with high heat exchange efficiency by reasonably dividing the refrigerant gas over different heat exchange surfaces can be obtained.

【0015】突起付絶縁材を板状絶縁材からなる基材
と、その表面に一定の厚みで凸に形成された複数の突起
とで構成し、複数の突起の間にジグザグ状の冷媒ガス通
路を形成すれば、一体化した突起付絶縁材が保持環と係
合して強大な遠心力が作用するコイルエンドを機械的に
支持して相互の間隔を維持する機能と、ジグザグ状の冷
媒ガス通路を形成する機能とを兼ね、機械的に安定で冷
却性能に優れた巻線頭部冷却構造が得られる。
The insulating material with projections is composed of a base material made of a plate-shaped insulating material and a plurality of projections formed on the surface of the projections with a certain thickness, and a zigzag-like refrigerant gas passage is provided between the plurality of projections. , The integral insulating material with protrusions engages with the retaining ring to mechanically support the coil ends where a strong centrifugal force acts and maintain a mutual distance, and zigzag refrigerant gas. A winding head cooling structure having a function of forming a passage, mechanically stable, and excellent cooling performance can be obtained.

【0016】また、複数の突起が、それぞれ頂点を有す
る山形状に形成され、その頂点がジグザグ状に位置がず
れて互いに対向するようその配設パタ−ンを形成すれ
ば、コイルエンドの表面にジグザグ状に屈曲した熱交換
面が形成され、この屈曲した熱交換面を強制的に流れる
冷媒ガス流によって熱伝達性能の高い熱交換を行う機能
が得られる。
If a plurality of protrusions are formed in a mountain shape having respective vertices, and the arranging patterns are formed so that the vertices are displaced in a zigzag shape and face each other, the surface of the coil end is formed. A heat exchange surface bent in a zigzag shape is formed, and a function of performing heat exchange with high heat transfer performance is obtained by the refrigerant gas flow forcedly flowing through the bent heat exchange surface.

【0017】さらに、複数の突起を基材の幅に対して一
定の寸法比を有する長方形に形成し、その一方の短辺が
基材の異なる縁に交互に位置するよう基材の長手方向に
位置をずらしてジグザグ状に固定するよう構成すれば、
予め直方体に形成した突起部材を接着剤,結合ピンなど
を用いて基材に強固に固定できるので、その長方形の面
積の縮小が可能となり、コイルエンドと突起の接触部で
生ずるガス冷却性能の低下を低減し、コイルエンドの局
部的温度上昇を抑制する機能が得られる。また、長方形
に形成された突起の寸法比を、基材の幅に対して長辺の
寸法を0.5から0.6、短辺の寸法が0.15から
0.25の範囲内の一定寸法とすれば、遠心力やコイル
との摩擦による突起の脱落を防ぐに必要な機械的強度
と、コイルエンドの局部的温度上昇の抑制機能とのバラ
ンスの取れた冷却構造が得られる。
Further, a plurality of protrusions are formed in a rectangular shape having a constant dimensional ratio with respect to the width of the base material, and one short side of the projection is alternately arranged at different edges of the base material in the longitudinal direction of the base material. If it is configured to shift in position and fix in a zigzag shape,
Since the projection member previously formed in a rectangular parallelepiped can be firmly fixed to the base material by using an adhesive, a connecting pin, etc., it is possible to reduce the rectangular area and reduce the gas cooling performance that occurs at the contact part between the coil end and the projection. And a function of suppressing a local temperature rise at the coil end can be obtained. In addition, the dimension ratio of the protrusions formed in a rectangle is fixed within the range of 0.5 to 0.6 for the long side and 0.15 to 0.25 for the short side with respect to the width of the substrate. In terms of dimensions, it is possible to obtain a cooling structure in which the mechanical strength required to prevent the protrusions from falling off due to centrifugal force or friction with the coil and the function of suppressing the local temperature rise at the coil end are well balanced.

【0018】一方、基材の表面に一定の厚みで山形また
は長方形に凸に形成された複数の突起が、その表面に基
材の長手方向に沿って形成された凹溝からなるバイパス
冷媒ガス通路を有するよう構成すれば、突起の間をジグ
ザグ状に流れる冷媒ガスの一部がバイパス冷媒ガス通路
に分流して流れるので、コイルエンドと突起の接触部で
生ずるガス冷却性能の低下を一層低減し、コイルエンド
の局部的温度上昇を抑制する機能が得られる。
On the other hand, a bypass refrigerant gas passage having a plurality of projections formed in a convex shape in a mountain shape or a rectangle with a certain thickness on the surface of the base material, and a concave groove formed on the surface along the longitudinal direction of the base material. With this configuration, a part of the refrigerant gas that flows in a zigzag shape between the protrusions flows by being diverted to the bypass refrigerant gas passage, further reducing the decrease in gas cooling performance that occurs at the contact portion between the coil end and the protrusion. The function of suppressing the local temperature rise at the coil end can be obtained.

【0019】[0019]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる回転電機の回転子巻
線頭部冷却構造を示す要部の断面図、図2は実施例にな
る回転電機の回転子巻線頭部冷却構造を示す斜視断面図
であり、従来技術と同じ構成部分には同一参照符号を付
すことにより、重複した説明を省略する。図において、
回転子鉄心8の両端に突出し,外周側を保持環9で包囲
されたコイルエンド4Hは、その内周側と回転子軸7と
の隙間に絶縁間隔壁21を備え、回転子軸の周囲がその
周方向に冷媒ガス流15Rの供給室26と排気室27と
に画成される。また、多重配置された鞍形コイル相互の
間隔は板状部22Aの両側に一定の厚みの突起部22B
を有する突起付絶縁材22によって保持され、突起部2
2Bの形状が山形に形成され、その頂点がジグザグ状に
位置がずれて互いに対向するようその配設パタ−ンを形
成することにより、板状部22Aとコイルエンド4Hと
の間にジグザグ状に屈曲した冷媒ガス通路24が形成さ
れる。さらに、突起付絶縁材22の要所には貫通孔23
が形成され、冷媒ガス供給室26とジグザグ状冷媒ガス
通路24とが貫通孔23を介して連通するよう構成され
る。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a cross-sectional view of an essential part showing a rotor winding head cooling structure of a rotating electric machine according to an embodiment of the present invention, and FIG. 2 is a perspective view showing a rotor winding head cooling structure of a rotating electric machine according to an embodiment. It is a cross-sectional view, and the same reference numerals are given to the same components as those of the conventional technique, and the duplicated description will be omitted. In the figure,
The coil end 4H, which projects from both ends of the rotor core 8 and is surrounded by the retaining ring 9 on the outer peripheral side, is provided with an insulating spacing wall 21 in the gap between the inner peripheral side and the rotor shaft 7, and the periphery of the rotor shaft is A supply chamber 26 and an exhaust chamber 27 for the refrigerant gas flow 15R are defined in the circumferential direction. Further, the intervals between the saddle-shaped coils that are multiply arranged are such that protrusions 22B having a constant thickness are provided on both sides of the plate-shaped portion 22A.
Is held by a protruding insulating material 22 having
The shape of 2B is formed in a mountain shape, and the disposition patterns are formed so that the vertices of the ridges are displaced in a zigzag shape so as to face each other, thereby forming a zigzag shape between the plate-shaped portion 22A and the coil end 4H. A bent refrigerant gas passage 24 is formed. Further, the through hole 23 is provided at a key portion of the insulating material 22 with protrusions.
Is formed, and the refrigerant gas supply chamber 26 and the zigzag refrigerant gas passage 24 are configured to communicate with each other through the through hole 23.

【0020】上述のように構成された回転子巻線頭部冷
却構造を有する回転電機においては、回転子の回転によ
りファン11で加圧された冷媒ガス15は固定子側冷媒
ガス流15Sと回転子側冷媒ガス流15Rとに分流する
が、回転子側冷媒ガス流15Rはその供給室26内で加
圧され、貫通孔23を通過することにより加速されてジ
グザグ状の冷媒ガス通路24に流入する。このとき、貫
通孔23を鞍形コイルの角に対応する位置に形成してお
けば、流入した冷媒ガスは回転子軸に並行するコイルの
表面と回転子軸に直交するコイルの表面とに分流するこ
とになり、コイルエンドの回転子軸に並行する面に沿っ
てジグザグ状に流れる冷媒ガス流25Aはコイルエンド
を強制通風冷却した後、回転子鉄心8を貫通する通気孔
14を通って回転子鉄心の外周面がら固定子側に放出さ
れ、回転子鉄心およびこれに収納された回転子巻線のス
ロッド部を冷却する。また、コイルエンドの回転子軸に
直交する面に沿ってジグザグ状に流れる冷媒ガス流25
Bはコイルエンドを強制通風冷却した後、供給室26に
隣接して画成された排気室27を通り、これに連通した
排気溝28から固定子側に放出される。
In the rotating electric machine having the rotor winding head cooling structure constructed as described above, the refrigerant gas 15 pressurized by the fan 11 by the rotation of the rotor rotates with the stator side refrigerant gas flow 15S. Although divided into the child-side refrigerant gas flow 15R, the rotor-side refrigerant gas flow 15R is pressurized in the supply chamber 26 thereof, is accelerated by passing through the through hole 23, and flows into the zigzag-shaped refrigerant gas passage 24. To do. At this time, if the through holes 23 are formed at the positions corresponding to the corners of the saddle-shaped coil, the inflowing refrigerant gas is divided into the coil surface parallel to the rotor axis and the coil surface orthogonal to the rotor axis. Therefore, the refrigerant gas flow 25A flowing in a zigzag shape along the surface of the coil end parallel to the rotor axis cools the coil end by forced ventilation, and then rotates through the vent hole 14 penetrating the rotor core 8. The outer peripheral surface of the child iron core is discharged to the stator side to cool the rotor iron core and the srod portion of the rotor winding housed therein. In addition, the refrigerant gas flow 25 flowing in a zigzag shape along a plane orthogonal to the rotor axis of the coil end 25
After forcibly cooling the coil end by forced ventilation, B passes through an exhaust chamber 27 defined adjacent to the supply chamber 26 and is discharged to the stator side from an exhaust groove 28 communicating with this.

【0021】従って、貫通孔23を通過して加速された
冷媒ガスが方向および経路が異なるジグザグ状の冷媒ガ
ス流25Aおよび25Bとなって鞍形コイルの表面を強
制通風冷却することになり、熱サイフォン方式による従
来の対流冷却構造に比べて高い熱伝達特性を得ることが
できる。図3は実施例になる回転子巻線頭部冷却構造で
得られた回転子巻線の温度分布を従来方式のそれと比較
して示す特性線図であり、実施例になる回転子巻線頭部
冷却構造によれば、回転子巻線頭部の最高温度を従来の
それの2/3程度に低減することができる。従って、コ
イルエンドの最高温度を従来のそれと同等とした場合、
コイル導体の断面積を増すことなく回転子巻線の許容電
流値を増すことができるので、その分回転電機の出力を
増すこと可能となり、冷却構造の改善により小型で発電
容量の大きい回転電機を提供できる利点が得られる。
Therefore, the refrigerant gas accelerated through the through holes 23 becomes zigzag refrigerant gas flows 25A and 25B having different directions and paths, and the surface of the saddle coil is forcedly cooled by ventilation. It is possible to obtain higher heat transfer characteristics than the conventional convection cooling structure using the siphon method. FIG. 3 is a characteristic diagram showing the temperature distribution of the rotor winding obtained by the cooling structure for the rotor winding head according to the embodiment in comparison with that of the conventional method. According to the partial cooling structure, the maximum temperature of the rotor winding head can be reduced to about 2/3 that of the conventional one. Therefore, if the maximum temperature of the coil end is made equal to that of the conventional one,
Since the allowable current value of the rotor winding can be increased without increasing the cross-sectional area of the coil conductor, it is possible to increase the output of the rotary electric machine by that amount, and by improving the cooling structure, a small rotary electric machine with large power generation capacity can be provided. There are advantages that can be provided.

【0022】図4はこの発明の異なる実施例になる回転
電機の回転子巻線頭部冷却構造の要部を示す斜視図、図
5は異なる実施例における突起の配置を示す平面図であ
り、突起付絶縁材32は、コイルエンドの高さ(100
〜150mm)に相応する幅Hを有する板状部32A
と、その両面に一定の厚みで長方形に凸に形成された複
数の突起部32Bとで構成される。また、長方形に形成
された突起32Bの縦,横寸法比は、基材の幅Hに対し
て長辺lの寸法が0.5Hから0.6H、短辺wの寸法
が0.15Hから0.25Hの範囲内に形成され、その
一方の短辺が基材32Aの両側の縁に交互に位置するよ
う基材の長手方向に位置をずらしてジグザグ状に配設さ
れる。すなわち、上記寸法比の直方体に予め形成された
突起部材を接着剤,ピンなどを用いて基材32Bの所定
位置に強固に固定することにより、通路の幅が板状部3
2Aの高さHの0.4〜0.5倍程度のジグザグ状冷媒
ガス通路を有する突起付絶縁材32が形成される。
FIG. 4 is a perspective view showing an essential part of a rotor winding head cooling structure of a rotating electric machine according to a different embodiment of the present invention, and FIG. 5 is a plan view showing the arrangement of protrusions in the different embodiment. The insulating material 32 with protrusions has a coil end height (100 mm).
A plate-shaped portion 32A having a width H corresponding to
And a plurality of protrusions 32B formed on both sides thereof in a rectangular shape with a constant thickness. As for the vertical and horizontal dimension ratios of the rectangular protrusion 32B, the dimension of the long side 1 is 0.5H to 0.6H and the dimension of the short side w is 0.15H to 0 with respect to the width H of the base material. It is formed in the range of .25H, and is arranged in a zigzag shape by shifting the position in the longitudinal direction of the base material so that one short side thereof is alternately positioned on the edges on both sides of the base material 32A. That is, the width of the passage is reduced by firmly fixing the projection member formed in advance in the rectangular parallelepiped having the above-mentioned dimensional ratio to the predetermined position of the base material 32B by using an adhesive, a pin or the like.
Insulating material 32 with protrusions having a zigzag-like refrigerant gas passage of about 0.4 to 0.5 times the height H of 2A is formed.

【0023】このように構成された突起付絶縁材32を
用いた回転子巻線頭部冷却構造において、供給室26内
で加圧された回転子側冷媒ガス流15Rは、絶縁隔壁2
1の貫通孔23を通過することにより加速され、回転子
軸に並行するコイルの表面をジグザグ状に流れて冷却す
る冷媒ガス流25Aと、回転子軸に直交するコイルの表
面をジグザグ状に流れて冷却する冷媒ガス流25Bとに
分流してコイルエンドを冷却する。このとき、突起を山
形に形成した前述の実施例の場合、突起が遠心力やコイ
ルとの摩擦によって脱落するのを防ぐに必要な複数の結
合ピンを、山形の突起に合わせて3角形に配置する必要
があり、そのために山形状突起22Bの底辺部分の幅が
広くなり、これと接触する部分でコイルエンドの局部的
温度上昇が大きくなる。これに対し、この実施例では突
起32Bを長方形としたことにより、結合ピンを長方形
の長辺に沿って1列に配置できるので、長方形の短辺w
およびコイルとの接触面積を縮小することが可能とな
り、コイルエンドと突起の接触部で生ずるガス冷却性能
の低下を低減し、コイルエンドの局部的温度上昇を抑制
できる利点が得られる。
In the rotor winding head cooling structure using the insulating material 32 with protrusions configured as described above, the rotor side refrigerant gas flow 15R pressurized in the supply chamber 26 is insulated by the insulating partition wall 2
The refrigerant gas flow 25A that is accelerated by passing through the through hole 23 of 1 and flows in a zigzag manner on the surface of the coil parallel to the rotor axis to cool it, and the zigzag shape of the surface of the coil orthogonal to the rotor axis. And the refrigerant gas flow 25B to be cooled to cool the coil end. At this time, in the case of the above-described embodiment in which the protrusions are formed in a mountain shape, a plurality of connecting pins necessary for preventing the protrusions from falling off due to centrifugal force or friction with the coil are arranged in a triangular shape in accordance with the mountain-shaped protrusions. Therefore, the width of the bottom portion of the mountain-shaped protrusion 22B becomes wide, and the local temperature rise of the coil end becomes large at the portion in contact with this. On the other hand, in this embodiment, since the projections 32B are rectangular, the coupling pins can be arranged in a row along the long side of the rectangle, and thus the short side w of the rectangle.
Further, it is possible to reduce the contact area with the coil, and it is possible to obtain an advantage that a decrease in gas cooling performance that occurs at the contact portion between the coil end and the protrusion can be reduced and a local temperature increase at the coil end can be suppressed.

【0024】図6はこの発明のさらに異なる実施例にな
る突起付絶縁材を示す断面図であり、突起付絶縁材32
(または22)の平板状絶縁材からなる基材32A(ま
たは22A)の表面に一定の厚みで山形または長方形に
凸に形成された複数の突起32Bまたは22Bが、その
表面に基材の長手方向に沿って形成された凹溝からなる
バイパス冷媒ガス通路40を有するよう構成すれば、突
起の間をジグザグ状に流れる冷媒ガス流25Aまたは2
5Bの一部がバイパス冷媒ガス通路40に分流して流
れ、この部分のコイルエンドをガス冷却するので、コイ
ルエンドと突起の接触部で生ずるガス冷却性能の低下を
一層低減し、コイルエンドの局部的温度上昇を抑制する
機能が得られ、局部的温度上昇に起因する巻線絶縁被覆
の熱劣化を抑制し、絶縁寿命の低下を防止できる利点が
得られる。
FIG. 6 is a sectional view showing an insulating material with protrusions according to another embodiment of the present invention.
(Or 22) A plurality of protrusions 32B or 22B formed in a convex shape in a mountain shape or a rectangle with a certain thickness on the surface of a base material 32A (or 22A) made of a flat plate insulating material is formed on the surface in the longitudinal direction of the base material. If it is configured to have the bypass refrigerant gas passage 40 formed of a concave groove formed along the refrigerant gas flow 25A or 2A flowing in zigzag between the protrusions.
Since a part of 5B flows by diverting into the bypass refrigerant gas passage 40 and cools the coil end in this part, the deterioration of the gas cooling performance caused at the contact portion between the coil end and the protrusion is further reduced, and the local portion of the coil end is reduced. The effect of suppressing the increase in the effective temperature can be obtained, and the thermal deterioration of the winding insulation coating due to the local increase in temperature can be suppressed, and the shortening of the insulation life can be prevented.

【0025】[0025]

【発明の効果】この発明は前述のように、回転子巻線頭
部冷却構造がコイルエンドと回転子軸との間の空間をそ
の周方向に複数分割して冷媒ガス供給室および排気室に
画成する絶縁材隔壁と、多重環状に配置されたコイルエ
ンド相互の隙間に介装されて間隔を保持し,かつコイル
との間にジグザグ状の冷媒ガス通路を形成する突起付絶
縁材と、絶縁材隔壁の要所に形成されて冷媒ガス供給室
からジグザグ状の冷媒ガス通路への冷媒ガス通路となる
貫通孔とを備えるよう構成した。その結果、回転子の回
転に伴い、ファンから供給される冷媒ガスが冷媒ガス供
給室内で加圧され、加圧された冷媒ガスが絶縁材隔壁に
形成された貫通孔を介して突起付絶縁材の突起パタ−ン
により形成されるジグザグ状の冷媒ガス通路に流入し、
コイルエンドの表面を強制的にジグザグ状に流れる冷媒
ガス流を形成し、コイルエンドとの間で強制通風冷却を
行うので、冷媒ガスの比重差を利用した従来の熱サイフ
ォン冷却方式に比べて高い冷却性能を得ることが可能と
なり、コイルエンドの温度上昇を従来の2/3程度にま
で抑制し、導体断面積の増大を招くことなく出力を増大
した回転電機を経済的にも有利に提供することができ
る。
As described above, according to the present invention, the rotor winding head cooling structure divides the space between the coil end and the rotor shaft into a plurality of portions in the circumferential direction to form the refrigerant gas supply chamber and the exhaust chamber. An insulating partition wall that defines the partition wall, and an insulating material with protrusions that are interposed in the gaps between the coil ends arranged in multiple rings to maintain a gap between them and that form a zigzag-shaped refrigerant gas passage between the coils. The insulating material partition wall is provided with a through hole which is formed in a key portion and serves as a refrigerant gas passage from the refrigerant gas supply chamber to the zigzag-shaped refrigerant gas passage. As a result, with the rotation of the rotor, the refrigerant gas supplied from the fan is pressurized in the refrigerant gas supply chamber, and the pressurized refrigerant gas is passed through the through holes formed in the insulating material partition wall to provide the insulating material with protrusions. Flowing into the zigzag refrigerant gas passage formed by the projection pattern of
It is higher than the conventional thermosyphon cooling method that uses the difference in specific gravity of the refrigerant gas because it forms a zigzag refrigerant gas flow forcibly on the coil end surface and performs forced draft cooling with the coil end. It is possible to obtain the cooling performance, suppress the temperature rise of the coil end to about 2/3 of that of the conventional one, and economically advantageously provide a rotating electric machine with increased output without increasing the conductor cross-sectional area. be able to.

【0026】また、従来の絶縁間隔片が突起付絶縁材と
して一体化されて、ジグザグ状の冷媒ガス通路を形成す
るとともに、多重配置された回転子巻線の間隔を保持す
る機能を兼ねるので、強大な加速度または遠心力を受け
る回転子巻線を機械的に強固に保持すると同時に優れた
冷却性能を発揮する回転子巻線頭部冷却構造を備えた回
転電機を提供できる利点が得られる。
Further, the conventional insulating spacing piece is integrated as the insulating material with protrusions to form a zigzag-like refrigerant gas passage, and also has the function of maintaining the spacing between the rotor windings arranged in multiple layers. There is an advantage that it is possible to provide a rotating electric machine having a rotor winding head cooling structure that mechanically holds a rotor winding that receives a large acceleration or centrifugal force and at the same time exhibits excellent cooling performance.

【0027】さらに、突起付絶縁材の突起部分の形状を
山形状から長方形に変更してその幅を縮小し、さらには
突起部の表面にバイパス冷媒ガス通路を形成するなどの
改善を行うよう構成すれば、コイルエンドとの接触部分
で生ずる局部的温度上昇を低減できる利点が得られる。
Further, the shape of the protruding portion of the insulating material with the protruding portion is changed from the mountain shape to the rectangular shape to reduce the width thereof, and further, the bypass refrigerant gas passage is formed on the surface of the protruding portion so as to be improved. Then, there is an advantage that a local temperature rise that occurs at the contact portion with the coil end can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例になる回転電気の回転子巻線
頭部冷却構造を示す要部の断面図
FIG. 1 is a sectional view of an essential part showing a rotor winding head cooling structure for rotary electric machines according to an embodiment of the present invention.

【図2】実施例になる回転電機の回転子巻線頭部冷却構
造を示す斜視断面図
FIG. 2 is a perspective sectional view showing a rotor winding head cooling structure of the rotating electric machine according to the embodiment.

【図3】実施例になる回転子巻線頭部冷却構造で得られ
た回転子巻線の温度分布を従来方式のそれと比較して示
す特性線図
FIG. 3 is a characteristic diagram showing a temperature distribution of a rotor winding obtained by a rotor winding head cooling structure according to an example in comparison with that of a conventional method.

【図4】この発明の異なる実施例になる回転電機の回転
子巻線頭部冷却構造の要部を示す斜視図
FIG. 4 is a perspective view showing a main part of a rotor winding head cooling structure of a rotating electric machine according to another embodiment of the present invention.

【図5】異なる実施例における突起の配置を示す平面図FIG. 5 is a plan view showing the arrangement of protrusions in another embodiment.

【図6】この発明のさらに異なる実施例になる突起付絶
縁材を示す断面図
FIG. 6 is a cross-sectional view showing an insulating material with protrusions according to another embodiment of the present invention.

【図7】タ−ビン発電機全体の冷却構造を模式化して示
す断面図
FIG. 7 is a sectional view schematically showing a cooling structure of the entire turbine generator.

【図8】タ−ビン発電機の従来の回転子巻線頭部冷却構
造を示す斜視断面図
FIG. 8 is a perspective sectional view showing a conventional rotor winding head cooling structure of a turbine generator.

【図9】図8の要部における冷媒ガスの流れ方を示す説
明図
FIG. 9 is an explanatory diagram showing the flow of refrigerant gas in the main part of FIG.

【図10】従来の回転子巻線頭部冷却構造における回転
子巻線温度分布を示す特性線図
FIG. 10 is a characteristic diagram showing a rotor winding temperature distribution in a conventional rotor winding head cooling structure.

【符号の説明】 1 固定子 2 回転子 3 固定子コイル頭部 4 回転子巻線 4H 回転子巻線頭部(コイルエンド) 5 絶縁間隔片 7 回転子軸 8 回転子鉄心 9 保持環 11 ファン 12 吸気ダクト 13 排気ダクト 14 通気孔 15 冷媒ガス 15R 冷媒ガス流(回転子側) 16 通気ダクト 21 絶縁材隔壁 22 突起付絶縁材 22A 板状部 22B 突起部 23 貫通孔 24 ジグザグ状の冷媒ガス通路 25 ジグザグ状の冷媒ガス流 25A 回転子軸に平行な面側のジグザグ状冷媒ガス流 25B 回転子軸に直交した面側のジグザグ状冷媒ガス
流 26 冷媒ガス供給室 27 排気室 28 排気溝 32 突起付絶縁材 32A 板状部 32B 突起部 40 バイパス冷媒ガス通路 H 板状部の幅 l 長方形突起の長辺寸法 w 長方形突起の短辺寸法
[Explanation of Codes] 1 Stator 2 Rotor 3 Stator coil head 4 Rotor winding 4H Rotor winding head (coil end) 5 Insulating spacing piece 7 Rotor shaft 8 Rotor iron core 9 Holding ring 11 Fan 12 Intake duct 13 Exhaust duct 14 Vent hole 15 Refrigerant gas 15R Refrigerant gas flow (rotor side) 16 Ventilation duct 21 Insulating material partition wall 22 Insulating material with protrusion 22A Plate portion 22B Projection portion 23 Through hole 24 Zigzag-like refrigerant gas passage 25 Zigzag refrigerant gas flow 25A Zigzag refrigerant gas flow on the side parallel to the rotor axis 25B Zigzag refrigerant gas flow on the side orthogonal to the rotor axis 26 Refrigerant gas supply chamber 27 Exhaust chamber 28 Exhaust groove 32 Protrusion Insulated material 32A Plate portion 32B Projection portion 40 Bypass refrigerant gas passage H Plate portion width l Long side dimension of rectangular protrusion w Short side dimension of rectangular protrusion

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】多重環状に回転子鉄心に巻装された複数の
鞍形コイルからなる回転子巻線の巻線頭部(コイルエン
ド)を、回転子軸端部に設けたファンからコイルエンド
の内周側に供給される冷媒ガスにより冷却するものにお
いて、前記コイルエンドと回転子軸との間の空間をその
周方向に複数分割して冷媒ガス供給室および排気室に画
成する絶縁材隔壁と、多重環状に配置されたコイルエン
ド相互の隙間に介装されて間隔を保持し,かつコイルと
の間にジグザグ状の冷媒ガス通路を形成する突起付絶縁
材と、前記絶縁材隔壁の要所に形成されて冷媒ガス供給
室からジグザグ状の冷媒ガス通路への冷媒ガス通路とな
る貫通孔とを備えてなることを特徴とする回転電機の回
転子巻線頭部冷却構造。
Claim: What is claimed is: 1. A coil end of a rotor winding, which comprises a plurality of saddle-shaped coils wound around a rotor core in a multi-ring shape, is provided at a rotor shaft end from a fan to a coil end. Which is cooled by the refrigerant gas supplied to the inner peripheral side of the insulating material, the space between the coil end and the rotor shaft is divided into a plurality of parts in the circumferential direction to define a refrigerant gas supply chamber and an exhaust chamber. A partition wall, an insulating material with a protrusion which is interposed in a gap between coil ends arranged in a multi-annular shape and maintains a gap, and forms a zigzag-like refrigerant gas passage between the partition wall, and the insulating material partition wall. A rotor winding head cooling structure for a rotating electric machine, comprising: a through hole that is formed in a key portion and serves as a refrigerant gas passage from a refrigerant gas supply chamber to a zigzag-shaped refrigerant gas passage.
【請求項2】ジグザグ状の冷媒ガス通路がコイルエンド
の回転子軸に並行する面に沿ってジグザグ状に流れる冷
媒ガスを回転子鉄心に形成された通気孔を介して外部に
排出する系統と、コイルエンドの回転子軸に直交する面
に沿ってジグザグ状に流れる冷媒ガスを排気室を介して
外部に排出する系統との2系統からなることを特徴とす
る請求項1記載の回転電機の回転子巻線頭部冷却構造。
2. A system in which a zigzag-shaped refrigerant gas passage discharges a refrigerant gas flowing in a zigzag shape along a plane parallel to a rotor axis of a coil end to the outside through a ventilation hole formed in a rotor core. 2. The rotating electric machine according to claim 1, wherein the coil end has two systems, that is, a system for discharging the refrigerant gas flowing in a zigzag shape along a plane orthogonal to the rotor axis to the outside through the exhaust chamber. Rotor winding head cooling structure.
【請求項3】突起付絶縁材が板状絶縁材からなる基材
と、その表面に一定の厚みで凸に形成された複数の突起
とからなり、複数の突起の間にジグザグ状の冷媒ガス通
路を形成してなることを特徴とする請求項1記載の回転
電機の回転子巻線頭部冷却構造。
3. A zigzag refrigerant gas between the plurality of projections, wherein the projection-containing insulating material comprises a base material made of a plate-shaped insulating material and a plurality of projections formed on the surface of the insulating material so as to be convex. The cooling structure for a rotor winding head of a rotating electric machine according to claim 1, wherein a passage is formed.
【請求項4】複数の突起がそれぞれ頂点を有する山形状
に形成され、その頂点がジグザグ状に位置がずれて交互
に対向するようその配設パタ−ンを形成してなることを
特徴とする請求項3記載の回転電機の回転子巻線頭部冷
却構造。
4. A plurality of protrusions are formed in a mountain shape having vertices, and the arranging patterns are formed so that the vertices are displaced in a zigzag pattern and alternately face each other. The rotor winding head cooling structure for a rotating electric machine according to claim 3.
【請求項5】複数の突起が基材の幅に対して一定の寸法
比を有する長方形に形成され、その一方の短辺が基材の
異なる縁に交互に位置するよう基材の長手方向に位置を
ずらしてジグザグ状に固定されてなることを特徴とする
請求項3記載の回転電機の回転子巻線頭部冷却構造。
5. A plurality of protrusions are formed in a rectangular shape having a constant dimensional ratio with respect to the width of the base material, and one short side of the projection is arranged in a longitudinal direction of the base material so as to be alternately located at different edges of the base material. The rotor winding head cooling structure for a rotating electric machine according to claim 3, wherein the structure is shifted and fixed in a zigzag shape.
【請求項6】長方形に形成された突起の一定の寸法比
が、基材の幅を1とした場合、長辺の寸法が0.5から
0.6、短辺の寸法が0.15から0.25の範囲にそ
れぞれあることを特徴とする回転電機の回転子巻線頭部
冷却構造。
6. The constant dimension ratio of the rectangular projections is 0.5 to 0.6 for the long side and 0.15 for the short side when the width of the substrate is 1. A rotor winding head cooling structure for a rotating electric machine, characterized in that each is in a range of 0.25.
【請求項7】基材の表面に一定の厚みで凸に形成された
複数の突起が、その表面に基材の長手方向に沿って形成
された凹溝からなるバイパス冷媒ガス通路を有すること
を特徴とする請求項3記載の回転電機の回転子巻線頭部
冷却構造。
7. A plurality of protrusions formed on a surface of a base material so as to be convex with a certain thickness, and having a bypass refrigerant gas passage formed on the surface of the base material, the groove being a groove formed along the longitudinal direction of the base material. The rotor winding head cooling structure for a rotating electric machine according to claim 3, characterized in that.
JP29109293A 1993-06-24 1993-11-22 Cooling structure for rotor winding head of rotating electric machine Pending JPH0775272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29109293A JPH0775272A (en) 1993-06-24 1993-11-22 Cooling structure for rotor winding head of rotating electric machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-152524 1993-06-24
JP15252493 1993-06-24
JP29109293A JPH0775272A (en) 1993-06-24 1993-11-22 Cooling structure for rotor winding head of rotating electric machine

Publications (1)

Publication Number Publication Date
JPH0775272A true JPH0775272A (en) 1995-03-17

Family

ID=26481421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29109293A Pending JPH0775272A (en) 1993-06-24 1993-11-22 Cooling structure for rotor winding head of rotating electric machine

Country Status (1)

Country Link
JP (1) JPH0775272A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112746A1 (en) * 2008-04-22 2009-10-28 Siemens Aktiengesellschaft Dynamoelectric machine
US7939977B2 (en) * 2006-03-27 2011-05-10 Hitachi, Ltd. Rotary electrical device having particular coil support structure
FR2978631A1 (en) * 2011-07-29 2013-02-01 Renault Sa Stator for electrical motor used for driving e.g. electric car, has carcass in which grooves extending between teeth and winding are formed, where head of winding is formed out of carcass and includes spaced beams and/or spaced conductors
KR20170018008A (en) * 2014-06-13 2017-02-15 신장 골드윈드 사이언스 앤 테크놀로지 컴퍼니., 리미티드. Stator used for motor, motor and ventilation cooling method for motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939977B2 (en) * 2006-03-27 2011-05-10 Hitachi, Ltd. Rotary electrical device having particular coil support structure
EP2112746A1 (en) * 2008-04-22 2009-10-28 Siemens Aktiengesellschaft Dynamoelectric machine
FR2978631A1 (en) * 2011-07-29 2013-02-01 Renault Sa Stator for electrical motor used for driving e.g. electric car, has carcass in which grooves extending between teeth and winding are formed, where head of winding is formed out of carcass and includes spaced beams and/or spaced conductors
KR20170018008A (en) * 2014-06-13 2017-02-15 신장 골드윈드 사이언스 앤 테크놀로지 컴퍼니., 리미티드. Stator used for motor, motor and ventilation cooling method for motor

Similar Documents

Publication Publication Date Title
EP0909004B1 (en) Rotor having permanent magnet and mechanism for cooling the same
US7312552B2 (en) Rotary electro-dynamic machine and armature winding thereof
JP4528865B2 (en) Rotating electric machine
JP3721361B2 (en) Improved cooling of generator coil ends
JP5893462B2 (en) Rotating electric machine
JP5130321B2 (en) Rotating electric machine
US20070052313A1 (en) Rotating electrical machine
JP2007104888A (en) Rotary electric machine
WO2016013108A1 (en) Rotating electric machine
US6844637B1 (en) Rotor assembly end turn cooling system and method
JPH0775272A (en) Cooling structure for rotor winding head of rotating electric machine
JPH07213000A (en) Structure for cooling end of rotor coil in electric rotating machine
JP3707250B2 (en) Cylindrical rotor of rotating electrical machine
JP2013236505A (en) Rotary electric machine
US6870299B1 (en) Thermal management of rotor endwinding coils
JPH11113201A (en) Rotor provided with permanent magnets
JP3736192B2 (en) Cylindrical rotor of rotating electrical machine
JP4424135B2 (en) Stator structure of axial gap type rotating electrical machine
JP3735545B2 (en) Rotating electric machine
JP3791146B2 (en) Cylindrical rotor of rotating electrical machine
KR100858290B1 (en) Air-cooled motor
CN111614182A (en) Synchronous rotating electric machine
JPH11146587A (en) Rotor of electric rotary machine
US20240243629A1 (en) Air duct assembly for rotor, associated rotor and electric machine
JPS60200737A (en) Cylindrical rotor