JPH0773899B2 - Method for manufacturing porous composite material - Google Patents

Method for manufacturing porous composite material

Info

Publication number
JPH0773899B2
JPH0773899B2 JP2166002A JP16600290A JPH0773899B2 JP H0773899 B2 JPH0773899 B2 JP H0773899B2 JP 2166002 A JP2166002 A JP 2166002A JP 16600290 A JP16600290 A JP 16600290A JP H0773899 B2 JPH0773899 B2 JP H0773899B2
Authority
JP
Japan
Prior art keywords
plate
cooling
mat
composite material
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2166002A
Other languages
Japanese (ja)
Other versions
JPH0462053A (en
Inventor
克彦 山路
雅則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2166002A priority Critical patent/JPH0773899B2/en
Publication of JPH0462053A publication Critical patent/JPH0462053A/en
Publication of JPH0773899B2 publication Critical patent/JPH0773899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車用天井材として好適に用いられる多孔
性複合材料の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a porous composite material that is preferably used as a ceiling material for automobiles.

(従来の技術) 一般に、自動車用天井材には、軽量で、剛性、耐熱性、
吸音性、成形性等の性能に優れた材料が要求される。
(Prior Art) Generally, a ceiling material for an automobile is lightweight, has rigidity, heat resistance,
Materials with excellent performance such as sound absorption and moldability are required.

従来より、この種の材料の製造方法としては、例えば特
開昭64−77664号公報に示すような方法が知られてい
る。すなわち、この方法は、無機繊維を主体とするマッ
ト状物の両面に熱可塑性樹脂フィルムを積層して積層シ
ートとする。この積層シートの両面に、上記熱可塑性樹
脂が溶融状態では融着するが非溶融状態では接着しない
板状体を積層する。ついで、熱可塑性樹脂の溶融温度以
上の温度に加熱して熱可塑性樹脂を溶融した状態で加圧
圧縮した後、解圧する。そして、熱可塑性樹脂が溶融し
た状態で拡開し、積層シートの厚みを増大させた後、冷
却する。その後、板状体を剥離して複合材料を得るもの
である。
Conventionally, as a method of manufacturing this type of material, for example, a method as disclosed in JP-A-64-77664 is known. That is, in this method, a thermoplastic resin film is laminated on both surfaces of a mat-like material mainly composed of inorganic fibers to form a laminated sheet. On both sides of this laminated sheet, a plate-like body on which the thermoplastic resin is fused in the molten state but not adhered in the non-molten state is laminated. Next, the thermoplastic resin is heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin to compress the thermoplastic resin under pressure, and then decompressed. Then, the thermoplastic resin is expanded in a molten state to increase the thickness of the laminated sheet and then cooled. Then, the plate-shaped body is peeled off to obtain a composite material.

そして、この複合材料の製造工程においては、加熱、圧
縮、拡開、冷却の各作業工程をそれぞれ単独に行ってい
た。
Then, in the manufacturing process of this composite material, each working process of heating, compression, spreading, and cooling has been performed independently.

(発明が解決しようとする課題) しかし、加熱、圧縮、拡開、冷却の各作業工程をそれぞ
れ単独に行うと、生産性の向上が望めない。
(Problems to be Solved by the Invention) However, if the respective working steps of heating, compression, expansion, and cooling are performed independently, improvement in productivity cannot be expected.

また、複合材料としては、表面層が高密度で内部層が低
密度のものが強度的に好ましい。しかし、拡開と冷却と
を単独で行うと、拡開によって表面から内部にかけて均
一な状態で拡開した後、冷却することとなり、得られた
複合材料は表面層から内部層にかけて均一な状態とな
り、その密度が均一化されてしまうといった不都合を生
じることとなる。
Further, as the composite material, it is preferable that the surface layer has a high density and the inner layer has a low density in terms of strength. However, if the expansion and the cooling are performed independently, the expansion is performed in a uniform state from the surface to the inside and then the cooling is performed, and the obtained composite material is in a uniform state from the surface layer to the internal layer. However, there is a problem that the density becomes uniform.

本発明は、係る実情に鑑みてなされたもので、生産性の
向上と、得られる複合材料の品質の向上を図ることので
きる多孔性複合材料の製造方法を提供することを目的と
している。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for producing a porous composite material, which can improve productivity and quality of the obtained composite material.

(課題を解決するための手段) 本発明の多孔性複合材料の製造方法は、無機繊維と、熱
可塑性樹脂繊維および熱可塑性樹脂粉末から選ばれた少
なくとも一種の樹脂成分よりなるマット状物の両面に、
上記樹脂成分が溶融状態では融着するが非溶融状態では
接着しない板状体を積層し、上記樹脂成分の溶融温度以
上の温度に加熱して樹脂成分を溶融せしめる加熱工程
と、この溶融状態で加圧圧縮する圧縮工程と、上記樹脂
成分が溶融した状態で上記板状体を拡開してマット状物
の厚みを増大させる拡開工程と、マット状物を冷却する
冷却工程とを順次行う多孔性複合材料の製造方法におい
て、表面に吸引部を有するとともにこの吸引部間に冷却
管を配置した箱型の吸着板を用いて、その吸引部より吸
引しつつ上記板状体を拡開してマット状物の厚みを増大
させる拡開工程と、冷却管に冷却水を流す冷却工程とを
略同時に行うものである。
(Means for Solving the Problems) The method for producing a porous composite material according to the present invention is a method for producing a mat-like article comprising inorganic fibers and at least one resin component selected from thermoplastic resin fibers and thermoplastic resin powders. To
The resin component is melted in a molten state, but laminated in a non-melted state without laminating, and a heating step of melting the resin component by heating it to a temperature equal to or higher than the melting temperature of the resin component, and in this molten state A compression step of compressing under pressure, an expanding step of expanding the plate-shaped body to increase the thickness of the mat-like material in a state where the resin component is melted, and a cooling step of cooling the mat-like material are sequentially performed. In the method for producing a porous composite material, a box-shaped adsorption plate having a suction portion on the surface and a cooling pipe arranged between the suction portions is used to expand the plate-like body while sucking from the suction portion. The expanding step of increasing the thickness of the mat-like material and the cooling step of flowing cooling water through the cooling pipe are performed substantially at the same time.

本発明で使用されるマット状物は無機繊維を主体とする
ものであり、無機繊維としては、たとえばガラス繊維、
ロックウール等があげられ、その長さはマット状物の形
成性の点から5〜200mmが好ましく50mm以上のものが70
重量%以上含まれているのがより好ましい。又、その太
さは細くなると、機械的強度が低下し、太くなると重く
なって嵩密度が小さくなるので5〜30μmが好ましく、
より好ましくは7〜20μmである。
The mat-like material used in the present invention is mainly composed of inorganic fibers, and examples of the inorganic fibers include glass fibers,
Rock wool and the like can be mentioned, and the length thereof is preferably 5 to 200 mm from the viewpoint of forming a mat-like material, and 70 mm or more is preferable.
It is more preferable that the content is at least wt%. Further, when the thickness is thin, the mechanical strength is lowered, and when the thickness is thick, the weight is heavy and the bulk density is reduced.
More preferably, it is 7 to 20 μm.

上記マット状物の製造方法は任意の方法が採用されてよ
く、たとえば無機繊維をカードマシンに供給し、解繊、
混繊しマット状物を製造する方法があげられる。
Any method may be adopted as the method for producing the mat-like material, for example, inorganic fibers are supplied to a card machine, defibration,
There is a method of producing a mat-like material by mixing fibers.

また、無機繊維を接着するためやマット状物の嵩密度を
上げるために、ポリエチレン、ポリプロピレン、飽和ポ
リエステル、ポリアミド、ポリスチレン、ポリビニルブ
チラール等の熱可塑性樹脂よりなる有機繊維や有機粉末
が添加されてもよい。有機繊維の添加はマット状物を製
造する際に添加するのが好ましいが、有機粉末はマット
状物を製造する際でもよいしマット状物を製造した後に
散布してもよい。また、有機粉末は粉末として使用され
てもよいし、粉末の分散液やエマルジョンとして使用さ
れてもよい。有機繊維の長さ及び直径は無機繊維と混繊
してマット状物を形成する際の形成性がすぐれているの
が好ましいので、長さは5〜200mmが好ましく、より好
ましいは20〜100mmであり、太さは3〜50μmが好まし
く、より好ましくは20〜40μmである。また、有機粉末
の直径は粉末状態で添加される際には50〜100メッシュ
が好ましく、貧溶媒に分散された状態もしくはエマルジ
ョンにして添加される際にはもっと小さくてもよい。
Further, in order to bond the inorganic fibers or to increase the bulk density of the mat-like material, organic fibers or organic powders made of thermoplastic resin such as polyethylene, polypropylene, saturated polyester, polyamide, polystyrene, polyvinyl butyral may be added. Good. Although it is preferable to add the organic fiber at the time of producing the mat-like material, the organic powder may be added at the time of producing the mat-like material or may be sprayed after producing the mat-like material. Further, the organic powder may be used as a powder, or may be used as a powder dispersion or emulsion. Since the length and diameter of the organic fiber are preferably excellent in formability when mixed with the inorganic fiber to form a mat-like material, the length is preferably 5 to 200 mm, more preferably 20 to 100 mm. The thickness is preferably 3 to 50 μm, more preferably 20 to 40 μm. The diameter of the organic powder is preferably 50 to 100 mesh when added in powder form, and may be smaller when added in a state of being dispersed in a poor solvent or as an emulsion.

また、マット状物の機械的強度を向上させるためにニー
ドルパンチを施こしてもよく、ニードルパンチは1cm2
たり10〜70個所行われるのが好ましい。
Further, in order to improve the mechanical strength of the mat-like material, needle punching may be carried out, and the needle punching is preferably carried out at 10 to 70 points per cm 2 .

マット状物の密度は大きくなると重くなり、小さくなる
と機械的強度が低下するので0.01〜0.2g/cm2が好まし
く、より好ましくは0.03〜0.07g/cm2である。
The mat-like material becomes heavier as the density increases, and the mechanical strength decreases as the density decreases, so that it is preferably 0.01 to 0.2 g / cm 2 , and more preferably 0.03 to 0.07 g / cm 2 .

上記マット状物の両面に熱可塑性樹脂フイルムを積層し
てもよい。
A thermoplastic resin film may be laminated on both sides of the mat-like material.

上記熱可塑性樹脂フイルムとしては、ポリエチレン、ポ
リプロピレン、ポリスチレン、飽和ポリエステル、ポリ
ウレタン、ポリビニルブチラール、ポリ塩化ビニル等の
熱可塑性樹脂のフイルムがあげられる。なお、有機繊維
もしくは粉末を接着剤としてマット状物に添加する際に
は溶融温度の近いものを使用するのが好ましい。
Examples of the thermoplastic resin film include films of thermoplastic resins such as polyethylene, polypropylene, polystyrene, saturated polyester, polyurethane, polyvinyl butyral, and polyvinyl chloride. When the organic fiber or powder is added as an adhesive to the mat-like material, it is preferable to use one having a close melting temperature.

熱可塑性樹脂フイルムの厚さは厚くなると重くなり、薄
くなると機械的強度が低下するので50〜500μmが好ま
しく、より好ましくは70〜300μmである。また、有機
繊維や粉末を接着剤として併用する際には有機繊維や粉
末により無機繊維は接着されるので熱可塑性樹脂フイル
ムの厚さを薄くすることができる。
The thickness of the thermoplastic resin film becomes heavier as it becomes thicker, and the mechanical strength becomes lower as it becomes thinner, so that it is preferably 50 to 500 μm, more preferably 70 to 300 μm. Further, when the organic fiber or powder is used as an adhesive together, the inorganic fiber is bonded by the organic fiber or powder, so that the thickness of the thermoplastic resin film can be reduced.

熱可塑性樹脂フイルムを積層する方法は任意の方法が採
用されてよく、たとえば単に載置する方法、熱融着する
方法、押出ラミネートする方法等があげられる。
Any method may be adopted as a method of laminating the thermoplastic resin film, and examples thereof include a simple placing method, a heat fusion method, and an extrusion laminating method.

本発明で使用される板状体は上記熱可塑性樹脂が溶融状
態では融着するが非溶融状態では接着しない性質を有す
るものであり、たとえばガラス繊維強化ポリテトラフル
オロエチレンシート、表面がポリテトラフルオロエチレ
ン加工されたプレス板、表面が離型処理されたポリエス
テルシート等があげられる。
The plate-like body used in the present invention has a property that the thermoplastic resin is fused in a molten state but does not adhere in a non-molten state, and for example, a glass fiber reinforced polytetrafluoroethylene sheet, a surface of which is polytetrafluoro Examples thereof include a press plate processed with ethylene and a polyester sheet whose surface is treated to be released.

前記材料の両面に上記板状体を積層し、熱可塑性樹脂の
溶融温度以上の温度に加熱して熱可塑性樹脂を溶融せし
めた状態で加圧圧縮する。
The plate-shaped bodies are laminated on both surfaces of the material, and the thermoplastic resin is melted by heating it to a temperature equal to or higher than the melting temperature of the thermoplastic resin and pressure-compressed.

上記加熱する方法は任意の方法が採用されてよく、たと
えば熱風加熱方法、赤外線ヒーター、遠赤外線ヒーター
などによる輻射加熱方法等があげられる。
As the heating method, any method may be adopted, and examples thereof include a hot air heating method, a radiant heating method using an infrared heater, a far infrared heater and the like.

なお、加圧圧縮は任意の方法が採用されてよく、たとえ
ばプレスする方法、ロールで圧縮する方法等があげられ
る。プレス圧力は0.1〜20kg/cm2であって4/5以下圧縮さ
れるのが好ましく、圧縮時間は数秒あればよい。また、
ロールで圧縮する際にはロール間を材料厚みの4/5〜1/2
0に設定するのが好ましい。プレス、ロール共に圧縮す
る際には熱可塑性樹脂の溶融温度以上の温度に加熱され
ているのが好ましい。
Any method may be adopted as the compression under pressure, and examples thereof include a pressing method and a rolling method. The pressing pressure is 0.1 to 20 kg / cm 2 , preferably 4/5 or less, and the compression time may be several seconds. Also,
4/5 to 1/2 of material thickness between rolls when compressing
It is preferably set to 0. When both the press and the roll are compressed, it is preferable that they are heated to a temperature equal to or higher than the melting temperature of the thermoplastic resin.

本発明においては加圧圧縮された後、板状体が積層され
た材料は解圧され、熱可塑性樹脂が溶融した状態で板状
体を拡開しながら冷却し、材料の厚みを増大させる。
In the present invention, the material in which the plate-shaped bodies are laminated is decompressed after being pressed and compressed, and the plate-shaped bodies are cooled while being expanded while the thermoplastic resin is melted to increase the thickness of the material.

加圧圧縮されると溶融した熱可塑性樹脂は無機繊維中に
含浸される。次に解圧すると材料は元の厚さに回復しよ
うとするが無機繊維は一度押しつぶされているので充分
に回復しない。そこで熱可塑性樹脂が溶融した状態で板
状体を拡開すると同時に、あるいは拡開に対して極めて
僅かに遅れて、該板状対を介して冷却してやる。すると
材料は、板状体に融着しているから厚みが回復され嵩高
くなるとともに、板状体に接する外表面から順次固化す
ることとなる。その結果、得られる複合材料は、板状体
に接する両表面の密度が高く、内部は拡開によって密度
が低くなり、全体としては、低密度の内部層に高密度の
表面層を被覆した3層構造となる。
The molten thermoplastic resin is impregnated in the inorganic fiber when compressed under pressure. Next, when the pressure is released, the material tries to recover to the original thickness, but the inorganic fiber is once crushed, so it does not recover sufficiently. Therefore, the plate-shaped body is expanded in the molten state of the thermoplastic resin, or at the same time, or very slightly after the expansion, the plate-shaped body is cooled via the plate-shaped pair. Then, since the material is fused to the plate-shaped body, the thickness is recovered and the volume becomes bulky, and the material is sequentially solidified from the outer surface in contact with the plate-shaped body. As a result, the obtained composite material has a high density on both surfaces in contact with the plate-like material and the inside has a low density due to expansion, and as a whole, the low-density inner layer is covered with the high-density surface layer. It has a layered structure.

なお、この際、熱可塑性樹脂は溶融しているので無機繊
維や接着部分が破断することはない。また、拡開と冷却
を略同時に行う方法は、例えば、真空吸引によって板状
体を反対方向に引張るとともに、この真空吸引装置内に
板状体に接するようになされた冷却管を配設しておくこ
とで可能となる。
At this time, since the thermoplastic resin is melted, the inorganic fibers and the bonded portion are not broken. In addition, a method of performing expansion and cooling at substantially the same time is, for example, pulling the plate-shaped body in the opposite direction by vacuum suction, and disposing a cooling pipe configured to come into contact with the plate-shaped body in the vacuum suction device. It becomes possible by leaving.

このとき真空吸引および冷却する機構は、例えば、第1
図に示すように、表面に多数の小孔やスリット等の吸引
部10を有するとともに、この吸引部10の間に冷却管11を
配設した箱型の吸着板1を用いることができる。この吸
着板1は、真空ポンプ8に接続され、該真空ポンプ8の
作動によって吸引部10から吸着を行う。また、冷却管11
に冷却水を流すことによって吸引部10に吸着した板状体
2の冷却を行う。
At this time, the mechanism for vacuum suction and cooling is, for example, the first
As shown in the figure, it is possible to use a box-shaped adsorption plate 1 which has a large number of suction holes 10 such as small holes and slits on its surface, and a cooling pipe 11 is arranged between the suction holes 10. The suction plate 1 is connected to a vacuum pump 8 and the suction unit 10 sucks the suction plate 1 by operating the vacuum pump 8. Also, the cooling pipe 11
The plate-like body 2 adsorbed on the suction unit 10 is cooled by flowing cooling water to the suction unit 10.

この吸引部10の開口率としては、吸着面12に対し、0.5
〜10%が好ましい。0.5%以下になると、板状体2をう
まく吸引せず、はずれることが多くなり、10%を越える
と板状体2との摩擦抵抗が大きくなり好ましくない。こ
の吸着面12と、摩擦抵抗の少ない状態すなわち、金属の
研磨、メッキ等が好ましい。
The opening ratio of the suction unit 10 is 0.5 with respect to the suction surface 12.
~ 10% is preferred. If it is 0.5% or less, the plate-like body 2 is not sucked well and the plate-like body 2 often comes off, and if it exceeds 10%, the frictional resistance with the plate-like body 2 becomes large, which is not preferable. It is preferable that the suction surface 12 and the frictional resistance are small, that is, the metal is polished or plated.

また、冷却管11に流す媒体としては、水、冷風、オイル
等を用いることができるが、水冷が効果が大きく好まし
い。この冷却管11は、吸着面12の裏側に密着もしくは溶
接等で一体化することによって配設される。
Water, cold air, oil, or the like can be used as the medium flowing through the cooling pipe 11, but water cooling is preferable because of its large effect. This cooling pipe 11 is arranged on the back side of the adsorption surface 12 by being closely attached or integrated by welding or the like.

その後に板状体2を剥離すると多孔性複合材が得られ
る。
After that, the plate-shaped body 2 is peeled off to obtain a porous composite material.

なお、本発明の製造方法を実施する装置としては、第2
図に示すように、板状体2を2本のベルト状に形成して
このベルト20の間で材料3を狭持するとともに、このベ
ルト20の搬送方向Aに沿って加熱炉4、プレス5、拡開
冷却装置6を設けることによって構成することができ
る。この装置によると、ベルト20によって材料3を狭持
した状態で搬送し、その搬送の過程で加熱、圧縮、拡開
冷却の各作業工程を連続的に行うことが可能となる。
In addition, as an apparatus for carrying out the manufacturing method of the present invention, the second
As shown in the figure, the plate-like body 2 is formed in the shape of two belts to sandwich the material 3 between the belts 20, and the heating furnace 4 and the press 5 along the conveying direction A of the belt 20. It can be configured by providing the expansion cooling device 6. According to this apparatus, it is possible to convey the material 3 in a state of being sandwiched by the belt 20, and in the course of the conveyance, each work process of heating, compression, and expansion cooling can be continuously performed.

また、本発明の製造方法で得られた熱成形用材料を賦形
するには樹脂成分の溶融温度以上の温度に再加熱し、プ
レス等で圧縮成形すればよく、例えば自動車用天井材と
して使用するには圧縮成形の際に塩化ビニルレザー、不
織布等の化粧用表皮材を積層して賦形すればよい。
Further, in order to shape the thermoforming material obtained by the production method of the present invention, it may be reheated to a temperature equal to or higher than the melting temperature of the resin component and compression-molded by a press or the like, and used as a ceiling material for automobiles, for example. In order to do this, a cosmetic skin material such as vinyl chloride leather or a non-woven fabric may be laminated and shaped during compression molding.

(作用) 本発明の多孔性複合材料の製造方法は、表面に吸引部を
有するとともにこの吸引部間に冷却管を配置した箱型の
吸着板を用いて、その吸引部より吸引しつつ上記板状体
を拡開してマット状物の厚みを増大させる拡開工程と、
冷却管に冷却水を流す冷却工程とを略同時に行うことに
よって、作業工程が短縮されるとともに、内部層が低密
度で、表面層が高密度の多孔性複合材料を得られる。
(Operation) The method for producing a porous composite material according to the present invention uses a box-shaped adsorption plate having a suction portion on the surface and a cooling pipe disposed between the suction portions, and the above-mentioned plate is sucked from the suction portion. A spreading step of spreading the mat-like material to increase the thickness of the mat-like material,
By performing the cooling step of flowing the cooling water through the cooling pipe substantially at the same time, it is possible to obtain a porous composite material in which the working steps are shortened and the inner layer has a low density and the surface layer has a high density.

(実施例) 次に本発明の実施例を説明する。(Example) Next, the Example of this invention is described.

〔実施例1〕 流さ40〜200mm、直径9〜13μmのガラス繊維をカード
マシンに供給し、混繊してマット状にし、1cm2当たり30
箇所ニードルパンチを行って厚さ8mm、重さ500g/m2のマ
ット状物を得、その両面にポリエチレンシート(厚さ15
0μm、重さ143g/m2)を積層して積層シートを得た。得
られた積層シートの両面にガラス材料繊維強化ポリテト
ラフルオロエチレンシート(厚さ150μm)を積層し、2
00℃で3分間加熱し、3kg/cm2の圧力で、200℃に加熱し
たプレスで圧縮し、次に200℃に保ってガラス繊維強化
ポリテトラフルオロエチレンシートを両側から真空吸引
して拡開すると同時に冷却して積層シートの厚みを7mm
まで回復し、次いでシートを剥離して多孔性複合材料を
得た。
[Example 1] A glass machine having a flow rate of 40 to 200 mm and a diameter of 9 to 13 µm was supplied to a card machine, mixed and formed into a mat, and 30 per 1 cm 2 was obtained.
Needle punching is performed to obtain a mat-like material with a thickness of 8 mm and a weight of 500 g / m 2 , and polyethylene sheets (thickness 15
0 μm, weight 143 g / m 2 ) were laminated to obtain a laminated sheet. A glass material fiber reinforced polytetrafluoroethylene sheet (thickness 150 μm) is laminated on both sides of the obtained laminated sheet, and 2
Heat at 00 ° C for 3 minutes, compress at a pressure of 3kg / cm 2 with a press heated to 200 ° C, then keep at 200 ° C and expand the glass fiber reinforced polytetrafluoroethylene sheet by vacuum suction from both sides. At the same time, it is cooled and the thickness of the laminated sheet is 7 mm.
The sheet was then peeled off to obtain a porous composite material.

第3図に示すように、ここで拡開と冷却を行う吸着板1
の吸着面12は、内寸40×40mm、外寸50×50mmの角パイプ
13(冷却管11)を3mmの間隔で並列に配設することによ
って構成した。また、材質はアルミニウム製である。こ
の冷却管11の両端は各々入口マニホールドと出口マニホ
ールド(図示省略)に接続し、冷却水の分配集合を行っ
た。また、各冷却管11…同士に設けた3mmの間隔を吸引
部10とし、この吸引部10から真空ポンプにて空気を吸引
することによってシート21(板状体2)の吸着を行っ
て、複合材料3の拡開および冷却を同時に行った。
As shown in FIG. 3, the adsorption plate 1 for expanding and cooling here.
The suction surface 12 is a square pipe with inner dimensions of 40 x 40 mm and outer dimensions of 50 x 50 mm.
It was constructed by arranging 13 (cooling tubes 11) in parallel at intervals of 3 mm. The material is aluminum. Both ends of this cooling pipe 11 were respectively connected to an inlet manifold and an outlet manifold (not shown) to distribute and collect cooling water. Further, a space of 3 mm provided between the cooling pipes 11 ... Is set as a suction part 10, and air is sucked from the suction part 10 by a vacuum pump to adsorb the sheet 21 (plate-like body 2), thereby forming a composite. Material 3 was expanded and cooled at the same time.

そして、得られた多孔性複合材料の曲げ強度と曲げ弾性
率を測定した。結果を表1に示す。
Then, the bending strength and bending elastic modulus of the obtained porous composite material were measured. The results are shown in Table 1.

〔比較例〕 拡開を行った後に冷却を行い、その他の上記実施例1と
同様にして多孔性複合材料を得た。
[Comparative Example] A porous composite material was obtained in the same manner as in Example 1 except that cooling was performed after expanding.

そして、得られた多孔性複合材料の曲げ強度と曲げ弾性
率を測定した。結果を表1に示す。
Then, the bending strength and bending elastic modulus of the obtained porous composite material were measured. The results are shown in Table 1.

(発明の効果) 以上述べたように、本発明によると、作業工程を短縮す
ることができるので、生産効率の向上を図ることができ
る。同時に、内部層が低密度で、表面層が高密度の多孔
性複合材料が得られるので、強度的に優れた多孔製複合
材料を製造することができる。
(Effects of the Invention) As described above, according to the present invention, the working process can be shortened, and thus the production efficiency can be improved. At the same time, a porous composite material having a low density of the inner layer and a high density of the surface layer is obtained, so that a porous composite material having excellent strength can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

第1図は吸着板による拡開および冷却機構の全体構成の
概略を示す側断面図、第2図は本発明を実施する製造装
置の全体構成の概略を示す側面図、第3図は実施例1に
係る吸着板を示す側断面図である。 1……吸着板 2……板状体 3……マット状物
FIG. 1 is a side sectional view showing the outline of the entire structure of the expansion and cooling mechanism using an adsorption plate, FIG. 2 is a side view showing the outline of the entire structure of a manufacturing apparatus for carrying out the present invention, and FIG. It is a sectional side view which shows the adsorption plate which concerns on 1. 1 ... Suction plate 2 ... Plate 3 ... Mat

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】無機繊維と、熱可塑性樹脂繊維および熱可
塑性樹脂粉末から選ばれた少なくとも一種の樹脂成分よ
りなるマット状物の両面に、上記樹脂成分が溶融状態で
は融着するが非溶融状態では接着しない板状体を積層
し、上記樹脂成分の溶融温度以上の温度に加熱して樹脂
成分を溶融せしめる加熱工程と、この溶融状態で加圧圧
縮する圧縮工程と、上記樹脂成分が溶融した状態で上記
板状体を拡開してマット状物の厚みを増大させる拡開工
程と、マット状物を冷却する冷却工程とを順次行う多孔
性複合材料の製造方法において、表面に吸引部を有する
とともにこの吸引部間に冷却管を配置した箱型の吸着板
を用いて、その吸引部より吸引しつつ上記板状体を拡開
してマット状物の厚みを増大させる拡開工程と、冷却管
に冷却水を流す冷却工程とを略同時に行うことを特徴と
する多孔性複合材料の製造方法。
1. A mat-like material comprising inorganic fibers and at least one resin component selected from a thermoplastic resin fiber and a thermoplastic resin powder, wherein the resin component is fused in a molten state but is in a non-molten state. Then, a plate-like body which is not adhered is laminated, and a heating step of melting the resin component by heating it to a temperature equal to or higher than the melting temperature of the resin component, a compression step of compressing and compressing in this molten state, and the resin component melted. In the method for producing a porous composite material, in which an expanding step of expanding the plate-like body to increase the thickness of the mat-like material in the state and a cooling step of cooling the mat-like material are sequentially performed, a suction part is provided on the surface. Using a box-shaped adsorption plate having a cooling pipe disposed between the suction section, and an expansion step of expanding the thickness of the mat-like object by expanding the plate-like body while sucking from the suction section, Cooling by flowing cooling water through the cooling pipe Method for producing a porous composite material which is characterized in that the extent substantially simultaneously.
JP2166002A 1990-06-25 1990-06-25 Method for manufacturing porous composite material Expired - Fee Related JPH0773899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2166002A JPH0773899B2 (en) 1990-06-25 1990-06-25 Method for manufacturing porous composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2166002A JPH0773899B2 (en) 1990-06-25 1990-06-25 Method for manufacturing porous composite material

Publications (2)

Publication Number Publication Date
JPH0462053A JPH0462053A (en) 1992-02-27
JPH0773899B2 true JPH0773899B2 (en) 1995-08-09

Family

ID=15823059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166002A Expired - Fee Related JPH0773899B2 (en) 1990-06-25 1990-06-25 Method for manufacturing porous composite material

Country Status (1)

Country Link
JP (1) JPH0773899B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128561B2 (en) * 2003-06-30 2006-10-31 Owens Corning Fiberglas Technology, Inc. Surface treatment for blanket of thermoplastic fibers
CN1331578C (en) * 2005-10-13 2007-08-15 中材科技股份有限公司 High temperature resistant P.T.F.E. coated filter material
US7730996B2 (en) 2006-04-12 2010-06-08 Ocv Intellectual Capital, Llc Long fiber thermoplastic composite muffler system with integrated crash management
JP5990277B2 (en) 2012-11-16 2016-09-07 旭化成株式会社 Semicarbazide composition, process for producing semicarbazide composition, aqueous resin composition and composite

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604307A (en) * 1983-06-23 1985-01-10 Fujitsu Ltd Production of mic circulator
JPH0611936B2 (en) * 1987-09-16 1994-02-16 積水化学工業株式会社 Method for producing composite material for thermoforming

Also Published As

Publication number Publication date
JPH0462053A (en) 1992-02-27

Similar Documents

Publication Publication Date Title
US5055341A (en) Composite molded articles and process for producing same
JPH0257333A (en) Sound absorption material
JPH0773899B2 (en) Method for manufacturing porous composite material
Breuer et al. Manufacturing of all‐thermoplastic sandwich systems by a one‐step forming technique
JP3357194B2 (en) Manufacturing method of composite sheet with skin material
JPH01207458A (en) Fiber molded article for heat molding and production thereof
JP2831673B2 (en) Method for producing fiber molded body
JPH0733072B2 (en) Method of manufacturing composite material
JPH07102650B2 (en) Lightweight composite material manufacturing method
JP2974581B2 (en) Manufacturing method of molded ceiling base material for automobile
JP2776615B2 (en) Method for producing porous composite material
JPH04228665A (en) Production of fiber composite material
JP2536908B2 (en) Method for producing thermoformable composite material
JP3121652B2 (en) Automotive ceiling materials
JPH0649363B2 (en) Method for producing fiber molding for thermoforming
JPH0462052A (en) Manufacture of porous composite material
JPH01306663A (en) Production of formed fiber material for thermo-forming
JPH07110529B2 (en) Ceiling material for automobile
JP3095503B2 (en) Thermoformable core material and method for producing the same
JPH0261150A (en) Thermally formable composite material and production thereof
JPH05311556A (en) Production of fiber composite product
JPH0791758B2 (en) Method for producing thermoformable composite material
JPH06210780A (en) Core material for laminate, laminate for molding and their manufacture
JPH0261152A (en) Production of thermally formable composite material
JPH07864B2 (en) Method for producing composite material for thermoforming

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees