JPH0772340B2 - Vacuum deposition equipment - Google Patents

Vacuum deposition equipment

Info

Publication number
JPH0772340B2
JPH0772340B2 JP4012668A JP1266892A JPH0772340B2 JP H0772340 B2 JPH0772340 B2 JP H0772340B2 JP 4012668 A JP4012668 A JP 4012668A JP 1266892 A JP1266892 A JP 1266892A JP H0772340 B2 JPH0772340 B2 JP H0772340B2
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
vacuum
internal space
vacuum container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4012668A
Other languages
Japanese (ja)
Other versions
JPH05202467A (en
Inventor
義雄 鈴木
吉田  誠
智 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP4012668A priority Critical patent/JPH0772340B2/en
Publication of JPH05202467A publication Critical patent/JPH05202467A/en
Priority to KR1019940001601A priority patent/KR0130180B1/en
Publication of JPH0772340B2 publication Critical patent/JPH0772340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真空蒸着装置に関する。
詳しくは、真空容器内において、蒸着材料に荷電粒子を
衝突させて、その運動エネルギにより材料成分を蒸発さ
せ所定の試料面に成膜する真空蒸着装置に関する。
FIELD OF THE INVENTION The present invention relates to a vacuum vapor deposition apparatus.
More specifically, the present invention relates to a vacuum vapor deposition apparatus that causes charged particles to collide with a vapor deposition material in a vacuum container to evaporate material components by the kinetic energy thereof to form a film on a predetermined sample surface.

【0002】[0002]

【従来の技術】図4に、従来の技術による真空蒸着装置
である圧力勾配型イオンプレーティング成膜装置の断面
構造を示す(なお、この装置に関しては、たとえば「真
空」25巻第10号、27巻第2号に記載されてい
る)。
2. Description of the Related Art FIG. 4 shows a cross-sectional structure of a pressure gradient ion plating film forming apparatus which is a vacuum evaporation apparatus according to the prior art (for this apparatus, for example, "Vacuum", Vol. 25, No. 10, Vol. 27, No. 2).

【0003】図4において、1は陰極であるプラズマガ
ン、2は陰極と陽極間に電位を与える直流電源、3は真
空容器、4は蒸着材が置かれる陽極であるハース、5は
プラズマビームをハース4に導くための磁石、6は排気
口、7はリーク口、8は成膜する基板を保持する保持
台、9はプラズマビーム、10はプラズマビームを収束
するためのコイル、11は真空容器3の開孔窓である。
In FIG. 4, 1 is a plasma gun which is a cathode, 2 is a direct current power source for applying a potential between the cathode and anode, 3 is a vacuum vessel, 4 is a hearth on which an evaporation material is placed, and 5 is a plasma beam. A magnet for guiding to the hearth 4, 6 an exhaust port, 7 a leak port, 8 a holding table for holding a substrate on which a film is to be formed, 9 a plasma beam, 10 a coil for focusing the plasma beam, 11 a vacuum container 3 is an aperture window.

【0004】プラズマガン1にはTa−LaB6 複合電
極が配置され、電極に電位が与えられてArあるいはH
e等の不活性ガスがプラズマガン1の後部より供給さ
れ、不活性ガスの高密度プラズマが発生する。
A Ta-LaB 6 composite electrode is arranged in the plasma gun 1, and a potential is applied to the electrode so that Ar or H
An inert gas such as e is supplied from the rear part of the plasma gun 1, and a high-density plasma of the inert gas is generated.

【0005】高密度プラズマはプラズマガン1内のグリ
ッド電極と磁界によりビームとして放射されるが、さら
にコイル10と磁石5とによる磁場で高真空に排気され
た真空容器3内に導かれ図示のようなプラズマビーム9
としてハース4上の蒸着材料に衝突する。プラズマ粒子
の運動エネルギにより蒸着材料は蒸発し基板8の表面に
付着し成膜する。
The high density plasma is radiated as a beam by the grid electrode in the plasma gun 1 and the magnetic field, and is further guided into the vacuum container 3 evacuated to a high vacuum by the magnetic field of the coil 10 and the magnet 5 as shown in the figure. Plasma beam 9
As a result, it collides with the vapor deposition material on the hearth 4. The vapor deposition material is evaporated by the kinetic energy of the plasma particles and adheres to the surface of the substrate 8 to form a film.

【0006】成膜後、プラズマガン1の陰極を冷却する
ため、真空を保ったまま10〜20分間放置し、排気口
6を閉め、リーク口7を開放して大気を真空容器3内に
導入して基板8を取り出す。
After film formation, in order to cool the cathode of the plasma gun 1, the vacuum gun is left for 10 to 20 minutes, the exhaust port 6 is closed, the leak port 7 is opened, and the atmosphere is introduced into the vacuum container 3. Then, the substrate 8 is taken out.

【0007】[0007]

【発明が解決しようとする課題】従来のこのようなバッ
チ方式の成膜装置においては、成膜終了後、成膜された
基板8を取り出すために真空容器3に大気を導入する。
その際、真空容器3の内部空間とプラズマガン1の内部
とは連通しているため、高温になっていたプラズマガン
1の陰極が大気にさらされることになる。そのために、
以下のような問題が生じる。
In such a conventional batch type film forming apparatus, after the film formation is completed, the atmosphere is introduced into the vacuum container 3 to take out the film-formed substrate 8.
At that time, since the internal space of the vacuum container 3 and the inside of the plasma gun 1 communicate with each other, the cathode of the plasma gun 1 which has been at a high temperature is exposed to the atmosphere. for that reason,
The following problems occur.

【0008】(1) 高温になっている陰極に大気が触
れると、陰極部が酸化され絶縁性の酸化物ができて電流
が流れにくくなり、放電がしにくくなる。 (2) プラズマ発生時の高温と、大気による急冷とが
長期間繰り返されると、その熱サイクル負荷による疲労
により陰極にヒビ割れ等が生じ、寿命が短くなる。
(1) When the high temperature cathode is exposed to the atmosphere, the cathode portion is oxidized to form an insulating oxide, which makes it difficult for current to flow and makes discharge difficult. (2) When the high temperature at the time of plasma generation and the rapid cooling by the atmosphere are repeated for a long period of time, the fatigue due to the heat cycle load causes the cathode to crack and the life is shortened.

【0009】(3) 大気導入時の大気に含まれる水分
やゴミが陰極部に付着して放電時、異常放電の原因とな
り、その際のスプラッシュによりさらにゴミが発生し基
板8上のピンホールの原因となる。
(3) Moisture and dust contained in the atmosphere at the time of introduction into the atmosphere adhere to the cathode portion and cause an abnormal discharge at the time of discharge, and the splash at that time further generates dust and causes a pinhole on the substrate 8. Cause.

【0010】(4) 大気導入による陰極酸化等の防止
のために、真空を保ったまま陰極冷却をおこなうと、そ
のための冷却時間が必要である。 (5) さらに、メンテナンスやクリーニングのために
プラズマガンのみを取り外したい場合には、真空容器も
同時にリークして大気導入することになるため、プラズ
マガンの再取り付け後、再度真空容器を排気する必要が
ある。
(4) If the cathode is cooled while keeping the vacuum in order to prevent the cathode from oxidizing due to the introduction of air, a cooling time for that is required. (5) Furthermore, when only the plasma gun is to be removed for maintenance or cleaning, the vacuum container will also leak and be introduced into the atmosphere at the same time, so it is necessary to evacuate the vacuum container again after reattaching the plasma gun. There is.

【0011】本発明の目的は、上記の問題点を解決して
信頼性が高く、長寿命で安定した成膜が可能な真空蒸着
装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a vacuum vapor deposition apparatus which is highly reliable and has a long service life and enables stable film formation.

【0012】[0012]

【課題を解決するための手段】上記目的を解決するた
め、本発明の真空蒸着装置においては、真空容器の開孔
部と荷電粒子ビーム発生源との間で気密を保って配置さ
れ、真空容器の開孔部を開閉可能なバルブ手段を設け
た。
In order to solve the above-mentioned problems, in the vacuum vapor deposition apparatus of the present invention, the vacuum container is arranged so as to be airtight between the opening of the vacuum container and the charged particle beam source. The valve means capable of opening and closing the open hole portion was provided.

【0013】[0013]

【作用】バルブ手段は、開孔部を開状態とするときには
真空容器の内部空間と荷電粒子ビーム発生源とを連通さ
せて蒸着操作ができるようにし、開孔部を閉状態とする
ときには前記真空容器の内部空間と前記荷電粒子ビーム
発生源とを遮断分離し、真空容器内への大気導入をでき
るようにし、同時に真空容器と荷電粒子発生源とは分離
して大気が荷電粒子発生源に触れないようにさせる。
The valve means allows the internal space of the vacuum container and the charged particle beam source to communicate with each other when the opening is opened so that a vapor deposition operation can be performed. When the opening is closed, the vacuum means is used. The inside space of the container and the charged particle beam generation source are cut off and separated so that the atmosphere can be introduced into the vacuum container. At the same time, the vacuum container and the charged particle generation source are separated and the atmosphere contacts the charged particle generation source. Let me not.

【0014】[0014]

【実施例】図1に本発明の実施例による真空蒸着装置で
ある圧力勾配型イオンプレーティング成膜装置の断面構
造を示す。
FIG. 1 shows a cross-sectional structure of a pressure gradient type ion plating film forming apparatus which is a vacuum vapor deposition apparatus according to an embodiment of the present invention.

【0015】図1において、1は陰極であるアーク放電
型プラズマガン、2は陰極と陽極間に電位を与える直流
電源、3は真空容器、4は蒸着材が置かれる陽極である
ハース、5はプラズマビームをハース4に導くための磁
石、6は排気口、7はリーク口、8は成膜する基板を保
持する保持台、9はプラズマビーム、10はプラズマビ
ームを収束するコイル、11は真空容器3の開孔窓、そ
して12は開孔窓11とプラズマガン1との間で気密を
保って配置されるゲートバルブである。ゲートバルブの
材質は熱伝導性が高く、熱放射率が小さいAlが好まし
い。
In FIG. 1, 1 is an arc discharge type plasma gun which is a cathode, 2 is a DC power source for applying an electric potential between the cathode and the anode, 3 is a vacuum vessel, 4 is a hearth on which an evaporation material is placed, and 5 is a hearth. A magnet for guiding the plasma beam to the hearth 4, 6 an exhaust port, 7 a leak port, 8 a holder for holding a substrate on which a film is to be formed, 9 a plasma beam, 10 a coil for converging the plasma beam, 11 a vacuum Opening windows 12 and 12 of the container 3 are gate valves arranged between the opening window 11 and the plasma gun 1 in an airtight manner. The material of the gate valve is preferably Al, which has high thermal conductivity and small thermal emissivity.

【0016】プラズマガン1にはTa−LaB6 複合電
極が配置され、電極に電位が与えられて不活性ガスであ
るArあるいはHe等の高密度プラズマが発生する。高
密度プラズマはプラズマガン1内のグリッド電極と磁界
によりビームとして放射されるが、さらにコイル10と
磁石5とによる磁場およびハース(陽極)4による電界
で高真空に排気された真空容器3内に導かれ図示のよう
なプラズマビーム9としてハース4上の蒸着材料に衝突
する。プラズマ粒子の運動エネルギにより蒸着材料は蒸
発し保持台8上の基板の表面に付着し成膜する。
A Ta-LaB 6 composite electrode is arranged in the plasma gun 1, and a high-density plasma of inert gas such as Ar or He is generated by applying a potential to the electrode. The high-density plasma is radiated as a beam by the grid electrode and the magnetic field in the plasma gun 1, and is further evacuated to a high vacuum by the magnetic field by the coil 10 and the magnet 5 and the electric field by the hearth (anode) 4 into the vacuum container 3. It is guided and collides with the vapor deposition material on the hearth 4 as a plasma beam 9 as shown. The vapor deposition material is evaporated by the kinetic energy of the plasma particles and adheres to the surface of the substrate on the holding table 8 to form a film.

【0017】なお、この種の真空蒸着装置において、荷
電粒子ビーム発生源としてアーク放電型プラズマガンの
他、カウフマン型イオンガン等を用いることもできる。
蒸着工程においては、ゲートバルブは図1に示すように
開放状態となっており、プラズマガン1と真空容器3内
部とは連通しており高真空に排気されている。
In this type of vacuum deposition apparatus, a Kauffman type ion gun or the like may be used as the charged particle beam generation source in addition to the arc discharge type plasma gun.
In the vapor deposition process, the gate valve is in an open state as shown in FIG. 1, the plasma gun 1 and the inside of the vacuum container 3 are in communication with each other, and a high vacuum is exhausted.

【0018】図2はゲートバルブ1付近の拡大図でゲー
トバルブを閉じた状態を示す。成膜完了後、Arあるい
はHe等の不活性ガスの供給を停止し、図2に示すよう
にゲートバルブ12を閉状態としてプラズマガン1と真
空容器3との間を遮断分離する。
FIG. 2 is an enlarged view of the vicinity of the gate valve 1 and shows a state in which the gate valve is closed. After the film formation is completed, the supply of the inert gas such as Ar or He is stopped, and the gate valve 12 is closed as shown in FIG. 2 to disconnect and separate the plasma gun 1 and the vacuum container 3 from each other.

【0019】なお、図示しないがプラズマガン1に独立
制御可能な排気系を設けることが好ましい。たとえばゲ
ートバルブ12と連動するバルブでプラズマガン1を排
気装置に接続する。したがって、プラズマガン1内部は
真空を保ったまま密封されることになる。
Although not shown, the plasma gun 1 is preferably provided with an independently controllable exhaust system. For example, the plasma gun 1 is connected to the exhaust device by a valve that works in conjunction with the gate valve 12. Therefore, the inside of the plasma gun 1 is sealed while maintaining the vacuum.

【0020】そうして、排気口6を閉め、リーク口7を
開放して大気を真空容器3内に導入して保持台8上の基
板を取り出す。プラズマガン1内部はゲートバルブ12
により、大気が導入された真空容器3とは独立して真空
状態のまま保持されるので、高温となっている陰極の大
気による酸化や、水分,ゴミ等の付着がなくなる。
Then, the exhaust port 6 is closed, the leak port 7 is opened, and the atmosphere is introduced into the vacuum container 3 to take out the substrate on the holding table 8. Gate valve 12 inside the plasma gun 1
As a result, since the vacuum state is maintained independently of the vacuum container 3 into which the atmosphere is introduced, oxidation of the high temperature cathode by the atmosphere and adhesion of water, dust, etc. are eliminated.

【0021】また、プラズマガン1のメインテナンスや
クリーニングの際には、ゲートバルブ12を閉状態とし
てプラズマガン1と真空容器3との間を遮断分離して、
プラズマガン1を取り外す。
During maintenance and cleaning of the plasma gun 1, the gate valve 12 is closed to disconnect and separate the plasma gun 1 and the vacuum container 3 from each other.
Remove the plasma gun 1.

【0022】従来の技術による真空蒸着装置の例では、
1バッチ当たりに要する時間は、排気工程で35分、成
膜工程で10分、プラズマガンの冷却工程で15分の計
60分であったのに対し、上述の実施例による真空蒸着
装置の例では、プラズマガンの冷却工程分の15分が短
縮され、1バッチ当たりの時間が45分となってスルー
プットが向上した。
In the example of the conventional vacuum deposition apparatus,
The time required for one batch was 35 minutes for the exhaust step, 10 minutes for the film forming step, and 15 minutes for the plasma gun cooling step, for a total of 60 minutes, while an example of the vacuum vapor deposition apparatus according to the above-described embodiment was used. Then, the cooling step of the plasma gun was reduced by 15 minutes, and the time per batch was 45 minutes, and the throughput was improved.

【0023】なお、上述の実施例の説明では、バルブの
構造として開孔窓11に対してスライドして開閉する構
造のゲートバルブ12を示したが、本発明におけるバル
ブはそれに限らず、真空容器とプラズマガンとの間の気
密を保って開閉でき、開状態でプラズマピームを真空容
器内に導き、閉状態で真空容器とプラズマガンとの間を
遮断分離できる機能を有するものであれば、他の構造の
バルブが使用できる。
In the above description of the embodiment, the gate valve 12 having a structure of sliding with respect to the aperture window 11 to open and close is shown as the structure of the valve, but the valve of the present invention is not limited to this, and the vacuum container is not limited thereto. And the plasma gun can be opened and closed with airtightness, the plasma beam can be introduced into the vacuum vessel in the open state, and the vacuum vessel and the plasma gun can be shut off and separated in the closed state. A valve with the above structure can be used.

【0024】図3は、ゲートバルブ部分の他の構成例を
示す。ゲートバルブ12を開状態にすると、真空容器3
の開口窓11が露出する。この状態で蒸着を行なうと、
バルブのシール板、シール面、Oリングはプラズマの熱
や蒸着物等の汚れを受ける危険がある。これらの露出面
に蒸着物質等が堆積すると、真空保持能力の低下等を招
く。このため装置のクリーニングが必要となる。本構成
においては、この熱や汚れの保護のため開孔部に円筒状
カバー13が配置される。
FIG. 3 shows another structural example of the gate valve portion. When the gate valve 12 is opened, the vacuum container 3
The opening window 11 of is exposed. When vapor deposition is performed in this state,
The sealing plate, sealing surface, and O-ring of the valve are at risk of being contaminated by plasma heat and vapor deposition. When a vapor deposition material or the like is deposited on these exposed surfaces, the vacuum holding capacity is deteriorated. Therefore, it is necessary to clean the device. In this configuration, the cylindrical cover 13 is arranged in the opening for protection of this heat and dirt.

【0025】熱や汚れをカバー13で受けることによ
り、Oリング、シール面等の気密を必要とする部分が保
護される。カバー13がある程度汚れたときはカバー1
3のみを交換すればよい。カバー13の交換は簡単にで
きるので、蒸着装置のメンテナンスは容易となる。
When the cover 13 receives heat and dirt, the O-ring, the sealing surface and the like, which are required to be airtight, are protected. When the cover 13 gets dirty to some extent, the cover 1
Only 3 needs to be replaced. Since the cover 13 can be easily replaced, the vapor deposition apparatus can be easily maintained.

【0026】ゲートバルブのシール板と一体に取り付け
られた円筒状カバーを示したが、カバーは真空チャンバ
側から送り込む機構のものでもよい。また、筒形は円筒
でも多角形でも遮蔽の機能を果たせるものであればどの
ような形でもよい。材料も金属、セラミック等、種々の
ものが利用可能である。
Although the cylindrical cover attached integrally with the seal plate of the gate valve is shown, the cover may be of a mechanism for feeding from the vacuum chamber side. Further, the cylindrical shape may be a cylinder, a polygon, or any shape as long as it can perform the function of shielding. Various materials such as metal and ceramics can be used.

【0027】以上実施例に沿って本発明を説明したが、
本発明はこれらに制限されるものではない。たとえば、
種々の変更、改良、組み合わせ等が可能なことは当業者
に自明であろう。
The present invention has been described above with reference to the embodiments.
The present invention is not limited to these. For example,
It will be apparent to those skilled in the art that various changes, improvements, combinations and the like can be made.

【0028】[0028]

【効果】本発明による真空蒸着装置においては、荷電粒
子発生源と真空容器との間に開閉可能なバルブ手段を配
置したことにより、以下のような効果を奏する。 (1) 成膜工程後、陰極が大気に触れることがないた
め、陰極部に絶縁性の酸化物ができることがない。 (2) プラズマ発生時の高温と、大気導入による急冷
との熱サイクルを受けることがないので、ヒビ割れ等が
少なくなり、陰極の寿命が長くなる。 (3) 成膜工程後、陰極が大気に触れることがないた
め、大気に含まれる水分やゴミによる異常放電が発生せ
ず、そのために基板のピンホール発生が防止できる。 (4) 成膜終了後、陰極冷却を待たずに真空容器のリ
ークを行うことができ、成膜完了した基板を真空容器か
ら取り出せるのでスループットが向上する。 (5) さらに、メンテナンスやクリーニングのために
プラズマガンのみを取り外したい場合には、真空容器は
真空を保ったまま行えるので、プラズマガンの再取り付
け後、再度真空容器を排気する必要がない。排気回数が
減るため、製品の品質が安定する。
[Effect] In the vacuum vapor deposition apparatus according to the present invention, the following effects can be obtained by disposing valve means that can be opened and closed between the charged particle generation source and the vacuum container. (1) Since the cathode does not come into contact with the atmosphere after the film forming step, an insulating oxide is not formed on the cathode part. (2) Since there is no heat cycle between the high temperature at the time of plasma generation and the rapid cooling due to the introduction of air, cracks and the like are reduced and the life of the cathode is extended. (3) Since the cathode does not come into contact with the atmosphere after the film forming process, abnormal discharge due to moisture or dust contained in the atmosphere does not occur, which can prevent the occurrence of pinholes in the substrate. (4) After the film formation is completed, the vacuum container can be leaked without waiting for the cooling of the cathode, and the substrate on which the film formation is completed can be taken out from the vacuum container, so that the throughput is improved. (5) Furthermore, when it is desired to remove only the plasma gun for maintenance or cleaning, the vacuum container can be operated while keeping the vacuum, so that it is not necessary to exhaust the vacuum container again after reattaching the plasma gun. Since the number of exhausts is reduced, the product quality is stable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による真空蒸着装置の全体断面
図である。
FIG. 1 is an overall cross-sectional view of a vacuum vapor deposition device according to an embodiment of the present invention.

【図2】図1の実施例のゲートバルブ部分の拡大図であ
る。
FIG. 2 is an enlarged view of a gate valve portion of the embodiment shown in FIG.

【図3】図1の実施例の他の構成のゲートバルブ開状態
の拡大図である。
FIG. 3 is an enlarged view of the gate valve open state of another configuration of the embodiment of FIG.

【図4】従来の技術による真空蒸着装置の全体断面図で
ある。
FIG. 4 is an overall cross-sectional view of a conventional vacuum vapor deposition device.

【符号の説明】[Explanation of symbols]

1・・・・・プラズマガン 2・・・・・直流電源 3・・・・・真空容器 4・・・・・ハース 5・・・・・磁石 6・・・・・排気バルブ 7・・・・・リークバルブ 8・・・・・保持台 9・・・・・プラズマビーム 10・・・・磁界コイル 11・・・・開孔窓 12・・・・ゲートバルブ 13・・・・カバー 1 ... Plasma gun 2 ... DC power supply 3 ... Vacuum container 4 ... Hearth 5 ... Magnet 6 ... Exhaust valve 7 ...・ ・ Leak valve 8 ・ ・ ・ Holding stand 9 ・ ・ ・ Plasma beam 10 ・ ・ ・ ・ Magnetic field coil 11 ・ ・ ・ ・ Aperture window 12 ・ ・ ・ ・ ・ ・ Gate valve 13 ・ ・ ・ ・ ・ ・ Cover

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】排気可能な内部空間、該内部空間内に配置
された荷電粒子ビーム発生源、及び荷電粒子ビームを放
射する放射孔を有する荷電粒子ビーム供給手段と、 前記荷電粒子ビーム供給手段より放射する荷電粒子ビー
ムを導入する開孔部を有し、前記荷電粒子ビーム供給手
段の内部空間と独立に排気可能な内部空間を有する真空
容器と、 前記真空容器の内部空間内に配置され、前記荷電粒子ビ
ーム発生源に対し所定の電位差を与えることにより前記
荷電粒子ビームが衝突する蒸発源と、 前記蒸発源からの蒸発成分が付着するように配置された
試料保持手段と、 前記開孔部と前記放射孔とを気密を保って連接する開閉
可能なバルブ手段であって、前記バルブ手段を開状態と
するときには前記真空容器の内部空間と前記荷電粒子ビ
ーム供給手段の内部空間とを連通させ、閉状態とすると
きには前記真空容器の内部空間と前記荷電粒子ビーム
給手段の内部空間とを遮断分離し、遮断分離した状態で
は、前記真空容器の内部空間の真空状態を保持したまま
前記荷電粒子ビーム供給手段を前記バルブ手段から取り
外すことができる前記バルブ手段とを有する真空蒸着装
置。
1. An inner space capable of being evacuated, and arranged in the inner space.
The charged particle beam source and the charged particle beam
It includes a charged particle beam supply means having a morphism emitting holes, an opening for introducing the charged particle beam emitted from said charged particle beam supply means, the charged particle beam supplied hand
A vacuum container having an internal space that can be evacuated independently of the internal space of the step, and the charged particle beam collides by being arranged in the internal space of the vacuum container and applying a predetermined potential difference to the charged particle beam generation source. An evaporation source, a sample holding means arranged so that an evaporation component from the evaporation source adheres, and a valve means capable of opening and closing connecting the opening portion and the radiation hole while maintaining airtightness, communicates the internal space of the charged particle beam supply means and the interior space of the vacuum vessel when said valve means in an open state, the charged particle beam subjected to the internal space of the vacuum vessel when closed
With the internal space of the feeding means isolated and isolated
While maintaining the vacuum state of the internal space of the vacuum container
Removing the charged particle beam supply means from the valve means
A vacuum deposition apparatus having the valve means that can be removed .
【請求項2】 さらに、前記バルブ手段が真空容器の開
孔部を開状態とするとき、開孔部に配置される気密保持
部材、遮蔽用のカバー部材を有する請求項1記載の真空
蒸着装置。
2. The vacuum vapor deposition apparatus according to claim 1, further comprising an airtight holding member and a shielding cover member arranged in the opening when the valve means opens the opening of the vacuum container. .
JP4012668A 1992-01-28 1992-01-28 Vacuum deposition equipment Expired - Lifetime JPH0772340B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4012668A JPH0772340B2 (en) 1992-01-28 1992-01-28 Vacuum deposition equipment
KR1019940001601A KR0130180B1 (en) 1992-01-28 1994-01-28 Device for pulling up single crysta l

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4012668A JPH0772340B2 (en) 1992-01-28 1992-01-28 Vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JPH05202467A JPH05202467A (en) 1993-08-10
JPH0772340B2 true JPH0772340B2 (en) 1995-08-02

Family

ID=11811754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4012668A Expired - Lifetime JPH0772340B2 (en) 1992-01-28 1992-01-28 Vacuum deposition equipment

Country Status (2)

Country Link
JP (1) JPH0772340B2 (en)
KR (1) KR0130180B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952061A (en) * 1996-12-27 1999-09-14 Stanley Electric Co., Ltd. Fabrication and method of producing silicon films
KR101014776B1 (en) * 2005-12-05 2011-02-14 가부시키가이샤 알박 Gate valve for vacuum apparatus
US20110011734A1 (en) * 2006-03-01 2011-01-20 Shinmaywa Industries, Ltd. Plasma Gun and Plasma Gun Deposition System Including the Same
JP5175229B2 (en) * 2007-07-02 2013-04-03 新明和工業株式会社 Film forming apparatus and operation method thereof
JP4885235B2 (en) * 2008-08-12 2012-02-29 三菱重工業株式会社 Bonding apparatus and bonding apparatus maintenance method
JP5685405B2 (en) * 2010-09-03 2015-03-18 株式会社日立ハイテクノロジーズ Vacuum processing equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54166255U (en) * 1978-05-12 1979-11-22
JPS61272375A (en) * 1985-05-29 1986-12-02 Hitachi Ltd Thin film forming device
JPS62169463A (en) * 1986-01-22 1987-07-25 Hitachi Ltd Semiconductor device
JP2878299B2 (en) * 1989-03-02 1999-04-05 旭硝子株式会社 Ion plating method

Also Published As

Publication number Publication date
KR940018491A (en) 1994-08-18
JPH05202467A (en) 1993-08-10
KR0130180B1 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US8147664B2 (en) Sputtering apparatus
JP2859632B2 (en) Film forming apparatus and film forming method
KR100538661B1 (en) Heated and cooled vacuum chamber shield
US5624536A (en) Processing apparatus with collimator exchange device
JPWO2002029877A1 (en) Vacuum processing equipment
US5772858A (en) Method and apparatus for cleaning a target in a sputtering source
EP0859070B1 (en) Coating of inside of vacuum chambers
JPWO2002065532A1 (en) Method for treating object to be treated and apparatus for treating the same
US20190348264A1 (en) Pre-clean chamber with integrated shutter garage
US20120228122A1 (en) Sputtering apparatus and electronic device manufacturing method
JP2006138017A (en) Vacuum treatment system
KR20160040652A (en) Film forming device
JP4473410B2 (en) Sputtering apparatus and film forming method
JPH0772340B2 (en) Vacuum deposition equipment
US6706157B2 (en) Vacuum arc plasma gun deposition system
US9368331B2 (en) Sputtering apparatus
KR20210118198A (en) Method for Particle Removal from Wafers via Plasma Modification in Pulsed PVD
JP2021127516A (en) Film deposition apparatus and method of removing moisture in film deposition apparatus
JPWO2011077662A1 (en) Vacuum deposition apparatus and maintenance method thereof
JP4902054B2 (en) Sputtering equipment
JP2006307291A (en) Sputtering system
JPH05287521A (en) Sputtering device
CN113056572A (en) Vacuum processing apparatus
JP3821893B2 (en) Sputtering equipment
KR20000005188A (en) Method of producing a cathode-ray tube and apparatus therefor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970422