JPH0773836A - Electron microscope - Google Patents

Electron microscope

Info

Publication number
JPH0773836A
JPH0773836A JP21636593A JP21636593A JPH0773836A JP H0773836 A JPH0773836 A JP H0773836A JP 21636593 A JP21636593 A JP 21636593A JP 21636593 A JP21636593 A JP 21636593A JP H0773836 A JPH0773836 A JP H0773836A
Authority
JP
Japan
Prior art keywords
coil
closed loop
pole piece
yoke
electron lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21636593A
Other languages
Japanese (ja)
Other versions
JP2967966B2 (en
Inventor
Soichiro Hayashi
聰一郎 林
Toshio Kouchi
俊男 小内
Kenichi Myochin
健一 明珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21636593A priority Critical patent/JP2967966B2/en
Publication of JPH0773836A publication Critical patent/JPH0773836A/en
Application granted granted Critical
Publication of JP2967966B2 publication Critical patent/JP2967966B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the response characteristics of a large-sized electron lens for use, for example, in an ultra-high voltage electron microscope. CONSTITUTION:Coil cooling plates 23, 24 are provided to absorb and radiate the Joule's heat generated by the current flowing in the coil 11 of an electron lens and are equipped with a cut part 25 so as not to form an electric closed loop circuit which is in electromagnetic induction coupling with the coil 11. The yoke, pole piece, etc., of magnetic substance to constitute the electron lens are alike provided with a cut part so as not to form an electric closed loop circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子顕微鏡に関し、特に
電子顕微鏡に使用する磁界形電子レンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron microscope, and more particularly to a magnetic field type electron lens used in an electron microscope.

【0002】[0002]

【従来の技術】電子顕微鏡に使用する電子レンズには磁
界形と静電形とがあるが、高倍率が得られ易いこと、レ
ンズ収差が小さいこと等の理由で磁界形レンズを使用す
ることが多い。磁界形レンズは、電磁石のヨークの一部
を切断したエアーギャプに発生する磁場を電子レンズと
して活用するものである。
2. Description of the Related Art Electron lenses used in electron microscopes are classified into a magnetic field type and an electrostatic type, but it is preferable to use a magnetic field type lens because it is easy to obtain a high magnification and lens aberration is small. Many. The magnetic field type lens utilizes the magnetic field generated in the air gap obtained by cutting a part of the yoke of the electromagnet as an electron lens.

【0003】図5に、一般的な電子顕微鏡の構成を示
す。電子銃及び加速管1からの電子ビーム2はコンデン
サーレンズ3で所望のビームスポットに形成され、観察
対象の試料4に照射される。試料4を透過した電子ビー
ム2は、対物レンズ5で焦点合わせされ、中間レンズ6
と投射レンズ7で拡大されて、蛍光板8上に試料透過像
9、すなわち電顕像として結像される。
FIG. 5 shows the configuration of a general electron microscope. The electron beam 2 from the electron gun and the accelerating tube 1 is formed into a desired beam spot by the condenser lens 3 and is irradiated on the sample 4 to be observed. The electron beam 2 transmitted through the sample 4 is focused by the objective lens 5, and the intermediate lens 6
The image is enlarged by the projection lens 7 and is formed on the fluorescent plate 8 as a sample transmission image 9, that is, an electron microscope image.

【0004】図6に、代表的な電子レンズの構造断面図
を示す。図示されているように、電子レンズは磁性体の
ヨーク10、コイル11、冷却部12とポールピース部
13等から構成される。図7は、ポールピース部13の
拡大断面図である。ヨーク10に上ピース14と下ピー
ス15とが磁気的に接続され、上下ピースはスペーサ1
6によって機械的なエアーギャップ17を正確に形成し
ている。実際に電子レンズとして機能するのは、このエ
アーギャップ17に発生する磁束密度ベクトルの半径方
向成分と軸方向成分の強度である。この磁束密度ベクト
ルで凸レンズを構成し、コイルに流す電流を制御するこ
とで焦点位置を可変できる。
FIG. 6 shows a sectional view of the structure of a typical electron lens. As shown in the figure, the electron lens is composed of a magnetic yoke 10, a coil 11, a cooling unit 12, a pole piece unit 13 and the like. FIG. 7 is an enlarged sectional view of the pole piece portion 13. The upper piece 14 and the lower piece 15 are magnetically connected to the yoke 10, and the upper and lower pieces are the spacer 1
6, the mechanical air gap 17 is accurately formed. What actually functions as an electron lens is the intensities of the radial direction component and the axial direction component of the magnetic flux density vector generated in the air gap 17. The focal position can be changed by forming a convex lens with this magnetic flux density vector and controlling the current flowing through the coil.

【0005】図8に、コイル11と冷却部12の構造を
示す。コイル11に電流を流すと、コイル11の電気抵
抗と電流の2乗の積に比例したジュール熱が発生し、コ
イル11を含む周辺部分の温度上昇を引き起こす。この
コイル11の発熱を効率よく吸収するため、冷却部12
を構成する上部冷却板18及び下部冷却板19として熱
伝導率の高い金属、通常は銅のブロック材を使用し、コ
イル11と上部冷却板18、下部冷却板19の間に極め
て薄い電気絶縁物20を介在してボルト21で密着接合
する。上下の冷却板18,19には冷却管(図示せず)
が埋設されており、冷却水を流すことによって水冷され
ている。
FIG. 8 shows the structure of the coil 11 and the cooling unit 12. When a current is passed through the coil 11, Joule heat is generated that is proportional to the product of the electric resistance of the coil 11 and the square of the current, and the temperature of the peripheral portion including the coil 11 rises. In order to efficiently absorb the heat generated by the coil 11, the cooling unit 12
As the upper cooling plate 18 and the lower cooling plate 19 constituting the above, a block material made of a metal having a high thermal conductivity, usually copper, is used, and an extremely thin electric insulator is provided between the coil 11 and the upper cooling plate 18 and the lower cooling plate 19. It is tightly joined with a bolt 21 with 20 interposed. Cooling pipes (not shown) on the upper and lower cooling plates 18 and 19
Is buried and is cooled by flowing cooling water.

【0006】電顕像の焦点合わせを行う対物レンズにお
いては、操作の安定化のため強磁界レンズを使い、コイ
ルに大電流を流す。その結果コイル自身の抵抗によるジ
ュール熱の発生が大きく、コイルの温度上昇、ひいては
電子レンズや電子顕微鏡装置自身の温度上昇を引き起こ
す。この温度上昇を放置すれば、電子レンズ等にミクロ
的な寸法変化もたらし、装置性能の安定を保つことがむ
ずかしい。そこで、温度上昇の激しい電子レンズの場
合、前述のように電子レンズを構成するコイルに冷却板
を密着させ、温度を一定にした冷却水で冷却板の熱を吸
収し電子レンズの温度安定化を図っている。
In the objective lens for focusing the electron microscope image, a strong magnetic field lens is used to stabilize the operation, and a large current is passed through the coil. As a result, a large amount of Joule heat is generated due to the resistance of the coil itself, which causes a rise in the temperature of the coil and, in turn, a rise in the temperature of the electron lens and the electron microscope device itself. If this temperature rise is left as it is, it causes a microscopic dimensional change in the electron lens and the like, and it is difficult to maintain stable device performance. Therefore, in the case of an electron lens whose temperature rises sharply, the cooling plate is closely attached to the coil that constitutes the electron lens as described above, and the heat of the cooling plate is absorbed by the cooling water whose temperature is constant to stabilize the temperature of the electron lens. I am trying.

【0007】[0007]

【発明が解決しようとする課題】近年、超高圧電子顕微
鏡の開発が進み、電子ビームの加速電圧の上昇と共に電
子レンズも強磁場を発生できるものを使用するようにな
っている。強磁場を発生するために電子レンズのコイル
に大きな電流を流すと、必然的にコイルからの発熱量も
増大し、それを冷却するための冷却板も大型化するた
め、電子レンズ全体の体積も大きなものとなる。
In recent years, development of an ultra-high voltage electron microscope has progressed, and an electron lens that can generate a strong magnetic field as the acceleration voltage of an electron beam rises has been used. When a large current is passed through the coil of the electron lens to generate a strong magnetic field, the amount of heat generated from the coil inevitably increases, and the cooling plate for cooling it also increases in size. It will be big.

【0008】ところで、このような従来型の電子レンズ
を単に大型化した構造の電子レンズ使用して超高圧電子
顕微鏡を構成すると、応答特性が従来の電子顕微鏡に比
較して著しく低下することが明らかになった。例えば、
焦点調整をするために対物レンズのコイルに流す電流を
変化させるとき、焦点が安定するまでに1秒以上もかか
る場合があり、電子顕微鏡の操作性が極めて悪くなる。
本発明は、超高圧電子顕微鏡に使用するような大型の電
子レンズの応答特性を改善することを目的とする。
By the way, if an ultra-high voltage electron microscope is constructed by using an electron lens having a structure in which such a conventional electron lens is simply increased in size, it is apparent that the response characteristics are significantly deteriorated as compared with the conventional electron microscope. Became. For example,
When the current flowing through the coil of the objective lens is changed to adjust the focus, it may take 1 second or more for the focus to stabilize, which considerably deteriorates the operability of the electron microscope.
It is an object of the present invention to improve the response characteristics of a large-sized electron lens used for an ultra high voltage electron microscope.

【0009】[0009]

【課題を解決するための手段】本発明者らは、電子レン
ズの応答特性がこのように低下する原因について研究し
た結果、従来の電子レンズは、電子レンズを構成するコ
イル以外に、当該コイルに発生する熱を吸収する冷却板
及び磁束を通す磁気回路等周辺部位に幾つかの電気的な
閉ループ電気回路が作られ、この各々の電気的な閉ルー
プ回路は、電子レンズのコイルと電磁誘導結合をなし、
当該コイルの発生する磁束密度の変化を妨げる作用をす
ると共に当該コイルの負荷となっていることを見出し
た。
As a result of research on the cause of the deterioration of the response characteristic of the electron lens, the present inventors have found that the conventional electron lens is Several electric closed loop electric circuits are formed in the peripheral part such as a cooling plate that absorbs generated heat and a magnetic circuit that passes magnetic flux, and each electric closed loop circuit forms an electromagnetic inductive coupling with the coil of the electron lens. None,
It has been found that it acts as a load on the coil while acting to prevent changes in the magnetic flux density generated by the coil.

【0010】すなわち、一般に熱伝導率の高い素材は電
気電導度も大きく、熱伝導率の高い材料でコイル冷却板
を製作すると、電気的な閉ループ回路を構成する。その
上、大型の電子レンズではコイルの発熱量が多く、コイ
ルを冷却する冷却板は体積が大きくなるため抵抗は極め
て小さく、回路時定数(L/R)は極めて大きくなる。
その結果、コイル冷却板に大きな誘導電流が流れ、か
つ、その消滅する時間は長く、装置の応答特性を著しく
低下させる。同時に、電子レンズの磁気回路に使用する
磁性材料も、電気抵抗は良導体に比較し大きいが、体積
が極めて大きいため磁路を構成する電気抵抗は小さく、
回路時定数は冷却板同様に大きく、装置の応答特性を低
下させる要因になっている。
That is, in general, a material having a high thermal conductivity also has a large electric conductivity, and when a coil cooling plate is manufactured from a material having a high thermal conductivity, an electric closed loop circuit is constructed. Moreover, in a large-sized electron lens, the amount of heat generated by the coil is large, and the cooling plate for cooling the coil has a large volume, so the resistance is extremely small and the circuit time constant (L / R) is extremely large.
As a result, a large induction current flows through the coil cooling plate, and it takes a long time to disappear, which significantly deteriorates the response characteristics of the device. At the same time, the magnetic material used for the magnetic circuit of the electron lens has a large electric resistance compared to a good conductor, but the electric resistance forming the magnetic path is small because the volume is extremely large,
The circuit time constant is as large as that of the cooling plate, which causes the response characteristics of the device to deteriorate.

【0011】従来の電子レンズのコイルと冷却部の構造
を示す図8によって説明すると、コイル11と上下冷却
板18、19の構造は電磁誘導結合が強く、コイル11
の作る磁束を妨げる方向の誘導電流22は上下冷却板1
8、19の抵抗が極めて小さいことからも大きく、その
上、回路時定数は極めて大きいため、レンズ電流の変化
時における磁束密度の応答速度を極めて緩慢なものとす
る。
The structure of the coil and cooling unit of the conventional electron lens will be described with reference to FIG. 8. The structure of the coil 11 and the upper and lower cooling plates 18 and 19 has strong electromagnetic induction coupling.
The induced current 22 in the direction that disturbs the magnetic flux generated by the upper and lower cooling plates 1
Since the resistances of 8 and 19 are extremely small, and the circuit time constant is extremely large, the response speed of the magnetic flux density when the lens current changes is extremely slow.

【0012】本発明においては、以上のような考察に基
づき、電子レンズのコイル周辺の電気的な閉ループ回路
を極力減らし、またコイルと電気的な閉ループ回路の電
磁誘導結合を弱くし、誘導電流を極力小さくすると共
に、回路の電気抵抗を大きくし、かつ時定数を小さくし
て誘導電流の消滅時間を短縮し、また渦電流の発生を抑
制することにより前記目的を達成する。
In the present invention, based on the above consideration, the electric closed loop circuit around the coil of the electron lens is reduced as much as possible, and the electromagnetic inductive coupling between the coil and the electric closed loop circuit is weakened to reduce the induced current. The above object is achieved by making the electric resistance of the circuit as small as possible and making the time constant small to shorten the disappearance time of the induced current and suppress the generation of eddy current.

【0013】[0013]

【作用】コイルの負荷となる電気的な閉ループ回路によ
る誘導電流を極力小さくすると同時に回路の時定数を小
さくすることによって電子レンズの応答特性が改善され
る。誘導電流は、上記種々の電気的な閉ループ回路を切
断することによって遮断される。また、コイル冷却板の
回路時定数は、インダクタンス、電気抵抗及び浮遊容量
を主とするコンデンサー容量等で決まるが、この場合の
主たる要因は電気抵抗が小さいことであるため、高抵抗
の素材で冷却板を製作することで時定数の低下を図るこ
とができる。
The response characteristics of the electron lens are improved by minimizing the induced current due to the electric closed loop circuit which becomes the load of the coil and at the same time reducing the time constant of the circuit. The induced current is interrupted by disconnecting the various electrical closed loop circuits. Also, the circuit time constant of the coil cooling plate is determined by the inductance, electrical resistance, and the capacitance of the capacitor, which mainly consists of stray capacitance, but the main factor in this case is that the electrical resistance is small, so cooling with a high-resistance material The time constant can be reduced by manufacturing the plate.

【0014】[0014]

【実施例】以下に本発明の実施例について説明する。 〔実施例1〕図1に、本発明の一実施例によるコイルと
冷却板の構造を示す。上部冷却板23及び下部冷却板2
4は、一般に熱伝導率の高い金属性材料を使用してコイ
ル11の発熱を吸収するが、これらの冷却板23,24
に切断部25を作り、図8に示されている誘導電流22
を遮断する。上部冷却板23及び下部冷却板24には冷
却管(図示せず)を埋設し、冷却水を流して水冷する。
切断部25を電気絶縁物で構成しても同様な効果が得ら
れる。
EXAMPLES Examples of the present invention will be described below. [Embodiment 1] FIG. 1 shows the structure of a coil and a cooling plate according to an embodiment of the present invention. Upper cooling plate 23 and lower cooling plate 2
4 generally uses a metallic material having a high thermal conductivity to absorb the heat generated by the coil 11, but these cooling plates 23, 24
A cutting part 25 is made in the
Shut off. Cooling pipes (not shown) are embedded in the upper cooling plate 23 and the lower cooling plate 24, and cooling water is caused to flow to perform water cooling.
The same effect can be obtained even if the cutting portion 25 is made of an electrically insulating material.

【0015】上部冷却板23と下部冷却板24は、コイ
ル11との密着度を強化しコイル11の発熱を効率良く
吸収するために、薄い電気絶縁物20を間に介在してボ
ルト21で接合する。この時、上下の冷却板23、24
がボルト21により電気的な閉ループ回路を構成しない
様に、ボルト21と上部冷却板23の間に絶縁物スペー
サ26を介在させて導通を絶つ。この絶縁は、下部冷却
板24のボルト用タップ部を絶縁物で構成しても可能で
ある。さらに、図8に示した上部冷却板はL字形断面を
有し、上部冷却板18のコイルの内周部分と接するリン
グ状冷却板の部位は、誘導電流を遮断するという点で
は、そのままの状態で切断部25を作り込めば同等の効
果が得られる。しかし、この部位は冷却効果にそれほど
寄与しないうえ、コイル11に隣接するために渦電流が
発生するので、本実施例のように削除することで応答特
性の向上がさらに期待できる。
The upper cooling plate 23 and the lower cooling plate 24 are joined by bolts 21 with a thin electric insulator 20 interposed therebetween in order to enhance the degree of adhesion with the coil 11 and efficiently absorb the heat generated by the coil 11. To do. At this time, the upper and lower cooling plates 23, 24
In order to prevent the bolt 21 from forming an electrically closed loop circuit, an insulator spacer 26 is interposed between the bolt 21 and the upper cooling plate 23 to cut off the conduction. This insulation can be achieved by forming the bolt tap portion of the lower cooling plate 24 with an insulator. Further, the upper cooling plate shown in FIG. 8 has an L-shaped cross section, and the ring-shaped cooling plate portion in contact with the inner peripheral portion of the coil of the upper cooling plate 18 is in the same state in that it blocks the induced current. The same effect can be obtained by forming the cut portion 25 with. However, since this portion does not contribute much to the cooling effect and eddy current is generated because it is adjacent to the coil 11, it is possible to further improve the response characteristics by deleting it as in this embodiment.

【0016】〔実施例2〕図2に、上下の冷却板の接合
手段をボルトから支え板に変更した図1の変形例を示
す。本実施例は、図1に示すように、切断部25を作り
込んだ上下の冷却板27を電気的な絶縁物である支え板
28で押さえ、締め付けボルト29とナット30でコイ
ル11と上下冷却板27を締め付け密着接合をする。ま
た、支え板28を金属製の素材で形成し、支え板28も
しくは締め付けボルト29を冷却板27との間に電気的
な絶縁物を挾み込んでも同等の結果が得られる。
[Embodiment 2] FIG. 2 shows a modification of FIG. 1 in which the joining means for the upper and lower cooling plates is changed from bolts to support plates. In this embodiment, as shown in FIG. 1, the upper and lower cooling plates 27 having the cut portions 25 are pressed by the support plates 28 which are electrical insulators, and the coil 11 and the upper and lower cooling plates are cooled by the tightening bolts 29 and the nuts 30. The plate 27 is tightened and tightly joined. Also, the same result can be obtained by forming the support plate 28 from a metal material and inserting an electrical insulator between the support plate 28 or the tightening bolt 29 and the cooling plate 27.

【0017】〔実施例3〕図3に、電子レンズの構成例
を示す。この例でもコイル11とヨーク10とで電磁誘
導結合をなすため、ヨーク10に切断部を形成し、誘導
電流を遮断する。切断部を電気的な絶縁物で構成するこ
とでも同様の効果が得られる。 〔実施例4〕図4に、電子レンズの中枢であるポールピ
ースの構成例を示す。ポールピース14、15もコイル
11と電磁誘導結合をなすため、ポールピース14、1
5に切断部25を形成し、誘導電流22を遮断する。ポ
ールピースのギャップ17を決めるスペーサ16にも同
様に切断部25を形成するか、もしくは非磁性体でかつ
電気抵抗の大きい素材でスペーサ16を構成することに
よって誘導電流を遮断する。
[Embodiment 3] FIG. 3 shows a structural example of an electron lens. Also in this example, since the coil 11 and the yoke 10 are electromagnetically inductively coupled, a cut portion is formed in the yoke 10 to interrupt the induced current. The same effect can be obtained by forming the cut portion with an electrical insulator. [Embodiment 4] FIG. 4 shows an example of the construction of a pole piece which is the center of an electron lens. Since the pole pieces 14 and 15 also form electromagnetic induction coupling with the coil 11, the pole pieces 14 and 1
A cut portion 25 is formed in 5 to cut off the induced current 22. Similarly, a cut portion 25 is also formed in the spacer 16 that determines the gap 17 of the pole piece, or the spacer 16 is made of a material that is a non-magnetic material and has a high electric resistance to interrupt the induced current.

【0018】以上、コイル周辺の電気的な閉ループ回路
に切断部を作り、誘導電流を遮断する方法について主に
説明したが、誘導電流を低減することができれば同等の
作用効果を達成できるのであり、電気的な閉ループを形
成する部材を抵抗の高い素材で製作するようにしてもよ
い。
The method for cutting off the induced current by making a cut in the electrically closed loop circuit around the coil has been mainly described above. However, if the induced current can be reduced, the same effect can be achieved. The member forming the electrically closed loop may be made of a material having high resistance.

【0019】[0019]

【発明の効果】電子レンズのコイル周辺部の閉ループ回
路の誘導電流を極小化し、当該回路の時定数を小さくし
短時間で誘導電流を消滅させたことにより、電子レンズ
の磁束密度の変化時における応答特性は著しく改善さ
れ、誘導電流についての考慮を払わない場合に比較して
応答速度が1桁以上速くなる。
The induced current of the closed loop circuit around the coil of the electron lens is minimized, the time constant of the circuit is reduced, and the induced current disappears in a short time. Therefore, when the magnetic flux density of the electron lens changes. The response characteristic is remarkably improved, and the response speed is increased by one digit or more as compared with the case where the induced current is not taken into consideration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による電子レンズのコイル冷
却板の構造を説明する一部切欠き図。
FIG. 1 is a partially cutaway view illustrating a structure of a coil cooling plate of an electron lens according to an exemplary embodiment of the present invention.

【図2】図1の変形例を示す部分断面図。FIG. 2 is a partial cross-sectional view showing a modified example of FIG.

【図3】本発明の一実施例による電子レンズの構造を説
明する一部切欠き図。
FIG. 3 is a partially cutaway view illustrating a structure of an electron lens according to an embodiment of the present invention.

【図4】本発明の一実施例によるポールピースの構造を
示す一部切欠き図。
FIG. 4 is a partially cutaway view showing the structure of a pole piece according to an embodiment of the present invention.

【図5】一般的な電子顕微鏡の構成を説明する図。FIG. 5 is a diagram illustrating a configuration of a general electron microscope.

【図6】従来装置の電子レンズの構造を示す図。FIG. 6 is a diagram showing a structure of an electron lens of a conventional device.

【図7】従来装置の電子レンズのポールピース部の構造
を示す一部断面拡大図。
FIG. 7 is a partially enlarged cross-sectional view showing the structure of a pole piece portion of an electron lens of a conventional device.

【図8】従来装置の電子レンズのコイル冷却板の構造を
示す一部切欠き図。
FIG. 8 is a partially cutaway view showing a structure of a coil cooling plate of an electron lens of a conventional device.

【符号の説明】[Explanation of symbols]

1…電子銃及び加速管、2…電子ビーム、3…コンデン
サーレンズ、4…試料、5…対物レンズ、6…中間レン
ズ、7…投影レンズ、8…蛍光板、9…試料透過像、1
0…ヨーク、11…コイル、12…コイル冷却部、13
…ポールピース部、14…上部ポールピース、15…下
部ポールピース、16…スペーサ、17…エアーギャッ
プ、18…上部冷却板、19…下部冷却板、20…電気
絶縁物、21…ボルト、22…誘導電流、23…上部冷
却板、24…下部冷却板、25…切断部、26…絶縁ス
ペーサ、27…上下冷却板、28…支え板、29…締め
付けボルト、30…ナット
DESCRIPTION OF SYMBOLS 1 ... Electron gun and accelerating tube, 2 ... Electron beam, 3 ... Condenser lens, 4 ... Sample, 5 ... Objective lens, 6 ... Intermediate lens, 7 ... Projection lens, 8 ... Fluorescent plate, 9 ... Sample transmission image, 1
0 ... Yoke, 11 ... Coil, 12 ... Coil cooling part, 13
... pole piece part, 14 ... upper pole piece, 15 ... lower pole piece, 16 ... spacer, 17 ... air gap, 18 ... upper cooling plate, 19 ... lower cooling plate, 20 ... electrical insulator, 21 ... bolt, 22 ... Induced current, 23 ... Upper cooling plate, 24 ... Lower cooling plate, 25 ... Cutting part, 26 ... Insulating spacer, 27 ... Upper and lower cooling plates, 28 ... Support plate, 29 ... Tightening bolt, 30 ... Nut

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 コイルと、熱伝導率の高い材料で形成さ
れ前記コイルと熱的に密接して配置されたコイル冷却板
と、前記コイルと磁気的に結合されたヨークと、前記ヨ
ークに接続されたポールピースとを含む電子レンズにお
いて、 前記コイル冷却板に前記コイルと電磁誘導結合する電気
的な閉ループ回路を形成しないように切断部を設けたこ
とを特徴とする電子レンズ。
1. A coil, a coil cooling plate formed of a material having high thermal conductivity and arranged in thermal contact with the coil, a yoke magnetically coupled to the coil, and connected to the yoke. In the electronic lens including the pole piece, a cutting portion is provided in the coil cooling plate so as not to form an electrical closed loop circuit that electromagnetically couples with the coil.
【請求項2】 前記ヨーク、前記ポールピース及び前記
ポールピースを固定する非磁性体スペーサの少なくとも
1つに、前記コイルと電磁誘導結合する電気的な閉ルー
プ回路を形成しないように切断部を設けたことを特徴と
する請求項1記載の電子レンズ。
2. A cutting portion is provided on at least one of the yoke, the pole piece and a non-magnetic spacer for fixing the pole piece so as not to form an electric closed loop circuit for electromagnetically coupling with the coil. The electronic lens according to claim 1, wherein:
【請求項3】 前記切断部を電気絶縁物で構成したこと
を特徴とする請求項1又は2記載の電子レンズ。
3. The electron lens according to claim 1, wherein the cut portion is made of an electrically insulating material.
【請求項4】 前記ヨーク、前記ポールピース及び前記
ポールピースを固定する非磁性体スペーサの少なくとも
1つを、前記コイルと電磁誘導結合する電気的な閉ルー
プ回路の回路時定数を低減し、該閉ループ回路の流れる
誘導電流を低減するために電気抵抗が比較的高い素材で
構成したことを特徴とする請求項1記載の電子レンズ。
4. A circuit time constant of an electrically closed loop circuit for electromagnetically inductively coupling at least one of the yoke, the pole piece and a non-magnetic spacer fixing the pole piece to the coil, thereby reducing the closed loop. The electron lens according to claim 1, wherein the electron lens is made of a material having a relatively high electric resistance in order to reduce an induced current flowing through the circuit.
【請求項5】 コイルと、熱伝導率の高い材料で形成さ
れ前記コイルと熱的に密接して配置されたコイル冷却板
と、前記コイルと磁気誘導結合されたヨークと、前記ヨ
ークに接続されたポールピースとを含む電子レンズにお
いて、 前記コイル冷却板によって形成される電気的な閉ループ
回路の回路時定数を低減し、該閉ループ回路の流れる誘
導電流を低減するために、前記コイル冷却板を熱伝導率
が高く、かつ電気抵抗が比較的高い素材で構成したこと
を特徴とする電子レンズ。
5. A coil, a coil cooling plate formed of a material having high thermal conductivity and arranged in thermal contact with the coil, a yoke magnetically inductively coupled to the coil, and connected to the yoke. In the electronic lens including the pole piece, the coil cooling plate is heated in order to reduce the circuit time constant of the electrical closed loop circuit formed by the coil cooling plate and reduce the induced current flowing in the closed loop circuit. An electronic lens made of a material having a high conductivity and a relatively high electric resistance.
【請求項6】 前記ヨーク、前記ポールピース及び前記
ポールピースを固定する非磁性体スペーサの少なくとも
1つを、前記コイルと電磁誘導結合する電気的な閉ルー
プ回路の回路時定数を低減し、該閉ループ回路の流れる
誘導電流を低減するために電気抵抗が比較的高い素材で
構成したことを特徴とする請求項5記載の電子レンズ。
6. A circuit time constant of an electric closed loop circuit for electromagnetically inductively coupling at least one of the yoke, the pole piece and a non-magnetic spacer fixing the pole piece to the coil to reduce the closed loop. The electron lens according to claim 5, wherein the electron lens is made of a material having a relatively high electric resistance in order to reduce an induced current flowing through the circuit.
【請求項7】 前記ヨーク、前記ポールピース及び前記
ポールピースを固定する非磁性体スペーサの少なくとも
1つに、前記コイルと電磁誘導結合する電気的な閉ルー
プ回路を形成しないように切断部を設けたことを特徴と
する請求項5記載の電子レンズ。
7. A cutting portion is provided on at least one of the yoke, the pole piece and a non-magnetic spacer for fixing the pole piece so as not to form an electric closed loop circuit electromagnetically inductively coupled with the coil. The electronic lens according to claim 5, wherein:
【請求項8】 前記切断部を電気絶縁物で構成したこと
を特徴とする請求項7記載の電子レンズ。
8. The electron lens according to claim 7, wherein the cut portion is made of an electrically insulating material.
【請求項9】 請求項1〜8のいずれか1項記載の電子
レンズを備えることを特徴とする電子顕微鏡。
9. An electron microscope comprising the electron lens according to claim 1.
JP21636593A 1993-08-31 1993-08-31 Electron lens and electron microscope Expired - Lifetime JP2967966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21636593A JP2967966B2 (en) 1993-08-31 1993-08-31 Electron lens and electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21636593A JP2967966B2 (en) 1993-08-31 1993-08-31 Electron lens and electron microscope

Publications (2)

Publication Number Publication Date
JPH0773836A true JPH0773836A (en) 1995-03-17
JP2967966B2 JP2967966B2 (en) 1999-10-25

Family

ID=16687436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21636593A Expired - Lifetime JP2967966B2 (en) 1993-08-31 1993-08-31 Electron lens and electron microscope

Country Status (1)

Country Link
JP (1) JP2967966B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345287B2 (en) * 2005-09-30 2008-03-18 Applied Materials, Inc. Cooling module for charged particle beam column elements
CN102386047A (en) * 2011-11-08 2012-03-21 北京航空航天大学 Objective lens coil for transmission electron microscope

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361171B2 (en) * 2007-11-15 2013-12-04 株式会社日立ハイテクノロジーズ Electromagnetic coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345287B2 (en) * 2005-09-30 2008-03-18 Applied Materials, Inc. Cooling module for charged particle beam column elements
EP1943658A2 (en) * 2005-09-30 2008-07-16 Applied Materials, Inc. Cooling module for charged particle beam column elements
JP2009510695A (en) * 2005-09-30 2009-03-12 アプライド マテリアルズ インコーポレイテッド Cooling module for charged particle beam column elements
EP1943658A4 (en) * 2005-09-30 2010-06-16 Applied Materials Inc Cooling module for charged particle beam column elements
CN102386047A (en) * 2011-11-08 2012-03-21 北京航空航天大学 Objective lens coil for transmission electron microscope

Also Published As

Publication number Publication date
JP2967966B2 (en) 1999-10-25

Similar Documents

Publication Publication Date Title
CN1716512B (en) Particle-optical apparatus provided with lenses with permanent-magnetic material
US3008044A (en) Application of superconductivity in guiding charged particles
EP0849751A2 (en) Improved axial magnetic field coil for vacuum interrupter
CN103176151A (en) Method for reducing mechanical vibrations in a magnetic resonance imaging system
EP0084653B1 (en) Composite concentric-gap magnetic lens
JP2967966B2 (en) Electron lens and electron microscope
US3394254A (en) Electron-optical system with a magnetic focussing lens having a cooling means
JP5361171B2 (en) Electromagnetic coil
Zavodszky et al. Status report on the design and construction of the Superconducting Source for Ions at the National Superconducting Cyclotron Laboratory/Michigan State University
JP2010272745A (en) Superconducting coil and superconducting magnet device
CA1129096A (en) Magnetron with continuous magnetic circuit
WO2013015311A1 (en) Electromagnetic lens and charged particle device
JP6682057B1 (en) Vacuum valve
JP2015008078A (en) Electron lens and charged particle beam apparatus
JPH09252527A (en) Superconducting device
JP3436956B2 (en) High frequency induction heating transformer
JPH10116725A (en) Superconducting magnet device
US20110186547A1 (en) Vacuum switch tube
JP2009134990A (en) Electronic lens
EP2061046A2 (en) Air core inductor including a flux inhibiting member
Alamir Magnetic electron lenses performance
JP7356934B2 (en) Superconducting magnet device and bending electromagnet device
JPH0720832Y2 (en) Focus magnet
JP7249906B2 (en) Superconducting coil and superconducting magnet device
JPS6244382B2 (en)