JPH0773593B2 - Micro bubble carbonated spring manufacturing equipment - Google Patents

Micro bubble carbonated spring manufacturing equipment

Info

Publication number
JPH0773593B2
JPH0773593B2 JP1297063A JP29706389A JPH0773593B2 JP H0773593 B2 JPH0773593 B2 JP H0773593B2 JP 1297063 A JP1297063 A JP 1297063A JP 29706389 A JP29706389 A JP 29706389A JP H0773593 B2 JPH0773593 B2 JP H0773593B2
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
supply pipe
air
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1297063A
Other languages
Japanese (ja)
Other versions
JPH03158156A (en
Inventor
直樹 久門
治衞 川越
伸 真継
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1297063A priority Critical patent/JPH0773593B2/en
Publication of JPH03158156A publication Critical patent/JPH03158156A/en
Publication of JPH0773593B2 publication Critical patent/JPH0773593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices For Medical Bathing And Washing (AREA)
  • Percussion Or Vibration Massage (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は気体を液体に加圧溶解させ、この液体を減圧す
ることにより微細気泡を発生させると共に気体として二
酸化炭素を液体である水に加圧溶解させることによって
炭酸泉を製造することができる微細気泡炭酸泉製造装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a method in which a gas is dissolved under pressure in a liquid, and the liquid is depressurized to generate fine bubbles, and carbon dioxide is added as a gas to water which is a liquid. The present invention relates to a fine bubble carbonated spring manufacturing apparatus capable of manufacturing a carbonated spring by melting under pressure.

[従来の技術] 従来より炭酸泉を製造する場合、化学的に二酸化炭素を
発生させるような錠剤(炭酸水素ナトリウムとクエン酸
等)を浴槽内の浴水中に入れて行うものと、二酸化炭素
を浴槽内の浴水中にバブリングして溶解させるものなど
があったが、高濃度の炭酸泉を作ろうとした場合、前者
の化学物質による方法では多量の錠剤を入れる必要があ
り、コスト的にも問題があった。また、この方法では浴
水中に解けきれなかった二酸化炭素が水面からどんどん
気泡となって逃げてしまい、ある程度までしか濃度を上
げることができず、水面から逃げる二酸化炭素の量が多
量になると狭い浴室内では二酸化炭素の濃度が高くなり
窒息などの危険があった。
[Prior Art] Conventionally, when a carbonated spring is manufactured, a tablet (sodium hydrogen carbonate and citric acid, etc.) that chemically generates carbon dioxide is placed in bath water in the bathtub, and carbon dioxide in the bathtub is used. There were things such as bubbling and dissolving it in the bath water inside, but when trying to make a high-concentration carbonated spring, it was necessary to put a large amount of tablets with the former chemical substance method, and there was a cost problem. It was Also, with this method, the carbon dioxide that could not be dissolved in the bath water escaped from the water surface as bubbles gradually, and the concentration could only be increased to a certain degree. There was a danger of suffocation due to the high concentration of carbon dioxide inside.

後者の方法にあっても、時間をかけてバブリングすると
濃度はある程度までは上げることができるが、それ以上
に濃度を上げることができず、また、ある濃度を越える
と供給された二酸化炭素のうち溶解する量よりも逃げる
量の方が多くなり、経済的にも問題があり、前者の場合
と同様に高濃度になって浴水の水面から逃げることとな
り、逃げる量が多くなると狭い浴室内では窒息の危険が
あった。
Even in the latter method, the concentration can be increased to some extent by bubbling over time, but the concentration cannot be increased further. The amount that escapes is greater than the amount that dissolves, which is economically problematic.As with the former case, the concentration becomes high and the water escapes from the surface of the bath water. There was a risk of suffocation.

このため、二酸化炭素を浴水中に加圧溶解させる方法と
して第3図に示されるようなものがある。このものは、
浴槽10に設けた吸入口2と吐出口3との間に管路4を形
成してあり、管路4に設けた加圧ポンプ11にて吸入口2
より吸入された管路4内の浴水1aに供給管路20より二酸
化炭素を供給して浴水1a中に二酸化炭素を溶解させ、炭
酸泉として再び吐出口3より浴槽10内に噴出するという
ものである。この装置を詳述すると加圧ポンプ11のスイ
ッチが入ると浴槽10に設けられた吸入口2から管路4を
経て液体1である浴槽10内の浴水1aが吸入される。20は
管路4に連通された二酸化炭素や空気等の気体を供給す
るための供給管路である。そして、加圧ポンプ11のスイ
ッチ、オンと同時に液体1である浴水1aの吸入による流
速によって気液混合部12では供給管路20が負圧になるこ
とにより気体が供給管路20を介して管路4内に吸入され
管路4内の浴水1aと混合される。気液混合部12で気体が
混合された液体1は加圧ポンプ11にて加圧され気体は液
体1に溶解する。このとき、加圧ポンプ11での溶解効率
を上げるためには、実際に液体1に溶解する気体量に対
して過剰に気体を供給する必要があり、加圧ポンプ11で
加圧されても多量の未溶解気体が存在する。そのため、
加圧ポンプ11の水下側に位置する管路4にアキュムレー
タ6を設けてあり、アキュムレータ6で余剰気体(未溶
解気体)を分離して排気絞り弁6aから排気されるように
してある。このとき、排気絞り弁6aからは排気と共に若
干量の水も排水される。排気絞り弁6aではアキュムレー
タ6の圧力を一定に保ちつつ排気量を調整する。そし
て、余剰気体の混ざっていない気体の溶解した液体1は
炭酸泉として吐出口3を経て浴槽10内に噴出される。こ
の場合、気体として100%の二酸化炭素を使用してもよ
いが、100%の二酸化炭素は減圧して噴出する際にその
一部は大泡となって空気中へ逃げてしまうため、二酸化
炭素に空気を混合した混合気体を供給してやることによ
り微細気泡炭酸泉が得られる。
Therefore, as a method for dissolving carbon dioxide under pressure in bath water, there is a method as shown in FIG. This one is
A pipe line 4 is formed between the suction port 2 and the discharge port 3 provided in the bathtub 10, and the suction port 2 is provided by a pressurizing pump 11 provided in the pipe line 4.
Carbon dioxide is supplied from the supply pipe 20 to the bath water 1a in the pipe 4 that has been sucked in to dissolve the carbon dioxide in the bath water 1a, and the carbon dioxide spring is again jetted from the discharge port 3 into the bath 10. Is. This device will be described in detail. When the pressurizing pump 11 is turned on, the bath water 1a as the liquid 1 in the bath 10 is sucked from the suction port 2 provided in the bath 10 through the pipe line 4. Reference numeral 20 is a supply pipe line for supplying gas such as carbon dioxide and air communicated with the pipe line 4. Then, at the same time when the pressurizing pump 11 is switched on, the supply pipe 20 becomes negative pressure in the gas-liquid mixing section 12 due to the flow velocity due to the suction of the bath water 1a that is the liquid 1, so that the gas passes through the supply pipe 20. It is sucked into the conduit 4 and mixed with the bath water 1a in the conduit 4. The liquid 1 in which the gas is mixed in the gas-liquid mixing section 12 is pressurized by the pressure pump 11 and the gas is dissolved in the liquid 1. At this time, in order to increase the dissolution efficiency in the pressure pump 11, it is necessary to supply an excessive amount of gas with respect to the amount of gas actually dissolved in the liquid 1, and even if the pressure pump 11 pressurizes a large amount. There are undissolved gases. for that reason,
An accumulator 6 is provided in the pipe line 4 located below the water of the pressurizing pump 11, and an excess gas (undissolved gas) is separated by the accumulator 6 and exhausted from the exhaust throttle valve 6a. At this time, a small amount of water is discharged from the exhaust throttle valve 6a together with the exhaust. The exhaust throttle valve 6a adjusts the exhaust amount while keeping the pressure of the accumulator 6 constant. Then, the liquid 1 in which the gas in which the surplus gas is not mixed is dissolved is ejected as a carbonated spring into the bath 10 through the discharge port 3. In this case, 100% carbon dioxide may be used as the gas, but when 100% carbon dioxide is decompressed and ejected, some of it becomes large bubbles and escapes into the air. A fine bubble carbonated spring can be obtained by supplying a mixed gas in which air is mixed.

[発明が解決しようとする課題] しかし上述のような方法で微細気泡炭酸泉を作る場合、
二酸化炭素と空気を混合し、一定濃度の気体を連続的に
供給することは吸い込み負圧や気体の供給圧力の変動に
対して気体の吸い込み量が変化するため極めて困難であ
り、任意の濃度の気体を安定して連続的に供給すること
は困難であった。
[Problems to be Solved by the Invention] However, in the case of producing a fine bubble carbonated spring by the method as described above,
It is extremely difficult to mix carbon dioxide and air and continuously supply a gas of a certain concentration, because the amount of gas suction changes with changes in negative suction pressure and gas supply pressure. It was difficult to stably and continuously supply the gas.

本発明は上記問題点を解決しようとするものであり、そ
の目的とするところは、気体である空気と二酸化炭素を
一定割合で混合して連続的に供給することができる微細
気泡炭酸泉製造装置を提供することにある。
The present invention is intended to solve the above problems, and an object of the present invention is to provide a fine bubble carbonated spring production apparatus capable of continuously mixing gas air and carbon dioxide at a constant ratio and continuously supplying the mixture. To provide.

[課題を解決するための手段] 上記目的を達成するために、本発明における微細気泡炭
酸泉製造装置は、気体と液体を混合し加圧することによ
り液体に気体を溶解させ、この液体を再び減圧すること
によって微細気泡を析出する微細気泡発生装置であっ
て、液体を吸入する吸入口2と液体を吐出する吐出口3
との間に設けられた管路4に気体である二酸化炭素と空
気を供給する供給部5を設け、上記管路4に設けた供給
部5よりも水下側にアキュムレータ6を設け、アキュム
レータ6と供給部5との間に加圧ポンプ11を設けて成る
微細気泡炭酸泉製造装置において、二酸化炭素を供給す
るための二酸化炭素供給管5aと、空気を供給するための
空気供給管5bにそれぞれ気体の供給量を調整する弁装置
5a′,5b′を設けたものである。
[Means for Solving the Problem] In order to achieve the above object, the apparatus for producing a fine bubble carbonated spring according to the present invention dissolves a gas in a liquid by mixing and pressurizing the gas and the liquid, and depressurizes the liquid again. A fine bubble generating device for depositing fine bubbles by means of which a suction port 2 for sucking the liquid and a discharge port 3 for discharging the liquid are provided.
A supply unit 5 for supplying carbon dioxide and air which is a gas is provided in a pipe line 4 provided between the accumulator 6 and the supply unit 5, and an accumulator 6 is provided below the supply unit 5 provided in the pipe line 4. In a fine bubble carbonated spring manufacturing apparatus having a pressurizing pump 11 provided between a supply unit 5 and a supply unit 5, a gas is supplied to a carbon dioxide supply pipe 5a for supplying carbon dioxide and an air supply pipe 5b for supplying air. Device for adjusting the supply amount of
5a 'and 5b' are provided.

また、液体が通る管路4に二酸化炭素と空気を供給する
供給管を接続し、この供給管を一本の気体供給管7にて
構成し、この気体供給管7にアキュムレータ6より導出
された排気管6aを接続するようにしてもよい。
Further, a supply pipe for supplying carbon dioxide and air is connected to a pipe line 4 through which the liquid passes, and this supply pipe is constituted by one gas supply pipe 7, and the gas supply pipe 7 is led out from an accumulator 6. The exhaust pipe 6a may be connected.

[作用] 供給部5にて液体に気体が混合される。ここで液体に供
給される気体として二酸化炭素供給管5aと空気供給管5b
とを介して二酸化炭素だけでなく空気も供給され、空気
と共に二酸化炭素が液体中に加圧溶解される。空気と二
酸化炭素の混合はそれぞれ二酸化炭素供給管5aと空気供
給管5bに取付けられた弁装置5a′,5b′によって行なわ
れ、交互に開閉を行ったり、一定時間毎に切り換えるこ
とにより任意の濃度で連続的に供給される。
[Operation] Gas is mixed with the liquid in the supply unit 5. Carbon dioxide supply pipe 5a and air supply pipe 5b are used as the gas supplied to the liquid here.
Not only carbon dioxide but also air is supplied via and carbon dioxide is dissolved under pressure in the liquid together with air. Mixing of air and carbon dioxide is carried out by the valve devices 5a 'and 5b' attached to the carbon dioxide supply pipe 5a and the air supply pipe 5b, respectively, and the desired concentration can be obtained by alternately opening and closing or switching at regular intervals. Continuously supplied.

また、アキュムレータ6からの未溶解気体を排気管6aを
介して気体供給管7に送ってリサイクルすることによ
り、常にある程度の量の気体が気体供給管7内にあるた
め、気体を補給するために弁装置5a′,5b′の開閉を行
っても気体供給管7内の気体の量の変動や炭酸ガス濃度
の変動が少ないため安定して供給することができる。
Further, by sending the undissolved gas from the accumulator 6 to the gas supply pipe 7 through the exhaust pipe 6a and recycling it, a certain amount of gas is always present in the gas supply pipe 7, so that the gas is replenished. Even if the valve devices 5a 'and 5b' are opened and closed, the amount of gas in the gas supply pipe 7 and the carbon dioxide concentration change are small, so that stable supply can be achieved.

[実施例] 以下本発明を図示された実施例に基づいて詳述する。[Examples] The present invention will be described in detail below based on illustrated examples.

図示された実施例にあっては、浴槽10内に微細気泡炭酸
泉を噴出する場合の実施例を示してある。10は浴槽であ
り、この浴槽10の内壁には液体1である浴槽10内の浴水
1aを吸入する吸入口2を設けてあり、吸入口2より吸入
された浴水1aは吐出口3より噴出されるようにしてあ
る。4は吸入口2と吐出口3との間に亘って配管された
管路であり、この管路4には吸入口2から浴槽10内の浴
水1aを吸入し、吐出口3より噴出させることができる加
圧ポンプ11を配置してある。加圧ポンプ11と吸入口2と
の間に位置する管路4には気体である二酸化炭素と空気
を供給する供給部5を設けてある。この供給部5は二酸
化炭素が供給される二酸化炭素供給管5aと空気が供給さ
れる空気供給管5bとにより構成してあり、それぞれ気体
供給管7に接続してあり、気体供給管7は気液混合部12
を介して管路4に連結してある。二酸化炭素供給管5a及
び空気供給管5bにはそれぞれ気体供給管7に送られる気
体の量を調整するための弁装置5a′,5b′を取付けてあ
る。この弁装置5a′,5b′としてはタイマ8にて開閉が
制御される電磁弁である。弁装置5a′が取付けられた二
酸化炭素供給管5aの先には減圧弁5a″を介して二酸化炭
素タンク9を接続してある。8は各弁装置5a′,5b′の
開閉を制御するタイマである。そしてタイマ8を介して
弁装置5a′,5b′を開閉させることにより二酸化炭素ま
たは空気を気体供給管7に供給量を調整しながら供給す
ることができるようにしてある。6は加圧ポンプ11の水
下側に位置する管路4に設置されたアキュムレータであ
る。
The illustrated embodiment shows an embodiment in which a fine bubble carbonated spring is jetted into the bathtub 10. 10 is a bathtub, and the inner wall of the bathtub 10 is the liquid 1 that is the bathwater in the bathtub 10.
A suction port 2 for sucking 1a is provided, and the bath water 1a sucked from the suction port 2 is ejected from the discharge port 3. Reference numeral 4 denotes a pipe line that is provided between the suction port 2 and the discharge port 3. The pipe line 4 sucks the bath water 1a in the bathtub 10 from the suction port 2 and ejects it from the discharge port 3. A pressurizing pump 11 capable of operating is arranged. The conduit 4 located between the pressurizing pump 11 and the suction port 2 is provided with a supply unit 5 for supplying carbon dioxide as a gas and air. This supply unit 5 is composed of a carbon dioxide supply pipe 5a to which carbon dioxide is supplied and an air supply pipe 5b to which air is supplied, and each is connected to a gas supply pipe 7, and the gas supply pipe 7 is Liquid mixing section 12
It is connected to the conduit 4 via. Valve devices 5a 'and 5b' for adjusting the amount of gas sent to the gas supply pipe 7 are attached to the carbon dioxide supply pipe 5a and the air supply pipe 5b, respectively. The valve devices 5a 'and 5b' are electromagnetic valves whose opening and closing are controlled by the timer 8. A carbon dioxide tank 9 is connected to a tip of a carbon dioxide supply pipe 5a to which a valve device 5a 'is attached via a pressure reducing valve 5a ". 8 is a timer for controlling opening / closing of each valve device 5a', 5b '. By opening and closing the valve devices 5a ', 5b' via the timer 8, carbon dioxide or air can be supplied to the gas supply pipe 7 while adjusting the supply amount. It is an accumulator installed in the pipe line 4 located under the water of the pressure pump 11.

しかして、加圧ポンプ11のスイッチが入ると液体1であ
る浴槽10内の浴水1aが吸入口2を介して管路4内に吸入
される。このとき、加圧ポンプ11のスイッチが入るのに
連動して二酸化炭素供給管5a及び空気供給管5bに設けら
れた弁装置5a′,5b′のいずれかが開状態となる。この
とき、両方の弁装置5a′,5b′が同時に開放しないもの
とする。これは、両方の電磁弁を同時に開放すると吸い
込み時の負圧の変動が大きく、二酸化炭素及び空気の吸
い込み量を一定にすることが困難になるため、2つの電
磁弁を交互に開閉して供給するものである。そして、各
電磁弁が交互に開閉することにより、負圧は一定に保た
れて気体の供給量は二酸化炭素も空気もほぼ一定の量が
吸入でき、後は吸入時間の設定をタイマ8で変えるだけ
で任意の濃度の二酸化炭素が供給できる。そして、液体
1の流速にて二酸化炭素供給管5a及び空気供給管5bが管
路4よりも負圧となり、エゼクター効果によって供給部
5から空気及び二酸化炭素が管路4内に吸入され浴水1a
と混合され加圧ポンプ11にて加圧されて浴水1a中に二酸
化炭素と空気とが加圧溶解する。このとき、加圧ポンプ
11による空気及び二酸化炭素の溶解効率を上げるために
は、実際に溶解する気体量に対して過剰に気体を供給す
る必要があり、加圧ポンプ11にて加圧されても、多量の
未溶解気体が存在する。このため、アキュムレータ6で
余剰気体を分離し、アキュムレータ6に連結された絞り
弁6bから排気され、それと同時に若干量の水も排水され
る。このとき、絞り弁6bは排気量を調整してアキュムレ
ータ6内の圧力が著しく減圧された状態とならないよう
にしてある。つまり、空気と二酸化炭素が溶解された浴
水1aは加圧された状態のままで管路4を通って吐出口3
へと送られるのであるが、この途中において、アキュム
レータ6内を通る際、アキュムレータ6は浴水1aの脈動
を吸収したり衝撃圧を吸収したりする一般的な作用をす
る他に、加圧ポンプ11内での加圧で溶解しきれなかった
空気及び二酸化炭素の溶解を促進すると共に、それでも
溶解せずに浴水1a中に混在する余剰気体をアキュムレー
タ6内の上部に浮上させて浴水1aから余剰気体を分離す
る作用をするものである。そして、このアキュムレータ
6を通った浴水1aは気体である空気と二酸化炭素とが高
濃度に溶解された状態となり、この高濃度に気体が溶解
された浴水1aを再び吐出口3より浴槽10内に噴出させる
ものである。そして、吐出口3より気体が溶解された浴
水1aを浴槽10内に噴出させると、浴水1aは加圧状態から
一気に圧力が解放された状態となり、このため、浴水1a
中に溶解していた空気は析出し、微細気泡となって浴槽
10内の浴水1a中に生じることとなる。そして、この微細
気泡に二酸化炭素が混合されることとなり、従来、加圧
溶解した二酸化炭素が減圧された際、大泡となって水面
に向けて急速に上昇していくのを防止し、上昇速度の遅
い微細気泡と共に浴水1a中に漂い、微細気泡の多大な気
液接触面積を利用して高効率に再溶解させることができ
るものである。
Then, when the pressurizing pump 11 is turned on, the bath water 1a in the bath 10 which is the liquid 1 is sucked into the conduit 4 through the suction port 2. At this time, either of the valve devices 5a ′ and 5b ′ provided on the carbon dioxide supply pipe 5a and the air supply pipe 5b is opened in association with the switching on of the pressurizing pump 11. At this time, both valve devices 5a 'and 5b' are not opened at the same time. This is because if both solenoid valves are opened at the same time, the negative pressure changes greatly during suction, making it difficult to maintain a constant amount of carbon dioxide and air suction. To do. Then, by alternately opening and closing each solenoid valve, the negative pressure is kept constant and the supply amount of gas can inhale substantially constant amounts of carbon dioxide and air. After that, the setting of the suction time is changed by the timer 8. Carbon dioxide of any concentration can be supplied by itself. Then, at the flow velocity of the liquid 1, the carbon dioxide supply pipe 5a and the air supply pipe 5b have a negative pressure than the pipe line 4, and the ejector effect sucks air and carbon dioxide from the supply unit 5 into the pipe line 4 and the bath water 1a.
Is mixed with and pressurized by the pressure pump 11, and carbon dioxide and air are dissolved under pressure in the bath water 1a. At this time, pressurizing pump
In order to increase the dissolution efficiency of air and carbon dioxide by 11, it is necessary to supply an excess amount of gas relative to the amount of gas that actually dissolves. Gas is present. Therefore, the surplus gas is separated by the accumulator 6 and is discharged from the throttle valve 6b connected to the accumulator 6, and at the same time, a small amount of water is also discharged. At this time, the throttle valve 6b adjusts the amount of exhaust gas so that the pressure in the accumulator 6 is not significantly reduced. That is, the bath water 1a in which air and carbon dioxide are dissolved passes through the pipe line 4 while maintaining the pressurized state, and the discharge port 3a.
While passing through the accumulator 6 in the middle of this, the accumulator 6 not only has the general function of absorbing the pulsation of the bath water 1a and the impact pressure, but also has a pressure pump. While accelerating the dissolution of air and carbon dioxide that could not be completely dissolved by the pressurization in 11, the surplus gas mixed in the bath water 1a without being dissolved is floated above the accumulator 6 and the bath water 1a It acts to separate the excess gas from the. The bath water 1a that has passed through the accumulator 6 is in a state in which air and carbon dioxide, which are gases, are dissolved in a high concentration, and the bath water 1a in which the gas is dissolved in the high concentration is again discharged from the discharge port 3 into the bath 10 It is what is ejected inside. Then, when the bath water 1a in which the gas is dissolved is jetted into the bathtub 10 from the discharge port 3, the pressure of the bath water 1a is released from the pressurized state all at once, and therefore the bath water 1a is released.
The air that was dissolved inside will precipitate out and become fine air bubbles.
It will occur in the bath water 1a in 10. Then, carbon dioxide is mixed with these fine bubbles, and when the pressure-dissolved carbon dioxide is conventionally decompressed, it is prevented from becoming large bubbles and rapidly rising toward the water surface. It floats in the bath water 1a along with the slow-moving fine bubbles and can be redissolved with high efficiency by utilizing a large gas-liquid contact area of the fine bubbles.

上記空気と二酸化炭素の供給割合としては、空気が多い
程微細気泡は多量に発生し、二酸化炭素が多い程微細気
泡の析出が減るため微細気泡による白濁の度合が薄くな
る。また、二酸化炭素を多量に供給すると大泡が析出す
るため目的や用途に応じて割合を調整するとよい。
Regarding the supply ratio of air and carbon dioxide, the more air, the more fine bubbles will be generated, and the more carbon dioxide, the less precipitation of fine bubbles will occur, and therefore the degree of turbidity due to fine bubbles will become smaller. Further, when a large amount of carbon dioxide is supplied, large bubbles are deposited, so the ratio may be adjusted according to the purpose and application.

第2図は本発明の他の実施例を示すものである。第1図
にて示される実施例ではアキュムレータ6からの排気及
び若干量の水は絞り弁6bを経て、大気中に捨てられてい
たが、第2図に示される実施例では絞り弁6bからの排気
を気体供給管7へ流すように混合部13にて絞り弁6bと気
体供給管7を排気管6aで接続してある。このように接続
してあることにより、供給された気体は消費されながら
も常にある一定量の気体が気体供給管7中にあり、気液
混合部12で管路4に供給することができるため、気体供
給時の圧力変動が少なく、常に安定した加圧溶解が可能
になる。また、気体の供給は加圧溶解で消費された分を
補充するだけでよく補充は間欠注入で良くなる。そのた
め、電磁弁の開閉回数を少なくすることができ、電磁弁
の寿命(耐久性)を伸ばすことができる。また、排気や
排水がないため排気音や排水音がなくなり、排水配管等
を設ける必要もなく、どこにでも設置できる。また、空
気以外の高価な炭酸ガス等の気体を加圧溶解する場合も
溶解しきれなかった気体を捨てる必要はなく100%利用
できて経済的である。
FIG. 2 shows another embodiment of the present invention. In the embodiment shown in FIG. 1, the exhaust gas from the accumulator 6 and a small amount of water are discharged into the atmosphere through the throttle valve 6b, but in the embodiment shown in FIG. The throttle valve 6b and the gas supply pipe 7 are connected by the exhaust pipe 6a in the mixing section 13 so that the exhaust gas flows into the gas supply pipe 7. By connecting in this way, a certain amount of gas is always consumed in the gas supply pipe 7 while the supplied gas is consumed, and it is possible to supply the gas to the pipe line 4 in the gas-liquid mixing section 12. The pressure fluctuation during gas supply is small, and stable pressure dissolution is always possible. In addition, the gas can be supplied only by replenishing the amount consumed by the pressure dissolution, and the replenishment can be performed by intermittent injection. Therefore, the number of times the solenoid valve is opened and closed can be reduced, and the life (durability) of the solenoid valve can be extended. Also, since there is no exhaust or drainage, there is no exhaust noise or drainage noise, and there is no need to install drainage pipes, etc., and it can be installed anywhere. In addition, when a gas such as expensive carbon dioxide gas other than air is dissolved under pressure, there is no need to discard the gas that cannot be completely dissolved, and 100% utilization is possible, which is economical.

[発明の効果] 本発明は叙述のように二酸化炭素を供給するための二酸
化炭素供給管と、空気を供給するための空気供給管にそ
れぞれ気体の供給量を調整する弁装置を設けてあるの
で、各弁装置を交互に開閉させたり、各弁装置の開閉時
間を任意に設定することによって、容易に任意の濃度の
気体を安定して連続的に供給することができるものであ
り、従って、連続して安定的に微細気泡炭酸泉を製造す
ることができるものである。
[Advantages of the Invention] As described above, according to the present invention, a carbon dioxide supply pipe for supplying carbon dioxide and an air supply pipe for supplying air are provided with valve devices for adjusting the supply amounts of gas, respectively. By alternately opening and closing each valve device or arbitrarily setting the opening and closing time of each valve device, it is possible to easily and stably supply a gas having an arbitrary concentration, continuously. It is possible to continuously and stably produce a fine bubble carbonated spring.

また、請求項2記載のものにあっては、液体が通る管路
に二酸化炭素と空気を供給する供給管を接続し、この供
給管を一本の気体供給管にて構成し、この気体供給管に
アキュムレータより導出された排気管を接続してあるの
で、アキュムレータで発生する未溶解気体を排気管を介
して気体供給管に送ってリサイクルすることができ、常
に一定量の気体が気体供給管内にあるため気体は消費し
た量だけ供給するだけでよく、供給量は低く抑えること
ができ、供給時の圧力変動も最小にすることができ、さ
らに、安定した微細気泡炭酸泉の供給が可能となる。ま
た、排気や排水がないため排水音や排気音がなく、その
分静音化が図れて排水のための配管も不要となるもので
ある。また、気体は捨てられることなくすべて溶解に使
われるため空気等以外の高価な気体を使用した場合でも
無駄がなくて経済的である。
Further, according to the second aspect of the present invention, a supply pipe for supplying carbon dioxide and air is connected to a pipe line through which the liquid passes, and the supply pipe is constituted by one gas supply pipe. Since the exhaust pipe led from the accumulator is connected to the pipe, the undissolved gas generated in the accumulator can be sent to the gas supply pipe through the exhaust pipe for recycling, and a certain amount of gas is always in the gas supply pipe. Therefore, it is only necessary to supply the gas in the amount consumed, so that the supply amount can be kept low, the pressure fluctuation during supply can be minimized, and the stable supply of fine bubble carbonated springs becomes possible. . In addition, since there is no exhaust or drainage, there is no drainage noise or exhaust noise, which reduces noise and eliminates the need for piping for drainage. In addition, since the gas is used for melting without being discarded, even if an expensive gas other than air is used, there is no waste and it is economical.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のシステム図、第2図は同上
の他の実施例のシステム図、第3図は従来例のシステム
図であって、4は管路、5aは二酸化炭素供給管、5bは空
気供給管、5a′は弁装置、5b′は弁装置、6はアキュム
レータ、6aは排気管、7は気体供給管である。
FIG. 1 is a system diagram of an embodiment of the present invention, FIG. 2 is a system diagram of another embodiment of the above, FIG. 3 is a system diagram of a conventional example, 4 is a pipeline, 5a is carbon dioxide A supply pipe, 5b is an air supply pipe, 5a 'is a valve device, 5b' is a valve device, 6 is an accumulator, 6a is an exhaust pipe, and 7 is a gas supply pipe.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−176426(JP,A) 実開 昭63−38523(JP,U) 実開 昭61−142037(JP,U) 実開 昭60−102020(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-176426 (JP, A) Actually opened 63-38523 (JP, U) Actually opened 61-142037 (JP, U) Actually opened 60- 102020 (JP, U)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】気体と液体を混合し加圧することにより液
体に気体を溶解させ、この液体を再び減圧することによ
って微細気泡を析出する微細気泡発生装置であって、液
体を吸入する吸入口と液体を吐出する吐出口との間に設
けられた管路に気体である二酸化炭素と空気を供給する
供給部を設け、上記管路に設けた供給部よりも水下側に
アキュムレータを設け、アキュムレータと供給部との間
に加圧ポンプを設けて成る微細気泡炭酸泉製造装置にお
いて、二酸化炭素を供給するための二酸化炭素供給管
と、空気を供給するための空気供給管にそれぞれ気体の
供給量を調整する弁装置を設けて成る微細気泡炭酸泉製
造装置。
1. A fine bubble generator for mixing fine gas with a liquid by pressurizing the liquid to dissolve the gas in the liquid, and depressurizing the liquid again to deposit fine bubbles. A supply unit for supplying carbon dioxide and air which is a gas is provided in a pipe line provided between a discharge port for discharging a liquid, an accumulator is provided below the supply unit provided in the pipe line, and an accumulator is provided. In a fine bubble carbonated spring manufacturing apparatus having a pressurizing pump provided between a supply unit and a supply unit, the supply amount of gas is respectively supplied to a carbon dioxide supply pipe for supplying carbon dioxide and an air supply pipe for supplying air. A fine bubble carbonated spring manufacturing device equipped with a valve device for adjustment.
【請求項2】液体が通る管路に二酸化炭素と空気を供給
する供給管を接続し、この供給管を一本の気体供給管に
て構成し、この気体供給管にアキュムレータより導出さ
れた排気管を接続して成ることを特徴とする請求項1記
載の微細気泡炭酸泉製造装置。
2. A supply pipe for supplying carbon dioxide and air is connected to a pipe through which a liquid passes, and the supply pipe is constituted by a single gas supply pipe, and the exhaust gas led out from an accumulator to the gas supply pipe. The device for producing fine bubble carbonated spring according to claim 1, characterized in that a pipe is connected.
JP1297063A 1989-11-15 1989-11-15 Micro bubble carbonated spring manufacturing equipment Expired - Lifetime JPH0773593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297063A JPH0773593B2 (en) 1989-11-15 1989-11-15 Micro bubble carbonated spring manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297063A JPH0773593B2 (en) 1989-11-15 1989-11-15 Micro bubble carbonated spring manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH03158156A JPH03158156A (en) 1991-07-08
JPH0773593B2 true JPH0773593B2 (en) 1995-08-09

Family

ID=17841739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297063A Expired - Lifetime JPH0773593B2 (en) 1989-11-15 1989-11-15 Micro bubble carbonated spring manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0773593B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3154634B2 (en) * 1995-02-14 2001-04-09 三菱レイヨン株式会社 Recycling carbonated spring manufacturing equipment
JP3720686B2 (en) * 1995-02-14 2005-11-30 三菱レイヨン株式会社 Circulation type carbonated spring production equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142037U (en) * 1985-02-25 1986-09-02

Also Published As

Publication number Publication date
JPH03158156A (en) 1991-07-08

Similar Documents

Publication Publication Date Title
JP2007167856A (en) Air diffusion device
JP2004298840A (en) Vessel for adjusting amount of gas to be dissolved
JP2004188246A (en) System for manufacturing ozonized water
JP6310126B1 (en) Nano bubble generator
JP2003245533A (en) Ultrafine air bubble generator
JPH0773593B2 (en) Micro bubble carbonated spring manufacturing equipment
JP2005000882A (en) Apparatus for generating micro bubble
JPH042347A (en) Apparatus for supplying oxygen into bath tub
JP2007000846A (en) Fine bubble generating device
JP2002191949A (en) Fine air bubble generator
JPH0751145B2 (en) Micro bubble carbonated spring manufacturing equipment
JP2012024719A (en) Device for supplying microscopic bubble-containing liquid
KR20150074622A (en) Apparatus for producing carbonated water
JP2001259395A (en) Aerator
CN211754002U (en) Fine foam liquid manufacturing device
JPH03244463A (en) Device for manufacturing carbonated spring with minute bubbles
JP7204211B2 (en) Batch-type microbubble liquid generator and generation method
JP2002330885A (en) Bathtub system
JPH0773594B2 (en) Micro bubble carbonated spring manufacturing equipment
KR101278548B1 (en) Mixture unit Micro bubble manufacturing apparatus
JP3738440B2 (en) Bubble generator
JP4133045B2 (en) Gas dissolver and water treatment apparatus equipped with them
JP2010001744A (en) Ejector and ion exchange equipment
JP2005000878A (en) Apparatus for generating micro bubble
JPH04295361A (en) Device for generating micro air bubble