JPH0774160A - Microwave plasma treating equipment - Google Patents

Microwave plasma treating equipment

Info

Publication number
JPH0774160A
JPH0774160A JP19967294A JP19967294A JPH0774160A JP H0774160 A JPH0774160 A JP H0774160A JP 19967294 A JP19967294 A JP 19967294A JP 19967294 A JP19967294 A JP 19967294A JP H0774160 A JPH0774160 A JP H0774160A
Authority
JP
Japan
Prior art keywords
plasma
sample stage
sample
chamber
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19967294A
Other languages
Japanese (ja)
Other versions
JP2629610B2 (en
Inventor
Masaharu Saikai
正治 西海
Yoshinao Kawasaki
義直 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16411706&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0774160(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6199672A priority Critical patent/JP2629610B2/en
Publication of JPH0774160A publication Critical patent/JPH0774160A/en
Application granted granted Critical
Publication of JP2629610B2 publication Critical patent/JP2629610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a microwave plasma treating equipment that is capable of improving etching rate and obtaining excellent working characteristics at low cost. CONSTITUTION:A plasma chamber 1 is provided therein with a sample stage 2 to mount a workpiece 3 on. The sample stage 2 is connected with a high-frequency power supply 5 that applies a.c. voltage through a capacitor 4. The high-frequency power supply 5 generates a high frequency of 13.56MHz. The area surrounding the sample stage 2 is grounded through a grounding electrode 6. A waveguide 7, a microwave oscillation source 8, a d.c. power supply 9 and a magnet 10 are installed opposite the workpiece placement surface of the sample stage 2. These parts encircle the end 1a of the plasma chamber 1 on the workpiece placement surface side, and turn treatment gas into plasma to produce plasma 11 in the chamber 1. A gas feed port 12 is formed in proximity to the end 1a of the plasma chamber 1 to introduce treatment gas from a gas feed equipment to the chamber 1. There is an exhaust port on the side opposite to the end 1a, which leads to an exhaust equipment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波プラズマ処
理装置に係り、特にプラズマ中のイオンによって固体表
面のエッチングを行うのに好適なプラズマ処理装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave plasma processing apparatus, and more particularly to a plasma processing apparatus suitable for etching a solid surface with ions in plasma.

【0002】[0002]

【従来の技術】従来の技術には、特公昭56−3731
1号に記載のように、マイクロ波と磁場とを用いたプラ
ズマ処理手段と、100KHz〜10MHzの交流電圧
を試料に印加する手段とを併用して試料をエッチング処
理するものがあった。しかし、交流電圧に10MHz以
上の高周波を用いる点については考慮されていなかっ
た。
2. Description of the Related Art Japanese Patent Publication No. 56-3731
As described in No. 1, there has been one that uses a plasma processing means using a microwave and a magnetic field and a means for applying an alternating voltage of 100 KHz to 10 MHz to the sample in combination to etch the sample. However, no consideration was given to the use of a high frequency of 10 MHz or more for the AC voltage.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、10
MHz以上の周波数の交流電圧を用いたものについては
考慮されておらず、実際には電波法および工業技術の制
約により、400KHzまたは800KHzの低周波域
の発振源しか用いることができず、さらにエッチング速
度を向上させる上で限界があるという問題があった。
SUMMARY OF THE INVENTION The above-mentioned prior art is 10
No consideration is given to the one using an AC voltage with a frequency of MHz or more. In reality, due to the restrictions of the Radio Law and industrial technology, only an oscillation source in the low frequency region of 400 KHz or 800 KHz can be used, and etching is further performed. There was a problem that there was a limit in improving the speed.

【0004】本発明の目的は、エッチング速度を向上さ
せ、さらに優れた加工特性を得ることが安価に実現でき
るマイクロ波プラズマ処理装置を提供することにある。
An object of the present invention is to provide a microwave plasma processing apparatus which can improve the etching rate and obtain excellent processing characteristics at low cost.

【0005】[0005]

【課題を解決するための手段】上記目的は、100KH
z〜10MHzの低周波域を13.56MHzの高周波
域に変えて、試料に交流電圧を印加することにより達成
される。
[Means for Solving the Problems] The above object is 100 KH.
This is achieved by changing the low frequency range of z to 10 MHz to the high frequency range of 13.56 MHz and applying an AC voltage to the sample.

【0006】[0006]

【作用】従来技術の低周波放電を用いた場合、高真空圧
力中でマイクロ波によって励起された、処理ガスの原子
や分子のイオンは、交流電圧の周期が長いため移動距離
が長くなり、トラップされることなく試料に到達する。
このとき、低周波放電の電気力線が試料に垂直に作用し
ているのであれば、イオンは試料に対し垂直に入射して
くる確率が高くなるが、電気力線が試料に垂直に作用し
ていない場合は試料に対する方向性をもたせることが困
難となる。
When the conventional low-frequency discharge is used, the atoms or molecules of the processing gas excited by microwaves in a high vacuum pressure have a long moving distance due to a long AC voltage cycle, which causes trapping. Reach the sample without being disturbed.
At this time, if the electric field lines of the low-frequency discharge act vertically on the sample, the probability that the ions will enter the sample perpendicularly increases, but the electric field lines act vertically on the sample. If not, it becomes difficult to give directionality to the sample.

【0007】本発明のように13.56MHzのような
高周波放電を用いると、交流電圧の周期が短いためにイ
オンの移動距離が短くなり、イオンがトラップされる。
ここで、試料台と高周波発振源との間にブロッキングコ
ンデンサーを入れ、試料台をアース電位から浮かせた形
にすると、上述のトラップ現象により、試料台に直流電
位が定常的に存在するようになる。この直流電位(アー
ス電位に対し、マイナス側に滞電する)とプラズマ電位
(正電位)との差によって、試料近傍にイオンシースが
形成され、高周波放電の電気力線に係わりなく、イオン
が試料に対し垂直に入射するようになる。また、この電
位差により、イオンが運動エネルギーを得るため、試料
の処理速度が低周波放電を利用するのに比べ向上する。
When a high frequency discharge of 13.56 MHz is used as in the present invention, the moving distance of ions is shortened due to the short cycle of the AC voltage, and the ions are trapped.
Here, if a blocking capacitor is inserted between the sample stage and the high-frequency oscillation source and the sample stage is floated from the ground potential, the trapping phenomenon described above causes the DC potential to constantly exist in the sample stage. . An ion sheath is formed near the sample due to the difference between the DC potential (charged to the negative side with respect to the ground potential) and the plasma potential (positive potential), and the ions are collected regardless of the electric lines of force of the high frequency discharge. Will be incident perpendicularly to. Further, since the ions obtain kinetic energy due to this potential difference, the processing speed of the sample is improved as compared with the case of using low frequency discharge.

【0008】[0008]

【実施例】以下、本発明の一実施例を図1と図2とによ
り説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0009】図1において、真空容器であるプラズマ室
1内には、試料3を配置する試料台2が設けてある。試
料台2には、コンデンサ4を介して交流電圧を印加する
高周波電圧印加手段である高周波電源5が接続されてい
る。
In FIG. 1, a sample table 2 for placing a sample 3 is provided in a plasma chamber 1 which is a vacuum container. A high frequency power source 5 which is a high frequency voltage applying means for applying an alternating voltage via a capacitor 4 is connected to the sample table 2.

【0010】高周波電源5は、13.56MHzの高周
波を発振する。高周波電源5の他方は、アースされてい
る。試料台2の周辺には、アース電極6が設けられてい
る。アース電極6はアースされている。試料台2の試料
面に対向する側には、プラズマ室1の端部1aを囲むよ
うに導波管7が設けてある。導波管7の端部にはマイク
ロ波発振源8が取り付けてある。マイクロ波発振源8に
は、直流電源9が接続されている。マイクロ波発振源8
は、例えば2.45GHzのマイクロ波を発振する。プ
ラズマ室1の端部1a周辺には、導波管7を介して磁場
発生手段である磁石10が設けてある。
The high frequency power supply 5 oscillates a high frequency of 13.56 MHz. The other side of the high frequency power source 5 is grounded. A ground electrode 6 is provided around the sample table 2. The ground electrode 6 is grounded. A waveguide 7 is provided on the side of the sample table 2 facing the sample surface so as to surround the end 1 a of the plasma chamber 1. A microwave oscillation source 8 is attached to the end of the waveguide 7. A DC power supply 9 is connected to the microwave oscillation source 8. Microwave oscillation source 8
Oscillates a microwave of 2.45 GHz, for example. A magnet 10, which is a magnetic field generating means, is provided around the end 1 a of the plasma chamber 1 via a waveguide 7.

【0011】プラズマ室1の端部1a付近には、図示し
ないガス供給装置からプラズマ室1の端部1aに処理ガ
スを導入するガス導入口12が設けてある。プラズマ室
1の端部1aの反対側には、図示しない排気装置に継な
がる排気口が設けてある。
A gas introduction port 12 for introducing a processing gas into the end portion 1a of the plasma chamber 1 from a gas supply device (not shown) is provided near the end portion 1a of the plasma chamber 1. An exhaust port connected to an exhaust device (not shown) is provided on the opposite side of the end 1a of the plasma chamber 1.

【0012】上記構成により、プラズマ室1の端部1a
に処理ガスを供給し、プラズマ室1を所定圧力に減圧排
気した状態で、マイクロ波発振源8からマイクロ波を発
振する。マイクロ波は導波管7に導かれプラズマ室1の
端部1aを透過して端部1aに入る。端部1a内の処理
ガスは、マイクロ波によって励起される。この時、磁石
10によって端部1a内に磁場を発生させ、より強いプ
ラズマ11を発生させるとともに、磁場の制御によって
プラズマ11を試料3の方へ輸送する。試料台2に高周
波電圧を印加することによって、試料3の近傍に輸送さ
れてきたプラズマに高周波放電を発生させ、試料台2に
バイアス電位を生成させる。試料台2のバイアス電位に
より高周波放電によるプラズマ中のイオンが試料3に垂
直に入射して、試料3がエッチングされる。
With the above structure, the end portion 1a of the plasma chamber 1 is
In the state in which the processing gas is supplied to the plasma chamber 1 and the plasma chamber 1 is evacuated to a predetermined pressure, a microwave is oscillated from the microwave oscillation source 8. The microwave is guided to the waveguide 7 and passes through the end portion 1a of the plasma chamber 1 to enter the end portion 1a. The processing gas in the end 1a is excited by microwaves. At this time, the magnet 10 generates a magnetic field in the end 1a to generate a stronger plasma 11, and the plasma 11 is transported toward the sample 3 by controlling the magnetic field. By applying a high frequency voltage to the sample stage 2, a high frequency discharge is generated in the plasma transported in the vicinity of the sample 3 and a bias potential is generated in the sample stage 2. Due to the bias potential of the sample table 2, the ions in the plasma due to the high frequency discharge are vertically incident on the sample 3, and the sample 3 is etched.

【0013】また、高周波電源5の電力を制御すること
によって、試料台2のバイアス電位を制御してマイクロ
波および磁場の作用によって生成したプラズマ11とは
無関係に、プラズマ中のイオンエネルギーを制御でき
る。
Further, by controlling the electric power of the high frequency power source 5, the ion potential in the plasma can be controlled independently of the plasma 11 generated by the action of the microwave and the magnetic field by controlling the bias potential of the sample stage 2. .

【0014】図2に、処理ガスとしてSF6,ガス圧力
を5.2×10~2Pa,マイクロ波電力を250Wとし
た条件で、各周波数の交流電圧を試料台2に印加した場
合の全印加電圧Vppと自己バイアス電圧Vdcとの関
係を示す。
FIG. 2 shows the case where an AC voltage of each frequency was applied to the sample stage 2 under the conditions that SF 6 was used as the processing gas, the gas pressure was 5.2 × 10 2 Pa, and the microwave power was 250 W. The relationship between the applied voltage Vpp and the self-bias voltage Vdc is shown.

【0015】図2によれば、全印加電圧Vppが大きく
なるに従い、自己バイアス電圧Vdcも大きくなってい
る。また、同一全印加電圧Vppに対して、周波数が高
くなるにつれて自己バイアス電圧Vdcも大きくなって
いる。すなわち、低周波である800KHz〜10MH
zに比べて高周波である13.56MHzの方が、同一
全印加電圧Vppに対して自己バイアス電圧Vdcが大
きい。
According to FIG. 2, as the total applied voltage Vpp increases, the self-bias voltage Vdc also increases. Further, for the same total applied voltage Vpp, the self-bias voltage Vdc also increases as the frequency increases. That is, the low frequency of 800 KHz to 10 MH
The self-bias voltage Vdc is higher for the same total applied voltage Vpp at 13.56 MHz, which is a higher frequency than z.

【0016】以上、本一実施例によれば、13.56M
Hzの高周波を用いることにより、同一全印加電圧Vp
pに対し自己バイアス電圧Vdcを大きくすることがで
き、それだけ、イオンを加速するためのエネルギーが大
きくなり、エッチング速度を向上させることができる。
逆に、小さい入力電力でイオンの加速を制御できる。
As described above, according to this embodiment, 13.56M
By using a high frequency of Hz, the same total applied voltage Vp
The self-bias voltage Vdc can be increased with respect to p, and accordingly, the energy for accelerating the ions is increased and the etching rate can be improved.
Conversely, ion acceleration can be controlled with a small input power.

【0017】また、工業上は、800KHzや10MH
z等の低周波発振器は一般に市販されておらず、高周波
発振器では13.56MHzのものが市販されており、
13.56MHzの高周波発振器の方が機器コストが安
い。したがって13.56MHzの高周波発振器を用い
れば、10MHz以下の低周波発振器に比べて、イオン
の制御性が向上し、かつ装置が安価にできる。
Industrially, 800 KHz and 10 MH
Low frequency oscillators such as z are not generally available on the market, and high frequency oscillators with 13.56 MHz are available on the market.
The device cost of the 13.56 MHz high frequency oscillator is lower. Therefore, if a 13.56 MHz high frequency oscillator is used, the controllability of ions is improved and the apparatus can be made cheaper than a low frequency oscillator of 10 MHz or less.

【0018】なお、本一実施例は、プラズマ化手段に電
子サイクロトロン共鳴(ECR)放電を用いた装置につ
いて記載したが、プラズマ化手段にマイクロ波放電を用
いたものでも同様の効果がある。
Although the present embodiment describes the apparatus using the electron cyclotron resonance (ECR) discharge as the plasma generating means, the same effect can be obtained even if the plasma generating means uses the microwave discharge.

【0019】[0019]

【発明の効果】本発明によれば、試料台に周波数13.
56MHzの高周波電圧を印加することにより、エッチ
ング速度を向上させ、さらに優れた加工特性を得ること
が安価に実現できるという効果がある。
According to the present invention, the frequency of 13.
By applying a high frequency voltage of 56 MHz, it is possible to improve the etching rate and obtain excellent processing characteristics at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例であるマイクロ波プラズマ処
理装置を示す縦断面図である。
FIG. 1 is a vertical sectional view showing a microwave plasma processing apparatus according to an embodiment of the present invention.

【図2】全印加電圧と自己バイアス電圧の関係を示す図
である。
FIG. 2 is a diagram showing a relationship between a total applied voltage and a self-bias voltage.

【符号の説明】[Explanation of symbols]

1……プラズマ室 2……試料台 4……コンデンサ 5……高周波電
源 8……マイクロ波発振源 10……磁石
1 ... Plasma chamber 2 ... Sample stage 4 ... Capacitor 5 ... High frequency power source 8 ... Microwave oscillation source 10 ... Magnet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真空容器と、該真空容器内に処理ガスを供
給するガス供給装置と、前記真空容器内を所定圧力に減
圧排気する排気装置と、前記真空容器内の処理ガスをプ
ラズマ化する手段と、前記真空容器内に設けられ試料を
支持する試料台と、該試料台に周波数13.56MHz
の高周波電圧を印加する高周波電圧印加手段とを具備す
ることを特徴とするマイクロ波プラズマ処理装置。
1. A vacuum container, a gas supply device for supplying a processing gas into the vacuum container, an exhaust device for decompressing and evacuating the inside of the vacuum container to a predetermined pressure, and a plasma of the processing gas in the vacuum container. Means, a sample table provided in the vacuum container for supporting a sample, and a frequency of 13.56 MHz on the sample table
And a high frequency voltage applying means for applying the high frequency voltage of 1.
JP6199672A 1994-08-24 1994-08-24 Microwave plasma processing equipment Expired - Lifetime JP2629610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6199672A JP2629610B2 (en) 1994-08-24 1994-08-24 Microwave plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6199672A JP2629610B2 (en) 1994-08-24 1994-08-24 Microwave plasma processing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61033033A Division JPH0831438B2 (en) 1986-02-19 1986-02-19 Microwave plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH0774160A true JPH0774160A (en) 1995-03-17
JP2629610B2 JP2629610B2 (en) 1997-07-09

Family

ID=16411706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6199672A Expired - Lifetime JP2629610B2 (en) 1994-08-24 1994-08-24 Microwave plasma processing equipment

Country Status (1)

Country Link
JP (1) JP2629610B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183736A (en) * 1996-08-12 1997-07-15 Green Cross Corp:The Therapeutic agent for autoimmune enteropathy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169135A (en) * 1983-03-16 1984-09-25 Fujitsu Ltd Manufacture of semiconductor device
JPS60103618A (en) * 1983-11-11 1985-06-07 Hitachi Ltd Microwave plasma treatment device
JPS615520A (en) * 1984-06-20 1986-01-11 Hitachi Ltd Transferring method for pattern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169135A (en) * 1983-03-16 1984-09-25 Fujitsu Ltd Manufacture of semiconductor device
JPS60103618A (en) * 1983-11-11 1985-06-07 Hitachi Ltd Microwave plasma treatment device
JPS615520A (en) * 1984-06-20 1986-01-11 Hitachi Ltd Transferring method for pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183736A (en) * 1996-08-12 1997-07-15 Green Cross Corp:The Therapeutic agent for autoimmune enteropathy

Also Published As

Publication number Publication date
JP2629610B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
US6849857B2 (en) Beam processing apparatus
EP0271341B1 (en) Method and apparatus for ion etching
US6861642B2 (en) Neutral particle beam processing apparatus
KR100291152B1 (en) Plasma generating apparatus
JP3381916B2 (en) Low frequency induction type high frequency plasma reactor
JPH08181125A (en) Plasma treatment and device thereof
JPH08264296A (en) Reactive ion etching inductively reinforced
JP2003515433A (en) Hybrid plasma processing equipment
EP0721514B1 (en) Magnetically enhanced multiple capacitive plasma generation apparatus and related method
US5223085A (en) Plasma etching method with enhanced anisotropic property and apparatus thereof
US6909086B2 (en) Neutral particle beam processing apparatus
JPS63155728A (en) Plasma processor
US20040074604A1 (en) Neutral particle beam processing apparatus
JP4653395B2 (en) Plasma processing equipment
JPH0774160A (en) Microwave plasma treating equipment
JPS62193126A (en) Method and apparatus for microwave plasma treatment
JPH10284298A (en) Plasma processing method and device
JPH0766918B2 (en) Plasma processing device
KR930001857B1 (en) Treating method and apparatus using plasma
JP3884854B2 (en) Reactive ion etching system
JP3071450B2 (en) Microwave plasma processing equipment
JPS63318127A (en) Plasma processing device
JP4332230B2 (en) Reactive ion etching method and apparatus
JPH08246146A (en) Method for plasma treating and device therefor
JPH07226394A (en) Method and apparatus for semiconductor treatment