JPH0772518B2 - Cooling device for scramjet engine with variable cooling passage section - Google Patents

Cooling device for scramjet engine with variable cooling passage section

Info

Publication number
JPH0772518B2
JPH0772518B2 JP31555492A JP31555492A JPH0772518B2 JP H0772518 B2 JPH0772518 B2 JP H0772518B2 JP 31555492 A JP31555492 A JP 31555492A JP 31555492 A JP31555492 A JP 31555492A JP H0772518 B2 JPH0772518 B2 JP H0772518B2
Authority
JP
Japan
Prior art keywords
cooling
scramjet engine
coolant
cooling device
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31555492A
Other languages
Japanese (ja)
Other versions
JPH06317218A (en
Inventor
彰長 熊川
Original Assignee
科学技術庁航空宇宙技術研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁航空宇宙技術研究所長 filed Critical 科学技術庁航空宇宙技術研究所長
Priority to JP31555492A priority Critical patent/JPH0772518B2/en
Publication of JPH06317218A publication Critical patent/JPH06317218A/en
Publication of JPH0772518B2 publication Critical patent/JPH0772518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スクラムジェットエン
ジンの冷却装置、特に高い冷却性能と軽量化を実現した
スクラムジェットエンジンの冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for a scramjet engine, and more particularly to a cooling device for a scramjet engine which realizes high cooling performance and light weight.

【0002】[0002]

【従来の技術】スクラムジェットエンジンは極めて高い
飛行マッハ数で作動するため、厳しい空力加熱や高温の
燃焼ガスによる加熱に曝されるので、その構造は軽量
で、耐熱性が高く、かつ、燃料による再生冷却が施され
る必要がある。しかも燃料流量には限りがあるために、
その冷却限界がスクラムジェットエンジンの作動限界と
なることが知られている。
2. Description of the Prior Art Scramjet engines operate at extremely high flight Mach numbers and are therefore exposed to severe aerodynamic heating and heating by hot combustion gases, so their structure is lightweight, highly heat resistant, and fuel-efficient. Regeneration cooling needs to be applied. Moreover, because the fuel flow rate is limited,
It is known that the cooling limit becomes the operating limit of the scramjet engine.

【0003】特にスクラムジェットエンジンにおいて
は、超音速の空気流に燃料を噴射して燃焼させる超音速
燃焼にその特徴がある。そのために、空気取入れ口前縁
部や燃料噴射ストラット前縁部において発生した衝撃波
が対向する壁面に衝突して数十倍もの極めて高い局所的
な高熱負荷をもたらし、局所的な赤熱や、場合によって
は熱損を引き起こすことが知られている。しかもこの局
所的な高熱負荷部は飛行マッハ数の増加と共に移動する
ため、熱設計上極めて困難な課題であった。従来の設計
法では、これに対処するために冷却余裕を大きくとって
いたが、反面、大きな冷却剤の圧力損失、ひいては系全
体の高圧化による重量増加をもたらしていた。
In particular, a scramjet engine is characterized by supersonic combustion in which fuel is injected into a supersonic air stream for combustion. Therefore, shock waves generated at the front edge of the air intake port and the front edge of the fuel injection strut collide with the opposing wall surface, resulting in an extremely high local high heat load of several tens of times, resulting in local red heat and, in some cases, local heat. Is known to cause heat loss. Moreover, this local high heat load part moves with the increase of the flight Mach number, which is an extremely difficult task in terms of thermal design. In the conventional design method, a large cooling margin was taken in order to deal with this, but on the other hand, a large pressure loss of the coolant and an increase in weight due to the pressure increase of the entire system were brought.

【0004】[0004]

【発明が解決しようとする課題】本発明は、スクラムジ
ェットエンジンにおいて、飛行マッハ数の増加と共に移
動する局所的な高熱負荷部に対応し、該部分において冷
却剤の流速を高め高い冷却能力を得ると共に、他の低い
熱負荷部では冷却剤を低流速のままとして圧力損失の増
加を抑え、全体として冷却剤の圧力を下げて、エンジン
の軽量化、高性能化を達成しようとするものである。
DISCLOSURE OF THE INVENTION The present invention deals with a locally high heat load portion that moves with an increase in the flight Mach number in a scramjet engine, and increases the flow velocity of the coolant in that portion to obtain a high cooling capacity. At the same time, in other low heat load parts, the coolant is kept at a low flow rate to suppress the increase of pressure loss, and the pressure of the coolant is lowered as a whole to achieve the weight reduction and the high performance of the engine. .

【0005】[0005]

【課題を解決するための手段】本発明のスクラムジェッ
トエンジンの冷却装置は、その再生冷却部において、衝
撃波により生じる高熱負荷部近傍に、冷却通路断面を縮
小させる部材を移動自在に配設し、冷却通路断面を可変
としたことを特徴とする。
In the cooling device for a scramjet engine of the present invention, a member for reducing the cross section of the cooling passage is movably disposed in the regenerative cooling section in the vicinity of a high heat load section generated by a shock wave. The cooling passage section is variable.

【0006】[0006]

【作用】図1は、本発明の冷却装置の作用を説明するた
めの、冷却装置の切断面の一部の斜視図である。図中、
1は冷却剤の通路となる溝2を有する冷却壁、3は冷却
剤を局所的に高速流とするための移動可能な突起部、4
は突起3を移動させるための駆動部である。このような
冷却構造を有するスクラムジェットエンジン壁内に冷却
剤を流せば、突起部3により冷却剤の流速が局所的に速
められ、高い冷却能力が得られることになる。衝撃波が
衝突し、局所的に熱負荷が極めて高くなる位置にこの突
起部3を位置させれば、冷却能力が局所的に十分高くな
っているため、壁材の赤熱化や焼損を避けることが出来
る。
FIG. 1 is a perspective view of a part of a cut surface of the cooling device for explaining the operation of the cooling device of the present invention. In the figure,
Reference numeral 1 denotes a cooling wall having a groove 2 serving as a passage for a coolant, 3 denotes a movable protrusion for locally making the coolant flow at a high speed, 4
Is a drive unit for moving the protrusion 3. If the coolant is made to flow in the wall of the scramjet engine having such a cooling structure, the flow velocity of the coolant is locally increased by the protrusions 3, and a high cooling capacity can be obtained. If the projection 3 is located at a position where the shock wave collides and the heat load locally becomes extremely high, the cooling capacity is sufficiently high locally, so that the wall material can be prevented from becoming red-heated and burned. I can.

【0007】図2aは低マッハ数での飛行時を示し、高
温空気流5が燃料噴射器6前端に当たって発生する衝撃
波7が冷却壁1にあたる位置は、図2bに示すように、
高マッハ数での飛行時には、より後方へ移動する。この
ように、高熱負荷部は飛行マッハ数の増加に伴って時々
刻々変化するが、その変化に対応して突起部3を駆動部
4によって移動させ、冷却能力の高い部位を常に高熱負
荷部と一致させて移動させることにより、常に壁温を許
容範囲内に抑えることが出来る。
FIG. 2a shows a flight at a low Mach number, and the shock wave 7 generated when the hot air stream 5 hits the front end of the fuel injector 6 hits the cooling wall 1 as shown in FIG. 2b.
When flying at high Mach numbers, it moves further back. As described above, the high heat load portion changes every moment as the flight Mach number increases, and the protrusion 3 is moved by the drive unit 4 in response to the change, so that the portion having high cooling capacity is always changed to the high heat load portion. By moving them in line with each other, the wall temperature can always be kept within the allowable range.

【0008】一方、他の大部分の部位では、冷却剤の流
速が遅いためにその圧力損失は極めて小さく、突起部3
によって一部圧力損失が増加しても、系全体としては無
視することが出来る。このようにして、冷却剤の圧力損
失、ひいては系全体の圧力レベルを低く抑え、エンジン
の軽量化が可能となり、また、冷却能力に余裕が生じて
さらに高マッハ数での飛行も可能になる。
On the other hand, in most of the other parts, the pressure loss is extremely small because the flow velocity of the coolant is slow, and the projection 3
Even if a partial pressure loss increases due to, it can be ignored for the entire system. In this way, the pressure loss of the coolant, and consequently the pressure level of the entire system, can be suppressed to a low level, the weight of the engine can be reduced, and there is a margin in the cooling capacity, which enables flight at a higher Mach number.

【0009】[0009]

【実施例】冷却壁1は、図3aのような熱伝導性の良い
銅或いは銅合金の円筒11に、同図bのように燃焼室の
軸方向の溝12を機械加工によって切削し、次ぎに同図
cのように外筒13を、ろう付け法、電鋳法等によって
取り付ける。従って、この機械加工時、溝12を図4に
示すように、その上部に拡張部14を設け、ここに突起
部15の駆動部16を嵌合し、摺動溝とすることが出来
る。駆動部16の駆動は、外筒13が銅或いは銅合金の
場合、駆動部に磁性体を組み込み、外筒13の外部から
図示しない磁石で行うことが出来る。磁性体は、キュー
リー点を越えると磁性を失うが、冷却剤である水素は−
253°Cで冷却通路に流入し、約500°Cで出て行
くので、溝12に沿って延びる駆動部16のキューリー
点を越える恐れのない部分に磁性体を配設すればよい。
EXAMPLE A cooling wall 1 is formed by cutting a groove 11 in the axial direction of a combustion chamber by machining as shown in FIG. 3B on a cylinder 11 of copper or copper alloy having good heat conductivity as shown in FIG. Then, the outer cylinder 13 is attached by brazing, electroforming or the like as shown in FIG. Therefore, at the time of this machining, as shown in FIG. 4, the groove 12 can be provided with an expanded portion 14 on the upper portion thereof, and the drive portion 16 of the protrusion 15 can be fitted therein to form a sliding groove. When the outer cylinder 13 is made of copper or a copper alloy, the drive unit 16 can be driven from the outside of the outer cylinder 13 with a magnet (not shown) by incorporating a magnetic material in the drive unit. The magnetic material loses its magnetism when it exceeds the Curie point, but hydrogen, which is a coolant,
Since it flows into the cooling passage at 253 ° C. and exits at about 500 ° C., the magnetic substance may be arranged in a portion that does not exceed the Curie point of the drive portion 16 extending along the groove 12.

【0010】また、駆動部16にラックを設け、駆動部
を外筒13の外部まで延長したピニオンによって機械的
に摺動させても良い。この場合、シール部はピニオンが
外筒を貫通する部分だけになるので、シールは容易であ
る。
A rack may be provided in the drive unit 16 and the drive unit may be mechanically slid by a pinion extending to the outside of the outer cylinder 13. In this case, since the seal portion is only the portion where the pinion penetrates the outer cylinder, the sealing is easy.

【0011】[0011]

【発明の効果】本発明は、上記の構成により、飛行マッ
ハ数の増加に伴って時々刻々変化する衝撃波が衝突する
側壁の、熱負荷が極めて高くなる位置だけの冷却能力を
局所的に十分高め、壁材の赤熱化や焼損を避けることが
出来る。一方、他の大部分の部位では、冷却剤の圧力損
失を極めて小さく保ち、系全体の圧力レベルを低く抑え
ることが出来るので、エンジンの軽量化が可能となり、
また、冷却能力に余裕が生じてさらに高マッハ数での飛
行も可能になるという顕著な効果を奏する。
According to the present invention, with the above-described structure, the cooling capacity is locally and sufficiently enhanced only at the position where the heat load is extremely high on the side wall where the shock waves that change momentarily with the increase of the flight Mach number collide. It is possible to avoid red heat and burnout of the wall material. On the other hand, in most of the other parts, the pressure loss of the coolant can be kept extremely small and the pressure level of the entire system can be kept low, so that the weight of the engine can be reduced,
Further, there is a remarkable effect that the cooling capacity has a margin and the flight at a higher Mach number becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷却装置の作用を説明するための概念
図である。
FIG. 1 is a conceptual diagram for explaining the operation of a cooling device of the present invention.

【図2】燃焼室内で発生する衝撃波の説明図である。FIG. 2 is an explanatory diagram of shock waves generated in a combustion chamber.

【図3】冷却壁の製作工程の説明図である。FIG. 3 is an explanatory diagram of a manufacturing process of a cooling wall.

【図4】本発明の1実施例の一部断面の斜視図である。FIG. 4 is a perspective view of a partial cross section of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 冷却壁 2 冷却剤の通路となる溝
3,15 突起部 4,16 駆動部 5 高温空気流
6 燃料噴射器 7 衝撃波 11 円筒
12 溝 13 外筒 14 摺動溝
1 Cooling wall 2 Grooves that serve as coolant passages
3,15 Protruding part 4,16 Driving part 5 High temperature air flow
6 Fuel injector 7 Shock wave 11 Cylinder
12 groove 13 outer cylinder 14 sliding groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スクラムジェットエンジンの再生冷却部
において、衝撃波により生じる高熱負荷部近傍に、冷却
通路断面を縮小させる部材を、移動自在に配設したこと
を特徴とする冷却通路断面を可変としたスクラムジェッ
トエンジンの冷却装置
1. A regenerative cooling section of a scramjet engine, wherein a member for reducing the cross section of the cooling path is movably arranged near a high heat load section generated by a shock wave, and the cross section of the cooling path is variable. Scrumjet engine cooling system
JP31555492A 1992-11-02 1992-11-02 Cooling device for scramjet engine with variable cooling passage section Expired - Lifetime JPH0772518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31555492A JPH0772518B2 (en) 1992-11-02 1992-11-02 Cooling device for scramjet engine with variable cooling passage section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31555492A JPH0772518B2 (en) 1992-11-02 1992-11-02 Cooling device for scramjet engine with variable cooling passage section

Publications (2)

Publication Number Publication Date
JPH06317218A JPH06317218A (en) 1994-11-15
JPH0772518B2 true JPH0772518B2 (en) 1995-08-02

Family

ID=18066747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31555492A Expired - Lifetime JPH0772518B2 (en) 1992-11-02 1992-11-02 Cooling device for scramjet engine with variable cooling passage section

Country Status (1)

Country Link
JP (1) JPH0772518B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015180A (en) * 2017-07-03 2019-01-31 国立研究開発法人宇宙航空研究開発機構 Refrigeration mechanism for combustion chamber

Also Published As

Publication number Publication date
JPH06317218A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
US11143052B2 (en) Dual-mode plug nozzle
EP1930546B1 (en) Airfoil with plasma generator for shielding a boundary layer upstream of a film cooling hole and corresponding operating method
US5282721A (en) Passive clearance system for turbine blades
CA1144769A (en) Apparatus and method for controlling fan duct flow in a gas turbine engine
US5337975A (en) Breathing system for hypersonic aircraft
US5688107A (en) Turbine blade passive clearance control
US6804947B2 (en) Device for cooling the common nozzle of a turbojet pod
DE2556519A1 (en) THERMAL ACTUATED VALVE FOR THE DISTANCE OR EXPANSION GAME CONTROL
JPH09324700A (en) Fuel injection device for ram jet
US5799874A (en) Aerodynamically controlled ejector
CA1095426A (en) Coolant flow metering device
JPH0772518B2 (en) Cooling device for scramjet engine with variable cooling passage section
JPH04271999A (en) Cooling structure body and manufacture thereof
CN113217949A (en) Combustion chamber diverging and cooling structure and ramjet combustion chamber
US4934600A (en) Exhaust nozzle thermal distortion control device
GB2149022A (en) Warpable guide vanes for turbomachines
US3358457A (en) Engine cooling system
JPS623103A (en) Vane member for gas turbine engine
US5431344A (en) Sliding throat gas turbine engine nozzle
CN108592085B (en) Variable geometry supersonic combustion chamber
JP2998405B2 (en) Scrumjet engine
GB1503425A (en) Gas turbine ducted fan jet engines for supersonic flight
US3081596A (en) Variable area nozzle and shroud combination
JP2877285B2 (en) Scrumjet engine
JPH06257512A (en) Variable exhaust nozzle

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960123

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term