JPH0772711B2 - Cell size distribution measurement method - Google Patents

Cell size distribution measurement method

Info

Publication number
JPH0772711B2
JPH0772711B2 JP62057760A JP5776087A JPH0772711B2 JP H0772711 B2 JPH0772711 B2 JP H0772711B2 JP 62057760 A JP62057760 A JP 62057760A JP 5776087 A JP5776087 A JP 5776087A JP H0772711 B2 JPH0772711 B2 JP H0772711B2
Authority
JP
Japan
Prior art keywords
size distribution
cell
particle size
cells
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62057760A
Other languages
Japanese (ja)
Other versions
JPS63222239A (en
Inventor
正道 谷
Original Assignee
東亜医用電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亜医用電子株式会社 filed Critical 東亜医用電子株式会社
Priority to JP62057760A priority Critical patent/JPH0772711B2/en
Publication of JPS63222239A publication Critical patent/JPS63222239A/en
Publication of JPH0772711B2 publication Critical patent/JPH0772711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、白血球等の細胞の粒度分布測定法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for measuring the particle size distribution of cells such as white blood cells.

〔従来の技術〕[Conventional technology]

健常人の末梢血中の白血球には、リンパ球、単球、好中
球、好酸球、好塩基球の種類がある。これらは各々その
機能が異なっており、血液中の白血球を種類別に計数す
ることによって、病気の診断に貢献することができる。
White blood cells in the peripheral blood of healthy people include lymphocytes, monocytes, neutrophils, eosinophils, and basophils. The functions of these are different from each other, and counting leukocytes in blood by type can contribute to diagnosis of diseases.

白血球を分類、計数するための一つの方法として、従来
から、自動血球計数装置が使用されてきた。
As one method for classifying and counting white blood cells, an automatic blood cell counter has been used conventionally.

この方法は、血液中の赤血球を溶解剤で破壊し、白血球
のみが浮遊した電解液を細孔中に流し、血球が細孔を通
過したときの細孔部のインピーダンス変化を検出し、検
出信号の大きさによって白血球を分類するものである。
This method destroys red blood cells in blood with a lysing agent, flows an electrolyte solution in which only white blood cells float into the pores, detects impedance changes in the pores when blood cells pass through the pores, and outputs a detection signal. The white blood cells are classified according to their size.

従来は、第6図(a)に示すように、赤血球溶解剤を添
加した後、所定時間(T1)まで待ち、T1からT2までのT
時間(たとえば12秒間)白血球を測定していた。このと
き、自動血球計数装置で検出した各細胞の体積(V)を
横軸に、細胞の頻度(f)を縦軸にとって描いた細胞
(この場合は白血球)の粒度分布曲線は、たとえば第2
図に3次元的に示す様に、時間(t)とともに変化す
る。
Conventionally, as shown in FIG. 6 (a), after adding the erythrocyte lysing agent, wait until a predetermined time (T 1 ) and then from T 1 to T 2.
The white blood cells were measured for a time (for example, 12 seconds). At this time, the particle size distribution curve of the cells (white blood cells in this case) drawn with the volume (V) of each cell detected by the automatic blood cell counter on the horizontal axis and the frequency (f) of the cells on the vertical axis is, for example, the second
As shown three-dimensionally in the figure, it changes with time (t).

第2図の細胞の粒度分布曲線を体積(V)と時間(t)
との2次元分布図に描き直すと第3図の様になる。図中
の曲線は等頻度線を表わす。測定時間Tをm個の小期間
に区切り、各小期間における体積(V)と頻度(f)と
の2次元分布図を描くと第4図に示すものとなる。たと
えば、第3図の小期間t1における細胞の粒度分布曲線は
第4図(a)に示すものとなり、以下、小期間t1、t2
…tmに対応する細胞の粒度分布曲線はそれぞれ第4図
(b)、(c)、(d)に示すものとなる。
The particle size distribution curve of cells in FIG. 2 is shown by volume (V) and time (t).
If you redraw the two-dimensional distribution diagram of and, it will look like Fig. 3. The curves in the figure represent isofrequency lines. The measurement time T is divided into m small periods, and a two-dimensional distribution diagram of the volume (V) and the frequency (f) in each small period is drawn as shown in FIG. For example, the particle size distribution curve of cells in the small period t 1 in FIG. 3 is as shown in FIG. 4 (a), and hereinafter, the small periods t 1 , t 2 ,
The particle size distribution curves of the cells corresponding to t m are shown in FIGS. 4 (b), (c) and (d), respectively.

従来の方法は、各小期間における細胞の粒度分布を測定
せず、測定時間T全体において検出された全ての信号か
ら、第5図に示す様な細胞の粒度分布を描いていた。す
なわち、第5図の細胞の粒度分布曲線は、小期間t1
t2、t3、…tmにおける細胞の粒度分布曲線(たとえば、
第4図の(a)、(b)、(c)、(d))を、加え合
わせたものとなっている。
The conventional method does not measure the particle size distribution of cells in each small period, but draws the particle size distribution of cells as shown in FIG. 5 from all the signals detected during the entire measurement time T. That is, the cell size distribution curve of FIG. 5 shows that the small period t 1 ,
Cell size distribution curves at t 2 , t 3 , ... t m (eg,
It is a combination of (a), (b), (c) and (d) of FIG.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

体積(V)と頻度(f)による細胞の粒度分布曲線に現
われる個々の山は、異種の細胞の集団を表わしている。
したがって、細胞の粒度分布曲線上に多くの山が現われ
るほど、より多くの異種細胞が弁別されて検出されたも
のと言える。たとえば、第4図の(b)および(c)で
は4個の山(ピーク)が現われているが、第5図では3
個の山(ピーク)しか見えない。これは、従来の方法で
は測定時間中の細胞の体積の変化を無視して、時間平均
的な細胞の大きさに対する粒度分布曲線を描いているた
めである。すなわち、従来の方法では測定時間の途中で
得られるべき貴重な情報が失われている。
The individual peaks that appear in the cell size distribution curve by volume (V) and frequency (f) represent a heterogeneous population of cells.
Therefore, it can be said that the more peaks appear on the particle size distribution curve of cells, the more different cells are discriminated and detected. For example, although four peaks appear in FIGS. 4B and 4C, 3 peaks appear in FIG.
Only the individual peaks can be seen. This is because the conventional method draws a particle size distribution curve with respect to the time-average cell size, ignoring the change in cell volume during the measurement time. That is, in the conventional method, valuable information that should be obtained during the measurement time is lost.

また、溶解剤添加後の赤血球の溶解の進行や白血球細胞
の大きさの変化は、個々の検体によって、および測定温
度によって変化する。したがって、第6図において、溶
解剤添加後の測定開始時刻T1と測定時間Tの最適条件の
設定が非常に難しかった。このT1とTが最適条件から大
きくずれると、第5図に示す細胞の粒度分布曲線すら得
られなくなってしまう。
Further, the progress of lysis of red blood cells and the change in the size of white blood cells after addition of the lysing agent vary depending on the individual specimen and the measurement temperature. Therefore, in FIG. 6, it was very difficult to set the optimum conditions of the measurement start time T 1 and the measurement time T after the addition of the dissolving agent. If T 1 and T deviate greatly from the optimum conditions, even the cell particle size distribution curve shown in FIG. 5 cannot be obtained.

本発明は、上記問題点を解決し、測定時間中に得られる
最も有用な細胞の粒度分布曲線を描くことが出来、測定
時間中の細胞の大きさの変化をモニターできる様にした
細胞粒度分布測定法の提供を目的とするものである。
The present invention solves the above-mentioned problems, can draw the most useful cell size distribution curve obtained during measurement time, and can monitor the change in cell size during measurement time. The purpose is to provide a measurement method.

〔課題を解決するための手段および作用〕[Means and Actions for Solving the Problems]

本発明の細胞粒度分布測定法は、つぎの(a)〜(e)
の各工程、すなわち、 (a) 同一に作製されたn個の細胞浮遊液試料を粒度
分布分析装置に導入し、細胞浮遊液試料が1個の場合の
測定時間の総時間を小期間に区切り、各小期間における
n個の細胞浮遊液試料の細胞の粒度分布を測定する工程 (b) 各小期間に得られた各細胞浮遊液試料ごとの細
胞の粒度分布データを記憶装置に記憶させる工程 (c) n個の細胞浮遊液試料から得られた各試料ごと
の細胞の粒度分布データを演算装置で加算し、各小期間
ごとの細胞の粒度分布曲線を描かせる工程 (d) 上記演算装置において、各小期間ごとの細胞の
粒度分布曲線から細胞浮遊液試料中の細胞種を最も良く
分離する細胞の粒度分布曲線を選定させる工程 (e) 上記演算装置において、選定された細胞の粒度
分布曲線を解析し、各細胞種の存在比率を算定させる工
程 を包含することを特徴としている。
The cell particle size distribution measuring method of the present invention comprises the following (a) to (e)
Each step of (a), n identically prepared cell suspension samples are introduced into a particle size distribution analyzer, and the total measurement time when there is one cell suspension sample is divided into small periods. Measuring the particle size distribution of cells of n cell suspension samples in each small period (b) storing the cell particle size distribution data of each cell suspension sample obtained in each small period in a storage device (C) A step of adding the particle size distribution data of cells for each sample obtained from n cell suspension samples by an arithmetic device and drawing a particle size distribution curve of cells for each small period (d) The arithmetic device In the step of selecting the particle size distribution curve of the cell that best separates the cell type in the cell suspension sample from the particle size distribution curve of the cell in each small period (e), the particle size distribution of the selected cell in the arithmetic unit Analyzing the curve, each cell type It is characterized by including the step of calculating the existence ratio of.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図に示すブロック図に基づ
いて説明する。
An embodiment of the present invention will be described below with reference to the block diagram shown in FIG.

実施例 白血球測定時間Tを第6図(b)の様に小期間t1、t2
t3、…tmに分割して測定し、各小期間における細胞(こ
の場合は白血球)の粒度分布曲線を描く場合には、各小
期間において検出される細胞数が充分でなく、細胞の粒
度分布の分解能が低下するため、実際には第4図に示す
分布図よりも粗いものしか得られない。第4図と同程度
の分解能の細胞の粒度分布曲線を得るために、本実施例
では以下の様にする。
Example As shown in FIG. 6 (b), the white blood cell measurement time T is set to a small period t 1 , t 2 ,
When measuring the particle size distribution curve of cells (white blood cells in this case) in each small period by dividing into t 3 , ... t m , the number of cells detected in each small period is insufficient, Since the resolution of the particle size distribution decreases, only coarser particles than the distribution chart shown in FIG. 4 can be obtained. In order to obtain a cell particle size distribution curve with a resolution similar to that of FIG. 4, the following is performed in this example.

まず、血液を希釈装置1で白血球が測定できる程度(通
常200〜500倍)に希釈する。この希釈試料を等量にn個
に分割する。分割された細胞浮遊液試料をそれぞれS1
S2、…Snと呼ぶ。
First, the blood is diluted with the diluting device 1 to such an extent that white blood cells can be measured (usually 200 to 500 times). This diluted sample is divided into n equal parts. Divide the cell suspension samples into S 1 ,
Called S 2 , ... S n .

試料S1に赤血球溶解剤を添加し、添加後の時刻T1からT2
までのT時間、白血球を粒度分布分析装置2で測定す
る。T時間をm個に分割し、各小期間t1、t2、t3、…tm
において測定され得られた細胞の粒度分析データf
(S1,t1)、f(S1,t2)、f(S1,t3)、…f(S1,tm
を記憶装置3に蓄積する。
Add erythrocyte lysing agent to sample S 1 and change from time T 1 to T 2
Up to T time, white blood cells are measured by the particle size distribution analyzer 2. T time is divided into m pieces, and each small period t 1 , t 2 , t 3 , ... T m
Particle size analysis data f of the cells measured and obtained in
(S 1 , t 1 ), f (S 1 , t 2 ), f (S 1 , t 3 ), ... f (S 1 , t m ).
Is stored in the storage device 3.

試料S2、…Snについても同様の処理を行う。試料S2から
得られた細胞の粒度分布データはf(S2,t1)、f(S2,
t2)、…f(S2,tm)であり、試料Snから得られた細胞
の粒度分布データはf(Sn,t1)、f(Sn,t2)、…f
(Sn,tm)である。
The same process is performed on the samples S 2 , ... S n . Cell size distribution data obtained from the sample S 2 are f (S 2 , t 1 ), f (S 2 ,
t 2 ), ... f (S 2 , t m ), and the particle size distribution data of the cells obtained from the sample S n are f (S n , t 1 ), f (S n , t 2 ), ... f
(S n , t m ).

以上の様に記憶装置3に蓄積されたデータを、演算装置
4で各小期間ごとに積算する。得られた細胞の粒度分布
データをF(t1)、F(t2)、F(t3)、…F(tm)と
呼ぶ。すなわち、 となる。
The data accumulated in the storage device 3 as described above is integrated by the arithmetic device 4 for each small period. The obtained particle size distribution data of the cells are referred to as F (t 1 ), F (t 2 ), F (t 3 ), ... F (t m ). That is, Becomes

なお、本実施例では試料S1の測定終了後、試料S2、…試
料Snの測定を順次行ったので、白血球を測定するための
検出装置は1台用意すれば良いが、試料S1、S2、…Sn
同時に測定する場合には、検出装置をn台用意する必要
がある。
Incidentally, after the measurement of the sample S 1 in the present embodiment, the sample S 2, ... measured since sequentially performed for the sample S n, detection apparatus for measuring white blood cells may be prepared one, a sample S 1 , S 2 , ..., S n at the same time, it is necessary to prepare n detectors.

得られた細胞の粒度分布データF(t1)、F(t2)、F
(t3)、…F(tm)から細胞の粒度分布曲線を描くと、
それぞれ第4図の(a)、(b)、(c)および(d)
の如くになる。
Particle size distribution data F (t 1 ), F (t 2 ), F
(T 3 ), ... Draw a particle size distribution curve of cells from F (t m ),
4 (a), (b), (c) and (d), respectively.
It becomes like.

これらの細胞の粒度分布曲線の中から、最も多くの山が
明確に現われているものを選ぶ。たとえば、第4図の中
からは(c)が選ばれる。
From the particle size distribution curves of these cells, select the one in which the most peaks appear clearly. For example, (c) is selected from FIG.

選ばれた細胞の粒度分布曲線を解析し、各々の山に含ま
れる細胞数の全白血球数に対する比率を計算する。各々
の山が白血球中のどの種の細胞に対応しているかは、顕
微鏡による細胞観察によって、予め同定されている。し
たがって、全白血球数中の各細胞(リンパ球、単球等)
の比率が決定される。
The particle size distribution curve of the selected cells is analyzed, and the ratio of the number of cells contained in each mountain to the total number of white blood cells is calculated. It has been previously identified by observing the cells with a microscope which type of cells in the white blood cells each mountain corresponds to. Therefore, each cell in the total white blood cell count (lymphocytes, monocytes, etc.)
The ratio of is determined.

なお、得られた細胞の粒度分布データF(t1)、F
(t2)、F(t3)、…F(tm)から、第2図および第3
図の様な時間tの要素を入れた分布図を描くことも容易
である。第2図、第3図からは細胞の粒度分布の時間変
化を見ることが出来、各細胞が時間経過とともにどの様
に動くかが良く判る。また、検体によって時間変化の仕
方が異なり、異常検体の抽出を行うことも出来る。
In addition, the obtained cell particle size distribution data F (t 1 ), F
(T 2 ), F (t 3 ), ... F (t m ), FIG. 2 and FIG.
It is also easy to draw a distribution chart including elements of time t as shown in the figure. From Fig. 2 and Fig. 3, it is possible to see the time change of the particle size distribution of the cells, and it is possible to clearly understand how each cell moves with the passage of time. Further, the method of time change differs depending on the sample, and an abnormal sample can be extracted.

なお、最良の細胞の粒度分布が得られる小期間は、検体
や測定温度によって変る可能性があるが、いずれにして
も最良の小期間の細胞の粒度分布を選べば良いので、本
実施例では、白血球測定開始時刻T1や測定終了時刻T2
設定は、従来の様に厳密でなくても良い。T1からT2まで
の時間Tの間のいずれかの小期間に最良の細胞の粒度分
布が得られる様にすれば良い。最後に、細胞の粒度分布
曲線の時間変化を示す分布図を表示装置5に描かせる。
The small period in which the best cell size distribution is obtained may change depending on the sample and the measurement temperature, but in any case, the best cell size distribution in the small period may be selected. The setting of the white blood cell measurement start time T 1 and the measurement end time T 2 need not be strict as in the conventional case. It suffices to obtain the best cell size distribution in any small period between the time T from T 1 to T 2 . Finally, the display device 5 is made to draw a distribution chart showing the time change of the cell size distribution curve.

〔発明の効果〕〔The invention's effect〕

本発明により、次の様な効果が得られる。 According to the present invention, the following effects can be obtained.

(1) 測定時間を小期間に区切ってデータを蓄積する
ので、細胞の変化途中の最良の粒度分布曲線が得られ
る。
(1) Since the measurement time is divided into small periods and data is accumulated, the best particle size distribution curve during the change of cells can be obtained.

(2) 測定時間中の最良の小期間に得られるデータを
使用すれば良いので、測定開始時刻や終了時刻について
の最適条件を選定する必要がない。
(2) Since it suffices to use the data obtained in the best small period during the measurement time, it is not necessary to select the optimum conditions for the measurement start time and the end time.

(3) 測定時間中の細胞の大きさの変化をモニターす
ることが出来るので、時間変化の仕方が特異的な異常検
体を抽出することが出来る。
(3) Since it is possible to monitor the change in cell size during the measurement time, it is possible to extract an abnormal sample having a specific way of changing with time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の細胞粒度分布測定法を実施する装置の
一例を示すブロック図、第2図は白血球の体積(V)を
横軸に、頻度(f)を縦軸にとって3次元的に描いた細
胞の粒度分布曲線図、第3図は第2図の曲線を体積
(V)と時間(t)との2次元分布図に描き直した細胞
の粒度分布曲線図、第4図(a)、(b)、(c)、
(d)は第3図に示す分布図において、測定時間をm個
の小期間に区切り、各小期間における体積(V)と頻度
(f)との2次元分布を示す細胞の粒度分布曲線図、第
5図は第4図(a)、(b)、(c)、(d)を加え合
わせて描いた細胞の粒度分布曲線図、第6図(a)は測
定時間Tを分割しない場合の時間経過を示す線図、第6
図(b)は測定時間を小期間に分割する場合の時間経過
を示す線図である。 1……希釈装置、2……粒度分布分析装置、3……記憶
装置、4……演算装置、5……表示装置
FIG. 1 is a block diagram showing an example of an apparatus for carrying out the cell particle size distribution measuring method of the present invention, and FIG. 2 is three-dimensionally with the white blood cell volume (V) on the horizontal axis and the frequency (f) on the vertical axis. The particle size distribution curve diagram of the drawn cells, FIG. 3 is the particle size distribution curve diagram of the cells, which is the curve of FIG. 2 redrawn into a two-dimensional distribution diagram of volume (V) and time (t), FIG. 4 (a) , (B), (c),
In the distribution chart shown in FIG. 3, (d) is a cell particle size distribution curve diagram showing the two-dimensional distribution of volume (V) and frequency (f) in each small period, with the measurement time divided into m small periods. , FIG. 5 is a particle size distribution curve diagram of cells drawn by adding together FIGS. 4 (a), (b), (c) and (d), and FIG. 6 (a) is a case where the measurement time T is not divided. Diagram showing the passage of time, No. 6,
FIG. 6B is a diagram showing the passage of time when the measurement time is divided into small periods. 1 ... Diluting device, 2 ... Particle size distribution analyzer, 3 ... Storage device, 4 ... Computing device, 5 ... Display device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】つぎの(a)〜(e)の各工程、すなわ
ち、 (a) 同一に作製されたn個の細胞浮遊液試料を粒度
分布分析装置に導入し、細胞浮遊液試料が1個の場合の
測定時間の総時間を小期間に区切り、各小期間における
n個の細胞浮遊液試料の細胞の粒度分布を測定する工程 (b) 各小期間に得られた各細胞浮遊液試料ごとの細
胞の粒度分布データを記憶装置に記憶させる工程 (c) n個の細胞浮遊液試料から得られた各試料ごと
の細胞の粒度分布データを演算装置で加算し、各小期間
ごとの細胞の粒度分布曲線を描かせる工程 (d) 上記演算装置において、各小期間ごとの細胞の
粒度分布曲線から細胞浮遊液試料中の細胞種を最も良く
分離する細胞の粒度分布曲線を選定させる工程 (e) 上記演算装置において、選定された細胞の粒度
分布曲線を解析し、各細胞種の存在比率を算定させる工
程 を包含することを特徴とする細胞粒度分布測定法。
1. Each of the following steps (a) to (e), that is, (a) n cell suspension samples prepared in the same manner are introduced into a particle size distribution analyzer to obtain 1 cell suspension sample. In the case of individual cells, the total measurement time is divided into small periods, and the cell particle size distribution of n cell suspension samples in each small period is measured. (B) Each cell suspension sample obtained in each small period (C) Cell size distribution data for each sample obtained from n cell suspension samples is added by a computing device, and cells for each small period are stored. (D) In the above computing device, a step of selecting a cell particle size distribution curve that best separates cell types in a cell suspension sample from the cell particle size distribution curve for each small period ( e) Selected cells in the above computing device A method for measuring cell particle size distribution, comprising the step of analyzing the particle size distribution curve of and calculating the abundance ratio of each cell type.
JP62057760A 1987-03-12 1987-03-12 Cell size distribution measurement method Expired - Lifetime JPH0772711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62057760A JPH0772711B2 (en) 1987-03-12 1987-03-12 Cell size distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62057760A JPH0772711B2 (en) 1987-03-12 1987-03-12 Cell size distribution measurement method

Publications (2)

Publication Number Publication Date
JPS63222239A JPS63222239A (en) 1988-09-16
JPH0772711B2 true JPH0772711B2 (en) 1995-08-02

Family

ID=13064833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62057760A Expired - Lifetime JPH0772711B2 (en) 1987-03-12 1987-03-12 Cell size distribution measurement method

Country Status (1)

Country Link
JP (1) JPH0772711B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3165254B2 (en) * 1992-07-27 2001-05-14 シスメックス株式会社 How to display the multidimensional distribution of particles

Also Published As

Publication number Publication date
JPS63222239A (en) 1988-09-16

Similar Documents

Publication Publication Date Title
CN101097180B (en) Analyzer and analyzing method
US10222320B2 (en) Identifying and enumerating early granulated cells (EGCs)
DeNicola Advances in hematology analyzers
CN106687810B (en) A kind of erythroblast alarm method, device and the stream type cell analyzer of non-diagnostic purpose
JP2565844B2 (en) Accurate counting of heterogeneous cell populations under lysis conditions and grading for sensitivity
JP2667867B2 (en) Particle analyzer
JP2635126B2 (en) Particle analysis apparatus and method for determining nuclear leaf index
US8581927B2 (en) Multidimensional particle analysis data cluster reconstruction
CN102177427A (en) Detecting and handling coincidence in particle analysis
JP3213097B2 (en) Particle analyzer and method
JP2003526082A (en) How to count blood cells
JPH05149863A (en) Particle counting method
JPH1090156A (en) Particle analyzer
Miller et al. Rapid data collection, analysis, and graphics for flow microfluorometry instrumentation
EP2332073B1 (en) Shape parameter for hematology instruments
CN102144153B (en) Method and device for classifying, displaying, and exploring biological data
JPH0772711B2 (en) Cell size distribution measurement method
US8512977B2 (en) Analyzing reticulocytes
JP2000502797A (en) Methods for testing cell samples
JPH02194359A (en) Separation of blood cell of three main types from leucocyte cell histogram
Groner et al. Characterizing blood cells by biophysical measurements in flow
JPH05249103A (en) Analyzer for blood cell
JP2021516335A (en) An analysis method for a biological sample containing living cells and an analyzer for carrying out the analysis method.
KR101902433B1 (en) Device and method for measuring cerebrospinal from fluid cell
US20210041345A1 (en) Detecting and reporting subpopulations of neutrophils