JPH0773834A - Preparing method for thin film specimen for transmission type electron microscope - Google Patents

Preparing method for thin film specimen for transmission type electron microscope

Info

Publication number
JPH0773834A
JPH0773834A JP5216616A JP21661693A JPH0773834A JP H0773834 A JPH0773834 A JP H0773834A JP 5216616 A JP5216616 A JP 5216616A JP 21661693 A JP21661693 A JP 21661693A JP H0773834 A JPH0773834 A JP H0773834A
Authority
JP
Japan
Prior art keywords
sample
electron microscope
transmission electron
ray
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5216616A
Other languages
Japanese (ja)
Inventor
Shigeru Suzuki
鈴木  茂
Kyuzo Shiraishi
久三 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5216616A priority Critical patent/JPH0773834A/en
Publication of JPH0773834A publication Critical patent/JPH0773834A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To make possible the opening a hole in a specified position on a membrane specimen or the thinning in a wide region by adjusting the irradiation position with an ion beam and performing the polishing while the X-ray having penetrated the specimen is sensed by an X-ray camera. CONSTITUTION:In a vacuum vessel such elements are accommodated as a specimen for transmission type electron microscope, X-ray source 2, X-ray camera 3, ion gun 5, deflector 6, and stage 7. The ion gun 5 is directed to the specimen 1, and this 1 is polished by irradiating with the ion beam therefrom. Changing the polishing position of the specimen is made by shifting it by means of change of the ion beam casting direction of the ion gun 5 or movement of a specimen moving mechanism. The former means is performed by installing the deflector 6 on the outgoing side of the ion gun 5, while the latter means is achieved by moving the stage 7 in the X- and Y-directions using a moving device. In case the specimen is small, the periphery of the specimen 1 is covered with a specimen holder so that the areas other than specimen are shielded from the X-rays, and the leakage of X-ray is precluded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は透過電子顕微鏡用薄膜試
料の作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thin film sample for a transmission electron microscope.

【0002】[0002]

【従来の技術】透過電子顕微鏡の観察においては、薄膜
状の試料や抽出レプリカ試料等の電子ビームが透過でき
る薄い試料を作製し、その中の組織を観察する。薄膜状
の試料には通常厚さ約100μm 以下の薄い試料全体を
さらにいろいろな方法で薄くしていく。多くの場合試料
の中心付近に穴を開け、穴の周辺の電子ビームが透過す
る薄い部分を観察する。観察できる厚さは物質や観察条
件にも依存するが、ほぼ1μm 以下である。そうした薄
膜の作製方法には電解研磨、化学研磨、イオン研磨など
による方法がある。
2. Description of the Related Art In observation with a transmission electron microscope, a thin sample such as a thin film sample or an extracted replica sample through which an electron beam can be transmitted is prepared, and the structure therein is observed. For a thin film sample, the entire thin sample having a thickness of about 100 μm or less is further thinned by various methods. In many cases, a hole is made near the center of the sample, and the thin portion around the hole where the electron beam penetrates is observed. The observable thickness is approximately 1 μm or less, although it depends on the material and the observation conditions. Methods for producing such a thin film include methods such as electrolytic polishing, chemical polishing, and ion polishing.

【0003】電解研磨法は電解液中で試料を研磨するこ
とによって試料を薄くする方法である。この方法では電
解液中での電位勾配や水流などのために研磨面に優先的
に研磨される場所があることを利用し、試料の中央部や
特定の場所に穴を開ける方法である。この方法には窓枠
法、ボルマン法、ジェット法、ツインジェット法などが
ある。窓枠法では絶縁塗料を試料に部分的に塗り、塗料
近傍の研磨面が優先的に薄くなることを利用し、その部
分を切り出し試料とする。ボルマン法は試料の研磨面の
近くに鋭い電極を近づけ、電極近傍の研磨面が優先的に
薄くなることを利用して、薄膜を得る方法である。ま
た、ジェット法は細い水流の電解液を試料に流しながら
電解研磨を行い、水流の当たる部分を特に研磨する方法
である。ツインジェット法はジェット法による水流を試
料の両面に当て、試料を両面から薄くしていく方法であ
る。
The electropolishing method is a method in which a sample is thinned by polishing the sample in an electrolytic solution. This method utilizes the fact that there is a preferential polishing location on the polishing surface due to the potential gradient in the electrolyte, water flow, etc., and is a method of making a hole in the center of the sample or in a specific location. This method includes a window frame method, a Bormann method, a jet method, a twin jet method, and the like. In the window frame method, insulating paint is partially applied to the sample, and the fact that the polished surface in the vicinity of the paint is thinned preferentially is used as the cut-out sample. The Bormann method is a method of obtaining a thin film by bringing a sharp electrode close to the polished surface of a sample and making the polished surface near the electrode preferentially thin. Further, the jet method is a method in which electrolytic polishing is performed while flowing a thin water-flowing electrolyte solution through a sample, and particularly a portion on which the water flow hits is polished. The twin-jet method is a method in which a jet stream of water is applied to both sides of the sample to thin the sample from both sides.

【0004】化学研磨による方法では、試料を試料研磨
に適した酸を研磨液とし、試料を薄くする方法である。
試料の薄くする位置に上記のジェット法などのような方
法で研磨液を流して、試料を研磨していく。
The chemical polishing method is a method in which the sample is thinned by using an acid suitable for polishing the sample as a polishing liquid.
The polishing liquid is caused to flow to the position where the sample is thinned by a method such as the above jet method, and the sample is polished.

【0005】イオン研磨による方法は、試料表面に1〜
10kVのArなどの不活性ガスのイオンを当てると表面
から原子がはじき出されることを利用して、試料を薄く
していく方法である。さらにイオンビーム走査装置で試
料の研磨面を二次電子または二次イオンにより映像化
し、試料表面の画像を観察しながら小領域を任意に選択
し、その部分をイオン研磨する精密イオン研磨も可能で
ある。この方法では、透過電子顕微鏡用試料が厚すぎる
場合、試料の局部面を再度研磨処理することができる。
The method by ion polishing is one in which
This is a method of thinning a sample by utilizing the fact that atoms are ejected from the surface when an ion of an inert gas such as Ar of 10 kV is applied. Precision ion polishing is also possible, in which the polished surface of the sample is imaged with secondary electrons or secondary ions with an ion beam scanning device, a small area is arbitrarily selected while observing the image of the sample surface, and that portion is ion-polished. is there. In this method, when the transmission electron microscope sample is too thick, the local surface of the sample can be polished again.

【0006】これらの薄膜試料の作製方法は、たとえば
「透過電子顕微鏡法」、コロナ社発行、1974年、28頁な
どに記載されている。
The method for producing these thin film samples is described, for example, in "Transmission Electron Microscopy", published by Corona, 1974, p. 28.

【0007】[0007]

【発明が解決しようとする課題】電解研磨による方法で
は、試料がある程度の電気伝導性をもち、室温付近で試
料表面を滑らかに研磨できる電解液がある必要がある。
そのため、この方法による場合試料としては通常金属や
合金に限られる。それらの試料でも室温付近で試料に適
した研磨液がない場合もあるため、この方法の汎用性に
限界がある。また、半導体や半金属、電気伝導度の小さ
いセラミックスや有機物試料などにおいては電解研磨に
よる方法はほとんど適用できない。
In the electropolishing method, it is necessary that the sample has an electric conductivity to some extent and that there is an electrolytic solution capable of smoothly polishing the surface of the sample at around room temperature.
Therefore, in the case of this method, the samples are usually limited to metals and alloys. Even in those samples, there is a case where there is no polishing liquid suitable for the sample near room temperature, and thus the versatility of this method is limited. In addition, the method by electropolishing is hardly applicable to semiconductors, semimetals, ceramics having small electric conductivity, organic material samples, and the like.

【0008】また、化学研磨による方法でも一般に適用
できる試料は金属、合金、半導体などであり、適当な研
磨液がない場合が多く、この方法が適用できる試料の種
類は電解研磨法の場合よりも少ない。
Further, the samples that can be generally applied by the chemical polishing method are metals, alloys, semiconductors, etc., and in many cases there is no suitable polishing liquid, and the type of sample to which this method can be applied is more than that of the electrolytic polishing method. Few.

【0009】これらの電解研磨法や化学研磨法では電解
液中で試料に穴が開く場所を水流や電極の位置を変える
ことによって調整することは可能であるが、実際には
0.1mm以下の位置を調節することは困難であり、穴の
あく場所を予測することはきわめて困難である。さら
に、作製した試料が観察に適しているかどうかは、試料
を透過電子顕微鏡にいれ、それを実際に観察してからで
ないとわからない。したがって、試料作製においては確
かに観察できると思われる十分な数だけ試料を準備する
必要があり、そのための素材の量や余分な試料の作製作
業が必要である。また、これらの方法により異なる物質
からなる試料などを作製する場合には、研磨された方が
物質により異なるため、均一に薄くすることができない
ことが多く、試料を作製しても観察できないか観察しに
くいことが多い。
In the electrolytic polishing method and the chemical polishing method, it is possible to adjust the place where a hole is formed in the sample in the electrolytic solution by changing the water flow or the position of the electrode. It is difficult to adjust the position, and it is extremely difficult to predict where to make a hole. Furthermore, whether or not the prepared sample is suitable for observation cannot be known until the sample is put in a transmission electron microscope and actually observed. Therefore, in the sample preparation, it is necessary to prepare a sufficient number of samples that are considered to be certainly observable, and the amount of raw material for that purpose and an extra sample preparation operation are required. In addition, when samples such as those made of different substances are produced by these methods, it is often impossible to make the sample evenly thin because the polished ones differ depending on the substance. Often difficult to do.

【0010】イオン研磨による方法では、電解研磨法や
化学研磨法にくらべ、試料の種類には影響されず、薄膜
作製のための成功率が高いが、イオンによって少しずつ
試料を研磨して行くため、試料作製に時間がかかる欠点
がある。また、試料の研磨される場所を0.1mmの以下
の範囲で調節することは一般に困難であり、やはり穴が
開く位置を予測することは困難である。
Compared to the electrolytic polishing method and the chemical polishing method, the ion polishing method is not affected by the type of sample and has a high success rate for forming a thin film, but since the sample is gradually polished by ions. However, there is a drawback that it takes time to prepare a sample. In addition, it is generally difficult to adjust the polishing location of the sample within the range of 0.1 mm or less, and it is also difficult to predict the position where the hole will be formed.

【0011】以上の電解研磨法、化学研磨法、イオン研
磨法では、透過電子顕微鏡で試料の観察できる領域は一
般に直径3mmの試料の中心付近の直径数10μm の領域
以下であり、それ以上の領域が観察できる試料を作製す
ることはほとんど不可能である。
In the above electrolytic polishing method, chemical polishing method, and ion polishing method, the area in which the sample can be observed with a transmission electron microscope is generally less than the area of several 10 μm in diameter near the center of the sample having a diameter of 3 mm, and more than that area. It is almost impossible to make a sample that can be observed.

【0012】精密イオン研磨法では試料研磨の表面の画
像を観察しながら、数10μm の小領域をイオン研磨で
きるため、薄くする研磨領域を広くすることが可能であ
る。しかしながら、この方法では試料の片方の表面だけ
を観察しているために、試料が全体的にどの程度薄くな
っているのか、試料厚さの変化が明瞭でなく、試料の厚
さにむらができやすい。
In the precision ion polishing method, a small region of several tens of μm can be ion-polished while observing an image of the surface of the sample polished, so that the polishing region to be thinned can be widened. However, in this method, only one surface of the sample is observed, so it is not clear how thin the sample is as a whole, the change in sample thickness is not clear, and the sample thickness is uneven. Cheap.

【0013】以上のように、透過電子顕微鏡の試料作製
方法としては、少ない素材の量から確実に広い観察視野
をもつ試料を作製できることが望ましいが、従来の方法
では一般に試料を薄くする過程を調節する方法に問題が
あり、薄膜化過程と試料の厚さとの対応が不明なまま試
料を作製していた。たとえ試料ができても、それが観察
できる試料であるかどうかは、実際に透過電子顕微鏡内
に試料を入れて、実際に観察しないと判断できない。そ
れに要する時間は一回あたり数十分要する。このように
試料交換が数回の必要であった。試料交換に要する時
間、観察位置を探す時間、観察位置を探してもそこが均
一な厚さになっており、観察に十分な領域であるかどう
かなど問題があった。また、これらの従来の方法では試
料作製は熟練を要し、試料を効率的に作製することがで
きなかった。
As described above, as a sample preparation method for a transmission electron microscope, it is desirable that a sample having a wide observation field can be surely prepared from a small amount of material, but in the conventional method, the process of thinning the sample is generally adjusted. However, there was a problem with the method, and the sample was produced while the correspondence between the thinning process and the sample thickness was unknown. Even if a sample is formed, it cannot be judged whether or not it is an observable sample without actually observing the sample by actually putting it in a transmission electron microscope. It takes several tens of minutes per time. Thus, sample exchange was required several times. There were problems such as the time required for sample exchange, the time for searching for the observation position, and the uniform thickness even when searching for the observation position, and whether the region was sufficient for observation. Further, these conventional methods require skill to prepare a sample, and the sample could not be prepared efficiently.

【0014】本発明は、これらの透過電子顕微鏡用の薄
膜試料の作製方法において、試料の所望の位置に膜穴を
開けたり、広い領域を薄くしたりする方法、およびそれ
らを自動的に行う方法を提供することを目的としてい
る。
The present invention, in these methods for producing a thin film sample for a transmission electron microscope, makes a film hole at a desired position of a sample or thins a wide area, and a method for automatically performing them. Is intended to provide.

【0015】[0015]

【課題を解決するための手段】本発明は前記の課題を解
決するために、 (1)透過電子顕微鏡用薄膜試料をイオン研磨によって
作製する方法において、透過電子顕微鏡用の試料にX線
源で発生させたX線を照射し、前記試料を透過した前記
X線をX線カメラで検出することによって前記X線の強
度をテレビで観察しながら、前記試料に対するイオン銃
の照射方向を偏向器により変えることによって、前記試
料におけるイオンビームの照射位置を調節して、試料の
適正な位置を研磨することを特徴とする透過電子顕微鏡
用薄膜試料作製方法。
In order to solve the above problems, the present invention provides (1) a method for producing a thin film sample for a transmission electron microscope by ion polishing, wherein an X-ray source is used as a sample for the transmission electron microscope. While irradiating the generated X-rays and observing the intensity of the X-rays on a television by detecting the X-rays transmitted through the sample with an X-ray camera, the irradiation direction of the ion gun on the sample is deflected by a deflector. A method for preparing a thin film sample for a transmission electron microscope, which comprises adjusting an irradiation position of an ion beam on the sample by changing the position to polish an appropriate position of the sample.

【0016】(2)透過電子顕微鏡用薄膜試料をイオン
研磨によって作製する方法において、透過電子顕微鏡用
の試料にX線源で発生させたX線を照射し、前記試料を
透過した前記X線をX線カメラで検出することによって
前記X線の強度をテレビで測定し、イオン銃で前記試料
の研磨している位置での前記X線の強度が設定値を越え
たとき、前記試料に対するイオン銃の照射方向を偏向器
により次の研磨位置に移動させることによって、前記試
料におけるイオンビームの照射位置を調節して、前記試
料の適正な位置を研磨することを特徴とする透過電子顕
微鏡用薄膜試料作製方法。
(2) In a method of producing a thin film sample for a transmission electron microscope by ion polishing, the sample for a transmission electron microscope is irradiated with X-rays generated by an X-ray source, and the X-rays transmitted through the sample are irradiated. The intensity of the X-ray is detected by an X-ray camera by a television, and when the intensity of the X-ray at the position where the sample is being polished by the ion gun exceeds a set value, the ion gun for the sample is detected. A thin film sample for a transmission electron microscope, wherein the irradiation position of the ion beam on the sample is adjusted by moving the irradiation direction of the sample to the next polishing position by a deflector, and the appropriate position of the sample is polished. Manufacturing method.

【0017】(3)透過電子顕微鏡用薄膜試料をイオン
研磨によって作製する方法において、透過電子顕微鏡用
の試料にX線源で発生させたX線を照射し、前記試料を
透過した前記X線をX線カメラで検出することによって
前記X線の強度をテレビで観察しながら、前記試料を載
せた試料ステージを移動することによって、前記試料に
おけるイオンビームの照射位置を調節して、前記試料の
適正な位置に照射することを特徴とする透過電子顕微鏡
用薄膜試料作製方法。
(3) In the method for producing a thin film sample for a transmission electron microscope by ion polishing, the sample for a transmission electron microscope is irradiated with X-rays generated by an X-ray source, and the X-rays transmitted through the sample are irradiated. While observing the intensity of the X-ray on a television by detecting it with an X-ray camera, the irradiation position of the ion beam on the sample is adjusted by moving the sample stage on which the sample is placed, and thus the properness of the sample. A method for preparing a thin-film sample for a transmission electron microscope, which comprises irradiating various positions.

【0018】(4)透過電子顕微鏡用薄膜試料をイオン
研磨によって作製する方法において、透過電子顕微鏡用
の試料にX線源で発生させたX線を照射し、前記試料を
透過した前記X線をX線カメラで検出することによって
前記X線の強度をテレビで観察しながら、前記試料を載
せた試料ステージを外部の駆動手段により自動的に移動
させることによって、前記試料におけるイオンビームの
照射位置を調節して、前記試料の適正な位置に照射する
ことを特徴とする透過電子顕微鏡用薄膜試料作製方法。
(4) In the method for producing a thin film sample for a transmission electron microscope by ion polishing, the sample for a transmission electron microscope is irradiated with X-rays generated by an X-ray source, and the X-rays transmitted through the sample are irradiated. While observing the intensity of the X-ray on a television by detecting it with an X-ray camera, the sample stage on which the sample is placed is automatically moved by an external driving means, so that the irradiation position of the ion beam on the sample is changed. A method for preparing a thin film sample for a transmission electron microscope, which comprises adjusting and irradiating the sample at an appropriate position.

【0019】(5)透過電子顕微鏡用薄膜試料をイオン
研磨によって作製する方法において、透過電子顕微鏡用
の試料にX線源で発生させたX線を照射し、前記試料を
透過した前記X線をX線カメラで検出することによって
前記X線の強度をテレビで測定し、イオン銃で前記試料
の研磨している位置での前記X線の強度が設定値を越え
たときに、前記試料を載せた試料ステージを外部の駆動
手段により自動的に移動させることによって、前記試料
におけるイオンビームの照射位置を調節して、前記試料
の適正な位置に照射することを特徴とする透過電子顕微
鏡用薄膜試料作製方法を提供する。
(5) In the method of producing a thin film sample for a transmission electron microscope by ion polishing, the sample for a transmission electron microscope is irradiated with X-rays generated by an X-ray source, and the X-rays transmitted through the sample are irradiated. The intensity of the X-ray is detected by an X-ray camera by a television, and the sample is mounted when the intensity of the X-ray at a position where the sample is being polished by an ion gun exceeds a set value. A thin film sample for a transmission electron microscope, characterized in that the irradiation position of the ion beam on the sample is adjusted by automatically moving the sample stage by an external driving means to irradiate the sample beam at an appropriate position. A manufacturing method is provided.

【0020】[0020]

【作用】本発明の透過電子顕微鏡用試料の作製方法を図
面を参照しながら説明する。本発明の研磨方法はイオン
研磨法であり、真空容器(図示せず)の中に透過電子顕
微鏡用試料1、X線源2、X線カメラ3、イオン銃5、
偏向器6および試料ステージ7を入れる。なお、X線カ
メラ3は真空装置に入れなくても本発明の方法を行うこ
とができる。
The method for producing a transmission electron microscope sample of the present invention will be described with reference to the drawings. The polishing method of the present invention is an ion polishing method, and includes a transmission electron microscope sample 1, an X-ray source 2, an X-ray camera 3, an ion gun 5 in a vacuum container (not shown).
The deflector 6 and the sample stage 7 are inserted. It should be noted that the X-ray camera 3 can perform the method of the present invention without being placed in a vacuum device.

【0021】イオン銃5を試料に向け、イオン銃5から
のイオンビームを試料1に当てることによって、試料1
を研磨する。イオンビームは一般にArなどの不活性ガ
スをイオン化させたもので、1〜30kVの電圧で加速す
ることによってつくる。試料の種類によっては反応性の
ガスのイオンを用いてもよい。イオン銃5は真空容器6
全体にガスを入れイオン化する型、あるいはイオン銃5
の中にガスを入れイオン化するとガスを同時に排気し、
真空容器6を別に排気する差動排気型いずれでもよい。
さらに、イオンビームをつくる機構には様々な型式があ
るが、本発明の方法で用いるイオンビーム源には型式を
問わず適用できる。
By directing the ion gun 5 toward the sample and applying the ion beam from the ion gun 5 to the sample 1,
To polish. The ion beam is generally an ionized inert gas such as Ar, and is produced by accelerating with a voltage of 1 to 30 kV. Depending on the type of sample, reactive gas ions may be used. The ion gun 5 is a vacuum container 6
A type that puts gas into the whole and ionizes it, or an ion gun 5
When gas is put in and ionized, the gas is exhausted at the same time,
It may be either a differential evacuation type in which the vacuum container 6 is separately evacuated.
Further, although there are various types of mechanisms for producing an ion beam, the ion beam source used in the method of the present invention can be applied to any type.

【0022】通常イオンビームの試料面に対する角度θ
は10〜70度にして照射すると、効率的に試料1を研
磨することができるので、イオン銃5は試料1の面に対
し傾斜させる。また、イオンビームの直径には特に制限
がないが、1mm以下のものがよい。
The angle θ of the normal ion beam with respect to the sample surface
When the irradiation is performed at 10 to 70 degrees, the sample 1 can be polished efficiently, so the ion gun 5 is tilted with respect to the surface of the sample 1. The diameter of the ion beam is not particularly limited, but 1 mm or less is preferable.

【0023】試料の研磨位置を変えるためには、イオン
銃5の照射方向あるいは試料移動機構の移動により試料
の位置を変える。イオン銃5の照射方向はイオン銃5の
出側に偏向器6を付ける。また、偏向器6の代わりにイ
オン銃5自体の向きを機械的に変えてもよい。イオンビ
ームの出口である偏向器6と試料1との距離は近いほど
効率的に研磨されるが、構造的な制限のために5mm以上
である必要があり、研磨効率を上げるために1m以下で
ある必要がある。試料ステージ7の移動により試料1の
研磨位置を変えるときには、X方向、Y方向に移動装置
(図示せず)により試料ステージ7を移動させる。試料
1を透過したX線の強度は試料1の厚さとともに減少す
るので、試料1の薄い部分だけに注目するために、試料
ステージ7をX線が透過しないように試料ステージ7を
厚くしたり、材質を選ぶ。試料の形状が小さいときは、
試料以外のところはX線が透過しないように試料ホルダ
ー(図示せず)で試料1の周囲をカバーし、X線の漏れ
がないようにする。また、試料1を均一に薄くするため
に、試料1の面法線方向のまわりに試料ステージ7を回
転させたり、試料1を傾斜させたりしても良い。
In order to change the polishing position of the sample, the position of the sample is changed by the irradiation direction of the ion gun 5 or the movement of the sample moving mechanism. As for the irradiation direction of the ion gun 5, a deflector 6 is attached to the exit side of the ion gun 5. Further, instead of the deflector 6, the direction of the ion gun 5 itself may be mechanically changed. The closer the distance between the deflector 6 that is the exit of the ion beam and the sample 1 is, the more efficiently the polishing is performed, but it is necessary to be 5 mm or more due to the structural limitation, and 1 m or less for improving the polishing efficiency. Need to be When the polishing position of the sample 1 is changed by moving the sample stage 7, the sample stage 7 is moved by a moving device (not shown) in the X and Y directions. Since the intensity of X-rays transmitted through the sample 1 decreases with the thickness of the sample 1, in order to focus only on the thin portion of the sample 1, the sample stage 7 may be thickened so that the X-rays may not be transmitted. , Select the material. When the sample shape is small,
Except for the sample, the periphery of the sample 1 is covered with a sample holder (not shown) so that the X-rays do not pass therethrough to prevent leakage of the X-rays. Further, in order to make the sample 1 thin uniformly, the sample stage 7 may be rotated around the surface normal direction of the sample 1 or the sample 1 may be tilted.

【0024】試料ステージ7の移動は2mm以内の移動距
離を持っていればよいが、本発明では複数の試料を同じ
試料ステージに載せて研磨してもよく、その場合には5
0mmまで移動できればよい。試料ステージ7の移動は移
動装置を手動により操作してもよく、コンピューター
(図示せず)を用い自動的に作動させてもよい。さら
に、テレビ4におけるX線強度に応答して、コンピュー
タにより移動装置を自動的に作動させてもよい。それら
の移動装置の作動は段階的であっても、連続的であって
もよい。
The sample stage 7 may be moved within a distance of 2 mm, but in the present invention, a plurality of samples may be placed on the same sample stage and polished. In that case, 5
It only needs to be able to move to 0 mm. The movement of the sample stage 7 may be performed by manually operating a moving device or may be automatically operated by using a computer (not shown). Further, the computer may automatically activate the mobile device in response to the X-ray intensity at the television 4. The operation of these moving devices may be stepwise or continuous.

【0025】薄膜試料の厚さの変化を見るのに、本発明
では試料1をX線により透過させる方法を行う。一般に
透過電子顕微鏡用の試料のような固体試料を可視光など
の光は透過しないため、薄膜試料を透過させるにはX線
が適している。本発明ではX線の種類は特に限定せず、
通常金属に電子ビームを照射する時に発生するX線、た
とえばMgの原子番号以上の金属から発生する白色X線
や単色X線など、各種のX線を用いることができる。X
線源2でこのようなX線を発生させ、試料1にあてる。
試料1とX線源2との間の距離は近いほど発生させるX
線の強度は小さくてすむが、構造的な制限のために5mm
以上である必要があり、X線を効率的に用いるために1
m以下である必要がある。X線源2は試料1に対し垂直
方向にあった方が、テレビ4で観察する像に歪みがない
ため望ましいが、試料面の垂直方向に対し30度まで傾
いていても実用上問題はない。
In order to see the change in the thickness of the thin film sample, the method of transmitting the sample 1 by X-ray is performed in the present invention. Generally, a solid sample such as a sample for a transmission electron microscope does not transmit light such as visible light, and thus X-rays are suitable for transmitting a thin film sample. In the present invention, the type of X-ray is not particularly limited,
Various X-rays such as X-rays generated when a metal is irradiated with an electron beam, for example, white X-rays or monochromatic X-rays generated from a metal having an atomic number of Mg or higher can be used. X
Such X-rays are generated by the radiation source 2 and applied to the sample 1.
The shorter the distance between the sample 1 and the X-ray source 2, the more X
The strength of the wire can be small, but it is 5mm due to structural restrictions.
It is necessary to be above, and in order to use X-ray efficiently, 1
It must be m or less. It is desirable for the X-ray source 2 to be in the direction perpendicular to the sample 1 because the image observed on the television 4 is not distorted, but there is no practical problem even if the X-ray source 2 is inclined up to 30 degrees with respect to the direction perpendicular to the sample surface. .

【0026】試料1を透過したX線をX線カメラ3で検
出し、テレビでその強度をみることによって、試料の薄
膜化過程を観察する。その場合、X線カメラ3の代わり
に同じ位置にX線の輝度がわかる蛍光板をおき、蛍光板
を観察してもよい。試料の厚さが薄くなる場所では、X
線カメラ3のテレビ4の映像上の輝度が増し、薄膜化し
ているところを動的に観察することができる。試料1と
X線カメラ4との間の距離は近いほど分解能が大きくな
るが、構造的な制限のために0.5mm以上である必要が
あり、分解能を保つために50Cm以下である必要があ
る。
The X-ray transmitted through the sample 1 is detected by the X-ray camera 3, and the intensity of the X-ray is observed on the television to observe the thinning process of the sample. In that case, instead of the X-ray camera 3, a fluorescent plate that can recognize the brightness of X-rays may be placed at the same position and the fluorescent plate may be observed. In places where the sample thickness becomes thin, X
The brightness on the image of the television 4 of the line camera 3 is increased, and it is possible to dynamically observe the thinned portion. The closer the distance between the sample 1 and the X-ray camera 4 is, the larger the resolution becomes, but it is necessary to be 0.5 mm or more due to structural limitation, and it is necessary to be 50 Cm or less to keep the resolution. .

【0027】[0027]

【実施例】本発明の実施例を説明する。 [実施例1]直径3mm、厚さ50μm の低炭素鋼試料1
を本発明の機能を有する真空容器(図示せず)にいれ、
研磨室を10-5Paまで真空に引いた。差動排気型のイ
オン銃5でArイオンビームを試料1に照射した。イオ
ンの加速電圧は5kVであり、直径0.2mmのイオンビ
ームを照射し、試料1の片面からのイオン研磨を行っ
た。試料1を透過させるためのX線にはAlのX線を用
いた。10kVに加速した電子ビームをAlターゲットに
当て、発生したX線を試料1に当てた。試料1を透過し
たX線をX線カメラ3により検出し、その信号をテレビ
4に送り、映像化させた。試料1の薄膜化過程を動的に
観察しながら、試料1の研磨位置を偏向器6で手動で調
整した。こうして得られた試料1を透過電子顕微鏡によ
り観察したところ、目的の位置の視野を観察することが
できた。
EXAMPLES Examples of the present invention will be described. [Example 1] Low carbon steel sample 1 having a diameter of 3 mm and a thickness of 50 µm
In a vacuum container (not shown) having the function of the present invention,
The polishing chamber was evacuated to 10 -5 Pa. The sample 1 was irradiated with the Ar ion beam by the differential exhaust type ion gun 5. The accelerating voltage of ions was 5 kV, and an ion beam having a diameter of 0.2 mm was irradiated to perform ion polishing from one surface of the sample 1. An X-ray of Al was used as an X-ray for transmitting the sample 1. The electron beam accelerated to 10 kV was applied to the Al target, and the generated X-ray was applied to the sample 1. The X-ray transmitted through the sample 1 was detected by the X-ray camera 3, and the signal thereof was sent to the television 4 for visualization. While dynamically observing the thinning process of sample 1, the polishing position of sample 1 was manually adjusted by the deflector 6. When the sample 1 thus obtained was observed with a transmission electron microscope, the visual field at the target position could be observed.

【0028】[実施例2]直径3mm、厚さ50μm のジ
ルコニア試料1を本発明の機能を有する真空容器(図示
せず)にいれ、研磨室10-6Paまで真空に引いた。差
動排気型のイオン銃5でArイオンビームを試料1に照
射した。イオンの加速電圧は8kVであり、直径約50μ
m のイオンビームを図2のように試料1の位置(x1
1 )に片面から照射した。試料1を透過させるための
X線にはCuのX線を用いた。10kVに加速した電子ビ
ームをCuターゲットに当て、発生したX線を試料1に
当てた。試料を透過したX線をX線カメラ3により検出
し、その信号をテレビ4に送り、図2のように位置(x
1 、y1 )でのX線の透過強度が試料1に穴が開かない
程度の設定値になったところで、コンピューター(図示
せず)の指示にしたがって試料1の研磨位置を50μm
だけ離れた位置(x2 、y2 )に偏向器6により移動さ
せた。図2のように0.4mm×0.3mmの領域にわたっ
て、この操作を次々に行い試料1の中心部を薄くした。
こうして得られた試料1を透過電子顕微鏡により観察し
たところ、十分広い範囲の視野を得ることができた。
Example 2 A zirconia sample 1 having a diameter of 3 mm and a thickness of 50 μm was put in a vacuum container (not shown) having the function of the present invention, and the polishing chamber was evacuated to 10 −6 Pa. The sample 1 was irradiated with the Ar ion beam by the differential exhaust type ion gun 5. Ion acceleration voltage is 8kV and diameter is about 50μ.
As shown in FIG. 2, the ion beam of m is moved to the position (x 1 ,
y 1 ) was irradiated from one side. Cu X-rays were used as X-rays for transmitting the sample 1. An electron beam accelerated to 10 kV was applied to a Cu target, and the generated X-ray was applied to the sample 1. The X-ray transmitted through the sample is detected by the X-ray camera 3, the signal is sent to the television 4, and the position (x
When the X-ray transmission intensity at 1 , 1 , y 1 ) reached a set value at which holes were not opened in sample 1, the polishing position of sample 1 was set to 50 μm according to the instruction of the computer (not shown).
It was moved by the deflector 6 to a position (x 2 , y 2 ) separated by only. As shown in FIG. 2, this operation was successively performed over the area of 0.4 mm × 0.3 mm to thin the central portion of the sample 1.
When the sample 1 thus obtained was observed with a transmission electron microscope, it was possible to obtain a sufficiently wide field of view.

【0029】[実施例3]幅1mm、厚さ40μm の非晶
質金属(Fe−Si−B合金)試料1を本発明の機能を
有する真空容器(図示せず)にいれ、研磨室を10-5
aまで真空に引いた。試料1の大きさは通常の試料のも
のより小さいため、試料1の周囲を厚さ0.2mmのMo
で保持し、X線の漏れがないようにした。作動排気型の
イオン銃5でArイオンビームを試料1に照射した。イ
オンの加速電圧は5kVであり、直径約0.1mmのイオン
ビームを照射し、試料1の片面からのイオン研磨を行っ
た。試料1を透過させるためのX線にはAlのX線を用
いた。15kVに加速した電子ビームをAlターゲットに
当て、発生したX線を試料1に当てた。試料1を透過し
たX線をX線カメラ3により検出し、その信号をテレビ
4に送り、映像化させた。試料1の薄膜化過程を動的に
観察しながら、試料1の研磨位置を試料ステージ7の移
動によって手動で調整した。こうして得られた試料1を
透過電子顕微鏡により観察したところ、目的の位置の視
野を観察することができた。
[Example 3] Amorphous metal (Fe-Si-B alloy) sample 1 having a width of 1 mm and a thickness of 40 µm was placed in a vacuum container (not shown) having the function of the present invention, and the polishing chamber was filled with 10 -5 P
A vacuum was pulled to a. Since the size of sample 1 is smaller than that of a normal sample, the area around sample 1 is 0.2 mm thick.
It was held at to prevent leakage of X-rays. The sample 1 was irradiated with the Ar ion beam by the working exhaust type ion gun 5. The accelerating voltage of ions was 5 kV, and an ion beam having a diameter of about 0.1 mm was irradiated to perform ion polishing from one surface of the sample 1. An X-ray of Al was used as an X-ray for transmitting the sample 1. An electron beam accelerated to 15 kV was applied to the Al target, and the generated X-ray was applied to the sample 1. The X-ray transmitted through the sample 1 was detected by the X-ray camera 3, and the signal thereof was sent to the television 4 for visualization. While dynamically observing the thinning process of the sample 1, the polishing position of the sample 1 was manually adjusted by moving the sample stage 7. When the sample 1 thus obtained was observed with a transmission electron microscope, the visual field at the target position could be observed.

【0030】[実施例4]直径3mm、厚さ60μm のス
テンレス鋼(SUS304)試料1を本発明の機能を有
する真空容器(図示せず)にいれ、研磨室を10-6Pa
まで真空に引いた。差動排気型のイオン銃5でArイオ
ンビームを試料1に照射した。イオンの加速電圧は8kV
であり、直径約0.1mmのイオンビームを試料1の図3
のように位置(x1 、y1 )に片面から照射した。試料
1を透過させるためのX線にはMoのX線を用いた。1
0kVに加速した電子ビームをMoターゲットに当て、発
生したX線を試料1に当てた。試料を透過したX線をX
線カメラ3により検出し、その信号をテレビ4に送り、
映像化させた試料1の薄膜化過程を動的に観察しながら
図3のように0.1mmの列の間隔で0.4mm×0.4mm
のコンピューター(図示せず)で設定した領域にわたっ
て、試料ステージ7を試料移動装置により移動させるこ
とによって調整した。こうして得られた試料1を透過電
子顕微鏡により観察したところ、試料1の広い領域を観
察することができた。
Example 4 A stainless steel (SUS304) sample 1 having a diameter of 3 mm and a thickness of 60 μm was placed in a vacuum container (not shown) having the function of the present invention, and the polishing chamber was placed at 10 −6 Pa.
Evacuated until. The sample 1 was irradiated with the Ar ion beam by the differential exhaust type ion gun 5. Ion acceleration voltage is 8kV
And the ion beam with a diameter of about 0.1 mm is shown in FIG.
The position (x 1 , y 1 ) was irradiated from one side as described above. X-rays of Mo were used as X-rays for transmitting the sample 1. 1
An electron beam accelerated to 0 kV was applied to the Mo target, and the generated X-ray was applied to the sample 1. X-ray transmitted through the sample is X
Detected by the line camera 3, and sends the signal to the television 4,
While dynamically observing the thinning process of the imaged sample 1, as shown in FIG. 3, 0.4 mm × 0.4 mm at 0.1 mm row intervals.
The sample stage 7 was moved by the sample moving device over the area set by the computer (not shown). When the sample 1 thus obtained was observed with a transmission electron microscope, a wide area of the sample 1 could be observed.

【0031】[実施例5]直径3mm、厚さ100μm の
シリコン試料1を本発明の機能を有する真空容器(図示
せず)にいれ、研磨室を10-5Paまで真空に引いた。
差動排気型のイオン銃5でArイオンビームを試料1に
照射した。イオンの加速電圧は5kVであり、直径約40
μm のイオンビームを図2のように試料1の位置
(x1 、y1 )に片面から照射した。試料1を透過させ
るためのX線にはCuのX線を用いた。10kVに加速し
た電子ビームをCuターゲットに当て、発生したX線を
試料1に当てた。試料を透過したX線をX線カメラ3に
より検出し、その信号をテレビ4に送り、図2のように
位置(x1 、y1 )でのX線の透過強度が試料1に穴が
開かない程度の設定値になったところで、コンピュータ
ー(図示せず)の指示にしたがって試料1の研磨位置を
50μm だけ離れた位置(x2 、y2 )に、試料ステー
ジ7の移動により移動させた。図2のように0.4mm×
0.3mmの領域にわたって、この操作を次々に行い試料
1の中心部を薄くした。こうして得られた試料1を透過
電子顕微鏡により観察したところ、十分広い範囲の視野
を得ることができた。
Example 5 A silicon sample 1 having a diameter of 3 mm and a thickness of 100 μm was placed in a vacuum container (not shown) having the function of the present invention, and the polishing chamber was evacuated to 10 −5 Pa.
The sample 1 was irradiated with the Ar ion beam by the differential exhaust type ion gun 5. Ion acceleration voltage is 5kV and diameter is about 40
As shown in FIG. 2, the ion beam of μm was applied to the position (x 1 , y 1 ) of the sample 1 from one side. Cu X-rays were used as X-rays for transmitting the sample 1. An electron beam accelerated to 10 kV was applied to a Cu target, and the generated X-ray was applied to the sample 1. The X-ray transmitted through the sample is detected by the X-ray camera 3, the signal is sent to the TV 4, and the sample 1 is pierced by the transmission intensity of the X-ray at the position (x 1 , y 1 ) as shown in FIG. When the set value was not reached, the polishing position of the sample 1 was moved by a movement of the sample stage 7 to a position (x 2 , y 2 ) separated by 50 μm according to the instruction of a computer (not shown). 0.4mm × as shown in Fig. 2
This operation was successively performed over the area of 0.3 mm to thin the central portion of the sample 1. When the sample 1 thus obtained was observed with a transmission electron microscope, it was possible to obtain a sufficiently wide field of view.

【0032】[0032]

【発明の効果】本発明による試料作製方法を用いると、
試料の所望の位置に膜穴を開けたり、広い領域を薄くす
ることができる。そのため、透過電子顕微鏡用の試料の
作製における成功率が増し、試料を有効に作製すること
ができる。特に試料の素材が少ないときや小さいときに
は、この作製方法は有効である。
EFFECT OF THE INVENTION When the sample preparation method according to the present invention is used,
It is possible to make a membrane hole at a desired position of the sample or thin a large area. Therefore, the success rate in producing a sample for a transmission electron microscope is increased, and the sample can be effectively produced. This manufacturing method is effective especially when the material of the sample is small or small.

【0033】また、従来の方法では試料作製に熟練を要
したが、本発明により誰でも再現性良く試料作製が出来
る。したがって、試料作製装置の実質的な操作時間が従
来より半分以下になり、装置を効率的に操作できる。そ
れに伴う部品の劣化などの消耗が軽減し、運転に必要な
維持費が下がり、経済的効果も大きい。
Further, in the conventional method, it took a lot of skill to prepare a sample, but the present invention enables anyone to prepare a sample with good reproducibility. Therefore, the substantial operation time of the sample preparation device is less than half that of the prior art, and the device can be operated efficiently. As a result, the consumption such as deterioration of parts is reduced, the maintenance cost required for operation is reduced, and the economic effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の試料作製方法の斜視図を示す。FIG. 1 shows a perspective view of a sample preparation method of the present invention.

【図2】図2は本発明の段階的な試料研磨位置の移動を
示す模式図を示す。
FIG. 2 is a schematic view showing the stepwise movement of the sample polishing position of the present invention.

【図3】図3は本発明の連続的な試料研磨位置の移動を
示す模式図を示す。
FIG. 3 is a schematic diagram showing continuous movement of a sample polishing position of the present invention.

【符号の説明】[Explanation of symbols]

1 透過電子顕微鏡用試料 2 X線源 3 X線カメラ 4 テレビ 5 イオン銃 6 偏向器 7 試料ステージ 1 sample for transmission electron microscope 2 X-ray source 3 X-ray camera 4 television 5 ion gun 6 deflector 7 sample stage

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 透過電子顕微鏡用薄膜試料をイオン研磨
によって作製する方法において、透過電子顕微鏡用の試
料(1)にX線源(2)で発生させたX線を照射し、前
記試料(1)を透過した前記X線をX線カメラ(3)で
検出することによって前記X線の強度をテレビ(4)で
観察しながら、前記試料(1)に対するイオン銃(5)
の照射方向を偏向器(6)により変えることによって、
前記試料(1)におけるイオンビームの照射位置を調節
して、試料の適正な位置を研磨することを特徴とする透
過電子顕微鏡用薄膜試料作製方法。
1. A method for producing a thin film sample for a transmission electron microscope by ion polishing, wherein the sample (1) for a transmission electron microscope is irradiated with X-rays generated by an X-ray source (2) to obtain the sample (1). ) Is detected by an X-ray camera (3) while observing the intensity of the X-rays on a television (4), an ion gun (5) for the sample (1).
By changing the irradiation direction of the light by the deflector (6),
A method for preparing a thin film sample for a transmission electron microscope, comprising adjusting an irradiation position of an ion beam on the sample (1) and polishing an appropriate position of the sample.
【請求項2】 透過電子顕微鏡用薄膜試料をイオン研磨
によって作製する方法において、透過電子顕微鏡用の試
料(1)にX線源(2)で発生させたX線を照射し、前
記試料(1)を透過した前記X線をX線カメラ(3)で
検出することによって前記X線の強度をテレビ(4)で
測定し、イオン銃(5)で前記試料(1)の研磨してい
る位置での前記X線の強度が設定値を越えたとき、前記
試料(1)に対するイオン銃(5)の照射方向を偏向器
(6)により次の研磨位置に移動させることによって、
前記試料(1)におけるイオンビームの照射位置を調節
して、前記試料(1)の適正な位置を研磨することを特
徴とする透過電子顕微鏡用薄膜試料作製方法。
2. A method for producing a thin film sample for a transmission electron microscope by ion polishing, wherein the sample (1) for a transmission electron microscope is irradiated with X-rays generated by an X-ray source (2) to obtain the sample (1). The intensity of the X-rays is measured by a television (4) by detecting the X-rays transmitted through the sample (1) by an X-ray camera (3), and the position where the sample (1) is polished by an ion gun (5). When the intensity of the X-rays at 1 exceeds the set value, by moving the irradiation direction of the ion gun (5) to the sample (1) to the next polishing position by the deflector (6),
A method for preparing a thin film sample for a transmission electron microscope, comprising adjusting an irradiation position of an ion beam on the sample (1) and polishing an appropriate position of the sample (1).
【請求項3】 透過電子顕微鏡用薄膜試料をイオン研磨
によって作製する方法において、透過電子顕微鏡用の試
料(1)にX線源(2)で発生させたX線を照射し、前
記試料(1)を透過した前記X線をX線カメラ(3)で
検出することによって前記X線の強度をテレビ(4)で
観察しながら、前記試料(1)を載せた試料ステージ
(7)を移動することによって、前記試料(1)におけ
るイオンビームの照射位置を調節して、前記試料(1)
の適正な位置に照射することを特徴とする透過電子顕微
鏡用薄膜試料作製方法。
3. A method for producing a thin film sample for a transmission electron microscope by ion polishing, wherein the sample (1) for a transmission electron microscope is irradiated with X-rays generated by an X-ray source (2) to obtain the sample (1). ) Is transmitted to the sample stage (7) on which the sample (1) is placed while observing the intensity of the X-ray on the television (4) by detecting the X-ray through the X-ray camera (3). By adjusting the irradiation position of the ion beam on the sample (1),
A method for preparing a thin film sample for a transmission electron microscope, which comprises irradiating an appropriate position of
【請求項4】 透過電子顕微鏡用薄膜試料をイオン研磨
によって作製する方法において、透過電子顕微鏡用の試
料(1)にX線源(2)で発生させたX線を照射し、前
記試料(1)を透過した前記X線をX線カメラ(3)で
検出することによって前記X線の強度をテレビ(4)で
観察しながら、前記試料(1)を載せた試料ステージ
(7)を外部の駆動手段により自動的に移動させること
によって、前記試料(1)におけるイオンビームの照射
位置を調節して、前記試料(1)の適正な位置に照射す
ることを特徴とする透過電子顕微鏡用薄膜試料作製方
法。
4. A method for producing a thin film sample for a transmission electron microscope by ion polishing, wherein the sample (1) for a transmission electron microscope is irradiated with X-rays generated by an X-ray source (2) to obtain the sample (1). ) Is observed by a X-ray camera (3) by an X-ray camera (3) to observe the intensity of the X-rays on a television (4), and the sample stage (7) on which the sample (1) is placed is externally attached. A thin film sample for a transmission electron microscope, characterized in that the irradiation position of the ion beam on the sample (1) is adjusted by automatically moving it by a driving means to irradiate the sample (1) at an appropriate position. Manufacturing method.
【請求項5】 透過電子顕微鏡用薄膜試料をイオン研磨
によって作製する方法において、透過電子顕微鏡用の試
料(1)にX線源(2)で発生させたX線を照射し、前
記試料(1)を透過した前記X線をX線カメラ(3)で
検出することによって前記X線の強度をテレビ(4)で
測定し、イオン銃(5)で前記試料(1)の研磨してい
る位置での前記X線の強度が設定値を越えたときに、前
記試料(1)を載せた試料ステージ(7)を外部の駆動
手段により自動的に移動させることによって、前記試料
(1)におけるイオンビームの照射位置を調節して、前
記試料(1)の適正な位置に照射することを特徴とする
透過電子顕微鏡用薄膜試料作製方法。
5. A method for producing a thin film sample for a transmission electron microscope by ion polishing, wherein the sample (1) for a transmission electron microscope is irradiated with X-rays generated by an X-ray source (2) to obtain the sample (1). The intensity of the X-rays is measured by a television (4) by detecting the X-rays transmitted through the sample (1) by an X-ray camera (3), and the position where the sample (1) is polished by an ion gun (5). When the intensity of the X-rays in the sample exceeds the set value, the sample stage (7) on which the sample (1) is placed is automatically moved by an external driving means, so that the ions in the sample (1) are A method of preparing a thin film sample for a transmission electron microscope, which comprises irradiating an appropriate position of the sample (1) by adjusting a beam irradiation position.
JP5216616A 1993-08-31 1993-08-31 Preparing method for thin film specimen for transmission type electron microscope Withdrawn JPH0773834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5216616A JPH0773834A (en) 1993-08-31 1993-08-31 Preparing method for thin film specimen for transmission type electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5216616A JPH0773834A (en) 1993-08-31 1993-08-31 Preparing method for thin film specimen for transmission type electron microscope

Publications (1)

Publication Number Publication Date
JPH0773834A true JPH0773834A (en) 1995-03-17

Family

ID=16691226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5216616A Withdrawn JPH0773834A (en) 1993-08-31 1993-08-31 Preparing method for thin film specimen for transmission type electron microscope

Country Status (1)

Country Link
JP (1) JPH0773834A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373070B1 (en) 1999-10-12 2002-04-16 Fei Company Method apparatus for a coaxial optical microscope with focused ion beam
WO2002095085A1 (en) * 2001-05-22 2002-11-28 Infineon Technologies Ag Method for producing a layer with a predefined layer thickness profile
JP2006300759A (en) * 2005-04-21 2006-11-02 Jeol Ltd Sample preparation method and sample preparation device
JP2009109323A (en) * 2007-10-30 2009-05-21 Sony Corp Cross-sectional sample creating device
JP2013127967A (en) * 2012-12-14 2013-06-27 Sony Corp Cross-sectional sample creating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373070B1 (en) 1999-10-12 2002-04-16 Fei Company Method apparatus for a coaxial optical microscope with focused ion beam
WO2002095085A1 (en) * 2001-05-22 2002-11-28 Infineon Technologies Ag Method for producing a layer with a predefined layer thickness profile
EP1816233A2 (en) * 2001-05-22 2007-08-08 Infineon Technologies AG Method for manufacturing a layer with a predefined layer thickness profile
EP1816233A3 (en) * 2001-05-22 2007-08-22 Infineon Technologies AG Method for manufacturing a layer with a predefined layer thickness profile
JP2006300759A (en) * 2005-04-21 2006-11-02 Jeol Ltd Sample preparation method and sample preparation device
JP2009109323A (en) * 2007-10-30 2009-05-21 Sony Corp Cross-sectional sample creating device
JP2013127967A (en) * 2012-12-14 2013-06-27 Sony Corp Cross-sectional sample creating device

Similar Documents

Publication Publication Date Title
DE112010004286B4 (en) Charged particle microscope
DE112010000799B4 (en) Ion beam device
JP5055011B2 (en) Ion source
EP3486633B1 (en) Preparation of cryogenic sample for charged-particle microscopy
DE112010002774B4 (en) ION MICROSCOPE
US6300631B1 (en) Method of thinning an electron transparent thin film membrane on a TEM grid using a focused ion beam
JPH10223574A (en) Machining observation device
JP2001176440A (en) Ion beam equipment and auger microprobe
JPH0773834A (en) Preparing method for thin film specimen for transmission type electron microscope
Kordesch Photoelectron emission microscopy
Castaing et al. Analytical microscopy by secondary ion imaging techniques
Sakurai et al. High‐performance, focusing‐type, time‐of‐flight atom probe with a channeltron as a signal detector
JPH11218473A (en) Method and device for preparing sample for section transmission electron microscope
EP0175807B1 (en) Apparatus for the sputtered neutral mass spectrometry
Hofer et al. An electronic aperture for in-depth analysis of solids with an ion microprobe
JPH09274883A (en) Fib/sem compounded apparatus
JP3684106B2 (en) Deposition equipment
JP5746085B2 (en) Ion beam processing / observation apparatus and ion beam processing / observation method using the same
EP4376047A2 (en) Particle beam system
Uchikawa et al. The ion-induced emission electron microscope and an image contrast due to specimen contamination
JP3854751B2 (en) Electron microscope equipment
WO2020044429A1 (en) Ion beam device
JP2000292380A (en) Positive electron extinguishment analysing device
JP6068553B2 (en) Ion beam processing / observation apparatus and ion beam processing / observation method using the same
JP2003075311A (en) Preparation method and preparation device for sample for transmission type electron microscope observation

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031