JPH0772294A - Reactor shielding body - Google Patents

Reactor shielding body

Info

Publication number
JPH0772294A
JPH0772294A JP5219836A JP21983693A JPH0772294A JP H0772294 A JPH0772294 A JP H0772294A JP 5219836 A JP5219836 A JP 5219836A JP 21983693 A JP21983693 A JP 21983693A JP H0772294 A JPH0772294 A JP H0772294A
Authority
JP
Japan
Prior art keywords
reactor
shield
reactor shield
fitted
shielding body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5219836A
Other languages
Japanese (ja)
Inventor
Shinichi Takita
信一 瀧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5219836A priority Critical patent/JPH0772294A/en
Publication of JPH0772294A publication Critical patent/JPH0772294A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

PURPOSE:To provide a reactor shielding body which is prepared in advance as blocks separable for the activated part of the reactor shielding body, improves disassembling work efficiency by avoiding a cutting work with using a large and special cutting device, and reduces the exposure dose of workers. CONSTITUTION:In a reactor shielding body 8 placed around a reactor pressure vessel 2, a coupling reactor shield body 10 separated in a plurality of blocks structure of upper, middle and lower coupling reactor shield body is placed separably by using neutron shield material in the concave part 9 provided inside the region in the reactor shielding body 8 where radiation dose rate is strong.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力発電所の原子炉
しゃへい体に係り、特に原子炉廃止に伴う解体処理が簡
易で放射性廃棄物削減に有効な原子炉しゃへい体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear reactor shield body for a nuclear power plant, and more particularly to a nuclear reactor shield body which is easy to dismantle when a nuclear reactor is abolished and which is effective in reducing radioactive waste.

【0002】[0002]

【従来の技術】原子力発電所における原子炉圧力容器の
周囲には、原子炉圧力容器内の原子炉を構成している原
子炉燃料および炉内構造物から照射される放射線をしゃ
へいするための、生体しゃへいである原子炉しゃへい体
が設置されている。
2. Description of the Related Art Around a reactor pressure vessel in a nuclear power plant, for shielding the radiation emitted from the reactor fuel and the reactor internals constituting the reactor in the reactor pressure vessel, A reactor shield, which is a living body shield, is installed.

【0003】しかしながら、原子炉の廃止措置に伴う原
子炉しゃへい体の解体工事に際しては、原子力発電所運
転中における原子炉からの放射線の照射により、原子炉
燃料が配置されている領域に対峙し、隣接する部分の原
子炉しゃへい体は、放射化されて残留放射能(主として
中性子による放射化放射能)が含まれているため、放射
性廃棄物削減の見地から当該部分を原子炉しゃへい体の
他の非放射性部分と切り離して除去し、放射性廃棄物と
して処理する必要がある。
However, during the dismantling work of the reactor shield body accompanying the decommissioning of the nuclear reactor, the irradiation of radiation from the reactor during operation of the nuclear power plant confronts the area where the reactor fuel is arranged, Since the reactor shield of the adjacent part is activated and contains residual radioactivity (mainly activated radioactivity by neutrons), from the viewpoint of reducing radioactive waste, that part of the shield It is necessary to separate it from the non-radioactive part, remove it, and dispose of it as radioactive waste.

【0004】この原子炉しゃへい体の解体作業において
は、前記原子炉しゃへい体の放射化部分に対して専用機
による機械的切断工法等が行われている。従来は図8の
断面図に示すように、原子炉燃料1を配設した炉心を収
納した原子炉圧力容器2の周囲は、生体しゃへいである
原子炉しゃへい体3で囲っており、この原子炉しゃへい
体3は、鋼製およびコンクリート製である。
In the dismantling work of the nuclear reactor shield, a mechanical cutting method using a dedicated machine is performed on the activated portion of the nuclear reactor shield. Conventionally, as shown in the sectional view of FIG. 8, a reactor pressure vessel 2 accommodating a core in which a reactor fuel 1 is arranged is surrounded by a reactor shield 3 which is a living body shield. The shield 3 is made of steel and concrete.

【0005】その厚さは、一般部分の比較的薄いA部原
子炉しゃへい体3aと、原子炉燃料1の領域に隣接して
いて放射線の照射量が多い領域で比較的厚手に構成され
たB部原子炉しゃへい体3bとで形成されており、この
B部原子炉しゃへい体3bは、原子炉燃料1に近いこと
から中性子の照射線量が高いために、生体しゃへい機能
を持たせる理由で特に厚くしている。
The thickness is relatively thick in the A portion of the reactor shield 3a, which is relatively thin in the general portion, and in the region adjacent to the region of the reactor fuel 1 and where the radiation dose is large. Part B of the reactor shield 3b, the part B reactor shield 3b is close to the reactor fuel 1 and has a high neutron irradiation dose. is doing.

【0006】原子力発電所の廃止措置に伴う解体に際し
ては、原子炉しゃへい体3の放射化部分であるB部原子
炉しゃへい体3bについては、放射性廃棄物として取扱
うことから、その解体作業は図9の斜視図で示すよう
に、原子炉しゃへい体3の内部に切断装置4を据付けて
機械的に切断している。この専用の切断装置4による解
体作業は、B部原子炉しゃへい体3bを付属のブレード
5により、最初は垂直方向に、次は水平方向に切断する
ことで取扱いに容易な寸法と重量で、多数の切断片6に
して把持機7により回収している。
At the time of dismantling due to the decommissioning of the nuclear power plant, the part B reactor shield 3b, which is the activation part of the reactor shield 3, is handled as radioactive waste. As shown in the perspective view of FIG. 1, a cutting device 4 is installed inside the reactor shield 3 for mechanical cutting. The demolition work by the dedicated cutting device 4 is performed by cutting the B part reactor shield 3b with the attached blade 5 first in the vertical direction and then in the horizontal direction. The cut pieces 6 are collected by the gripping machine 7.

【0007】また、この切断装置4および把持機7の操
作は、原子炉しゃへい体3より離れた場所で図示しない
操作盤により行い、切断作業時に発生する放射性ダスト
は、原子炉建屋内に設置した図示しない切断局所集塵装
置により回収して周囲に放散することを防止している。
The cutting device 4 and the gripping machine 7 are operated by a control panel (not shown) at a place distant from the reactor shield 3, and radioactive dust generated during cutting work is installed in the reactor building. A cutting local dust collector (not shown) prevents the dust from being collected and scattered around.

【0008】[0008]

【発明が解決しようとする課題】原子炉しゃへい体3に
おける放射化部分のB部原子炉しゃへい体3bに対する
解体作業は、原子炉しゃへい体3内に大規模な切断装置
4を据付けた上で、取扱に便な形状で多数の切断片6に
切断して回収しているため、全工程には多くの工数と長
い作業期間を要していた。また、原子炉しゃへい体3に
おける残留放射能については、図10の特性図で示すよう
に、原子炉しゃへい体3の主要構成材であるコンクリー
トの厚さに対する中性子線の減衰割合が、中性子線透過
後30cmまでが減衰率1/10以上と高い。
The dismantling work for the part B reactor shield 3b of the activation part of the reactor shield 3 is carried out after the large-scale cutting device 4 is installed in the reactor shield 3. Since a large number of cut pieces 6 are cut and collected in a shape convenient for handling, many steps and a long working period are required for all the steps. As for the residual radioactivity in the reactor shield 3, as shown in the characteristic diagram of FIG. 10, the attenuation ratio of neutron rays to the thickness of concrete, which is the main constituent material of the reactor shield 3, is Attenuation rate of up to 30 cm later is as high as 1/10 or more.

【0009】従って、切断装置4の据付調整時および切
断作業時におけるブレード5の交換等で作業員は、当該
原子炉しゃへい体3の内壁面に接近するため、放射線被
曝を余儀なくされる。このために作業実施に際しては、
計画線当量厳守の理由により頻繁に作業員の交替を行う
ことから作業効率を向上することが困難であった。
Therefore, the worker approaches the inner wall surface of the reactor shield 3 during the installation and adjustment of the cutting device 4 and the replacement of the blade 5 during the cutting work, so that the worker is forced to be exposed to radiation. Therefore, when performing work,
It is difficult to improve work efficiency because workers are frequently replaced for reasons of strict adherence to the planned line equivalent.

【0010】本発明の目的とするところは、原子炉しゃ
へい体の放射化部分を予め分離可能なブロックとしてお
き、大規模な専用切断装置による切断作業を不要として
解体作業効率が向上し、作業員の被曝が低減される原子
炉しゃへい体を提供することにある。
The object of the present invention is to make the activation part of the reactor shield a separable block in advance, which improves the dismantling work efficiency by eliminating the need for cutting work by a large-scale dedicated cutting device, (EN) Provided is a nuclear reactor shield body with reduced exposure to radiation.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
本発明は、原子炉圧力容器の周囲に設ける原子炉しゃへ
い体において、原子炉しゃへい体で放射線照射量の多い
領域に中性子しゃへい材を使用して複数に分割されたブ
ロック構造のしゃへい体を分離可能に装着したことを特
徴とする。
In order to achieve the above object, the present invention uses a neutron shielding material in a region of a nuclear reactor shield which is provided around a reactor pressure vessel and has a large radiation dose. It is characterized in that the shield body having a block structure divided into a plurality of pieces is detachably attached.

【0012】[0012]

【作用】原子炉運転中の嵌め込み原子炉しゃへい体は、
原子炉しゃへい体の内壁面で放射線照射量の多い領域に
おいて、放射線をしゃへいして放射化される。原子炉廃
止措置に伴う原子炉しゃへい体の解体作業は、原子炉し
ゃへい体の一部を切断すると共に嵌め込み原子炉しゃへ
い体との接合面を取外すことにより、放射性廃棄物処理
対象である嵌め込み原子炉しゃへい体は、取扱いが容易
な寸法、重量のブロックとして切り離して搬出できる。
[Function] The inlaid reactor shield during operation of the reactor is
Radiation is shielded and activated in the region where the radiation dose is high on the inner wall surface of the reactor shield. The dismantling work of the reactor shield body accompanying the reactor decommissioning is performed by cutting a part of the reactor shield body and inserting it and removing the joint surface with the reactor shield body. The shield can be taken out as a block with dimensions and weight that are easy to handle.

【0013】[0013]

【実施例】本発明の一実施例を図面を参照して説明す
る。なお、上記した従来技術と同じ構成部分については
同一符号を付して詳細な説明を省略する。図1の断面図
に示すように、原子炉しゃへい体8の内部には原子炉燃
料1を配設した炉心を収納した原子炉圧力容器2が据付
けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. It should be noted that the same components as those in the above-described conventional technique are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in the cross-sectional view of FIG. 1, a reactor pressure vessel 2 accommodating a reactor core in which a reactor fuel 1 is disposed is installed inside a reactor shield 8.

【0014】この原子炉しゃへい体8は通常、鋼製およ
びコンクリート製で、その厚さは一般部分の比較的薄い
A部原子炉しゃへい体8aと、原子炉燃料1の近傍で放
射線の照射量が多い領域にあり、この高放射線をしゃへ
いする比較的厚手に構築されたB部原子炉しゃへい体8
bとで形成されている。
The reactor shield 8 is usually made of steel or concrete, and the thickness of the reactor shield 8a is relatively thin in the general part and the radiation dose in the vicinity of the reactor fuel 1 is large. A relatively thick B part reactor shield 8 that shields this high radiation in many areas.
and b.

【0015】また、このB部原子炉しゃへい体8bの内
面には図2の拡大断面図に示すように、原子炉燃料1と
対峙しており放射線の照射量が多い領域に環状の凹状部
9が形成してある。この凹状部9には夫々が寸法および
重量等を取扱いが容易な大きさにブロック化し、これを
複数積み重ねて形成した嵌め込み原子炉しゃへい体10を
装着して原子炉しゃへい体8が構成されている。
Further, as shown in the enlarged cross-sectional view of FIG. 2, the inner surface of the B part reactor shield 8b faces the reactor fuel 1 and has an annular concave portion 9 in a region where the radiation dose is large. Is formed. The recessed portion 9 is divided into blocks each having a size, weight and the like that are easy to handle, and a fitted reactor shield body 10 formed by stacking a plurality of the recessed portions 9 is mounted to form the reactor shield body 8. .

【0016】前記嵌め込み原子炉しゃへい体10は、図3
の斜視図に示す上段嵌め込み原子炉しゃへい体10aと、
図4の斜視図に示す中間嵌め込み原子炉しゃへい体10
b、および図5の斜視図に示す下段嵌め込み原子炉しゃ
へい体10cで構成する。この嵌め込み原子炉しゃへい体
10は、中性子効果の高い構成材である熱中性子エネルギ
ーの吸収作用の大きな素材および、熱中性子の全吸収断
面積の大きい元素よりなる物質で中性子放射化生成物の
少ない元素を使用して形成している。
The inlaid reactor shield 10 is shown in FIG.
An upper-stage inlaid reactor shield 10a shown in a perspective view of FIG.
Intermediate-fitting reactor shield 10 shown in perspective view in FIG.
b, and the lower-stage fitting reactor shield 10c shown in the perspective view of FIG. This inlaid reactor shield
10 is formed by using a material having a large absorption effect of thermal neutron energy, which is a constituent having a high neutron effect, and a substance consisting of an element having a large total absorption cross section of thermal neutrons, and an element having a small neutron activation product. ing.

【0017】すなわち、一例としては熱中性子エネルギ
ーの吸収作用の大きな素材で、熱吸収面積が大となるよ
うに複数の穴をあけた黒鉛板と、熱中性子の全吸収断面
積の大きい元素よりなる物質のコンクリートで、前記各
黒鉛板は互いに穴の位置が重ならぬように配し、コンク
リートと交互に多重層としてブロックとする。
That is, as an example, a material having a large effect of absorbing thermal neutron energy, consisting of a graphite plate having a plurality of holes so as to have a large thermal absorption area, and an element having a large total absorption cross section of thermal neutrons In the concrete of the material, the graphite plates are arranged so that the positions of the holes do not overlap with each other, and the graphite plates are alternately laminated with the concrete to form blocks.

【0018】上段嵌め込み原子炉しゃへい体10aは、図
3に示すように上面内側に前記原子炉しゃへい体8の凹
状部9の上段部に嵌合する凸部11aを、下面中央に中間
嵌め込み原子炉しゃへい体10bと嵌合する組合わせ用の
凹部12が形成されていて、両側面は平面で、嵌め込み原
子炉しゃへい体10の最上段部に配置される。
As shown in FIG. 3, the upper fitting nuclear reactor shielding body 10a has a convex portion 11a fitted to the upper portion of the concave portion 9 of the nuclear reactor shielding body 8 on the inside of the upper surface and an intermediate fitting nuclear reactor on the lower surface center. A recess 12 for combination with which the shield body 10b is fitted is formed, and both side surfaces thereof are flat, and are arranged at the uppermost step of the embedded reactor shield body 10.

【0019】また、中間嵌め込み原子炉しゃへい体10b
は、図4に示すように上面の中央に上段嵌め込み原子炉
しゃへい体10aの凹部12と嵌合する組合わせ用の凸部11
bを、下面中央に同じく中間嵌め込み原子炉しゃへい体
10b、あるいは下段嵌め込み原子炉しゃへい体10cの凸
部11bと嵌合する組合わせ用の凹部12が形成されてい
て、両側面は平面となっており、嵌め込み原子炉しゃへ
い体10の中間部に配置し、凹状部9の高さに対応して複
数段積み重ねる。
Also, the intermediate fitting reactor shield 10b.
As shown in FIG. 4, a convex portion 11 for combination that fits with a concave portion 12 of the reactor shielding body 10a fitted in the upper stage at the center of the upper surface is shown.
b to the center of the lower surface, and insert it in the middle
10b, or a concave portion 12 for combination to be fitted with the convex portion 11b of the lower-stage fitted reactor shield body 10c is formed, and both side surfaces are flat, and are arranged in the middle portion of the fitted reactor shield body 10. Then, a plurality of layers are stacked corresponding to the height of the concave portion 9.

【0020】さらに、下段嵌め込み原子炉しゃへい体10
cについては、図5に示ように上面中央に中間嵌め込み
原子炉しゃへい体10bの凹部12と嵌合する組合わせ用の
凸部11bが、下面内側には凹状部9の下段部に嵌合する
凸部11cが形成されていて、両側面は平面で、嵌め込み
原子炉しゃへい体10の最下段部に配置される。なお、各
上段、中間、下段嵌め込み原子炉しゃへい体10a,10
b,10cの両側面は、必要数を隣接配置すれば環状とな
るような角度に形成されている。
Furthermore, the lower-stage fitting reactor shield 10
As for c, as shown in FIG. 5, a convex portion 11b for combination, which fits into the concave portion 12 of the nuclear reactor shield 10b, is fitted in the center of the upper surface, and a lower step portion of the concave portion 9 fits inside the lower surface. A convex portion 11c is formed, and both side surfaces thereof are flat, and are arranged at the lowest step of the embedded nuclear reactor shield 10. It should be noted that the upper, middle, and lower fitted nuclear reactor shields 10a, 10
Both side surfaces of b and 10c are formed at an angle so as to form an annular shape if a required number of adjacent surfaces are arranged.

【0021】原子炉しゃへい体8の凹状部9は、嵌め込
み原子炉しゃへい体10を装着することによって閉塞され
るが、この凹状部9と装着した各上段、中間、下段嵌め
込み原子炉しゃへい体10a,10b,10cとの相互間には
微小のスリットが生じる。
The recessed portion 9 of the reactor shield 8 is closed by mounting the fitted reactor shield 10. The recessed portion 9 and the upper, middle and lower fitted reactor shields 10a mounted on the reactor shield 10a, A minute slit is formed between the 10b and 10c.

【0022】この微小のスリットに起因するストリーミ
ング現象防止を放射化のインベントリ分布範囲を嵌め込
み原子炉しゃへい体10内とするために、凹状部9および
各上段、中間、下段嵌め込み原子炉しゃへい体10a,10
b,10cが当接する相互間には、凸部11a,11b,11
c、および凹部12による段差を設けた形状としてスリッ
トに迷路を形成している。
In order to prevent the streaming phenomenon caused by these minute slits and to make the inventory distribution range of activation fit within the reactor shield body 10, the recessed portion 9 and the upper, middle and lower stages of the fitted reactor shield body 10a, Ten
The protrusions 11a, 11b, 11 are provided between the contact points b, 10c.
A maze is formed in the slit as a shape having a step formed by c and the concave portion 12.

【0023】さらに、前記相互間のスリットとなる各上
段、中間、下段嵌め込み原子炉しゃへい体10a,10b,
10cの各ブロックの接着部13には、中性子を遮断すると
共に、相互間を堅固に固定するために適宜、接着剤を塗
布して組み立てる。
Further, the upper, middle, and lower fitted nuclear reactor shields 10a, 10b, which serve as slits between the above, are inserted.
In order to block neutrons and firmly fix each other to the adhesive portion 13 of each block of 10c, an adhesive agent is appropriately applied and assembled.

【0024】図6の断面図は図1のA−A矢視断面図
で、嵌め込み原子炉しゃへい体10とB部原子炉しゃへい
体8との配置を示し、複数の嵌め込み原子炉しゃへい体
10は夫々隣接しているブロック間は接着部13において接
着し、B部原子炉しゃへい体8bとは接合部14が形成さ
れる。
The cross-sectional view of FIG. 6 is a cross-sectional view taken along the line A--A of FIG. 1, showing the arrangement of the embedded reactor shield 10 and the B-section reactor shield 8, and showing a plurality of embedded reactor shields.
The blocks 10 adjacent to each other are bonded at a bonding portion 13 between adjacent blocks, and a bonding portion 14 is formed with the B portion reactor shield 8b.

【0025】また、図7の一部切断斜視図はB部原子炉
しゃへい体8bの凹状部9における嵌め込み原子炉しゃ
へい体10の組立て状態を示したもので、上段嵌め込み原
子炉しゃへい体10aの下には中間嵌め込み原子炉しゃへ
い体10bが3段積んであり、最下段に下段嵌め込み原子
炉しゃへい体10cが配置されていて、相互に隣接したブ
ロックと接着している。
Further, the partially cut perspective view of FIG. 7 shows the assembled state of the fitted reactor shield 10 in the concave portion 9 of the B part reactor shield 8b, below the upper fitted reactor shield 10a. The intermediate fitting reactor shields 10b are stacked in three stages, and the lower fitting reactor shields 10c are arranged at the lowermost stage and are bonded to blocks adjacent to each other.

【0026】嵌め込み原子炉しゃへい体10の原子炉しゃ
へい体8に設けられた凹状部9への装着は、先ず、数個
のブロックの下段嵌め込み原子炉しゃへい体10cの相互
間に接着剤を塗布して配置する。次に、この上に中間嵌
め込み原子炉しゃへい体10bを、凹部12が前記下段嵌め
込み原子炉しゃへい体10cの凸部11bと嵌合させ、接着
剤を塗布して積上げる。なお、この中間嵌め込み原子炉
しゃへい体10bの積上げ段数は凹状部9の高さに応じて
決める。
To mount the inlaid reactor shield 10 in the concave portion 9 provided in the reactor shield 8, first, apply an adhesive between the lower-stage inlaid reactor shields 10c of several blocks. Place it. Next, the intermediate fitting nuclear reactor shielding body 10b is fitted on the concave portion 12 with the convex portion 11b of the lower fitting nuclear reactor shielding body 10c, and an adhesive is applied and stacked. The number of stacking steps of the intermediate fitting reactor shield 10b is determined according to the height of the concave portion 9.

【0027】さらに最上段には、上段嵌め込み原子炉し
ゃへい体10aを、その凹部12が下の中間嵌め込み原子炉
しゃへい体10bの凸部11bに嵌合するようにして設置す
るが、この上段嵌め込み原子炉しゃへい体10aは側面か
ら挿入する。
Further, at the uppermost stage, the upper fitting nuclear reactor shield 10a is installed so that the concave portion 12 fits into the convex portion 11b of the lower intermediate fitting nuclear reactor shielding body 10b. The furnace shield 10a is inserted from the side.

【0028】以上の作業を順次繰り返してB部原子炉し
ゃへい体8bの凹状部9に嵌め込み原子炉しゃへい体10
を環状に装着する。なお、凹状部9に順次嵌め込む、嵌
め込み原子炉しゃへい体10の各ブロックは、その平面が
扇形で、上下に凸部11bと凹部12がある形状であること
から、特に環状の最終列における嵌め込み工程は複雑に
なる。
The above work is repeated in sequence to fit into the concave portion 9 of the B part reactor shield body 8b, and the reactor shield body 10 is inserted.
Is attached in a ring shape. In addition, since each block of the fitted nuclear reactor shield 10 that is sequentially fitted into the concave portion 9 has a fan-shaped plane surface and has a convex portion 11b and a concave portion 12 on the upper and lower sides, the fitting in the annular final row is particularly important. The process becomes complicated.

【0029】しかしながら、例えば最終列の上段嵌め込
み原子炉しゃへい体10aについては、その凹部12を予め
充填した特殊形状とすると共に、直下の中間嵌め込み原
子炉しゃへい体10bの凸部11bを削除して、前記上段嵌
め込み原子炉しゃへい体10aを充填剤、接着剤等を用い
て嵌め込むことで容易に嵌め込み原子炉しゃへい体10が
構築できる。
However, for example, the upper row of the upper fitting reactor shield 10a in the last row has a special shape in which the recess 12 is filled in advance, and the convex portion 11b of the intermediate fitting reactor shield 10b immediately below is deleted, By fitting the upper fitting nuclear reactor shield 10a with a filler, an adhesive or the like, the fitting nuclear reactor shield 10 can be easily constructed.

【0030】また、凹状部9への嵌め込み原子炉しゃへ
い体10装着の際に、中間嵌め込み原子炉しゃへい体10
b、および上段嵌め込み原子炉しゃへい体10aが、夫々
下のブロックに対して周方向に1/2ずらして積み上げ
る方法がある。
Further, when the nuclear reactor shield 10 fitted into the concave portion 9 is mounted, the reactor shield 10 fitted intermediately is inserted.
There is a method of stacking the b and the upper-stage inlaid reactor shield 10a by shifting them by 1/2 in the circumferential direction with respect to the lower block.

【0031】これによると嵌め込みおよび解体時の工数
が増すが、一つのブロックの凸部11b、あるいは凹部12
に対して、二つのブロックの凹部12、あるいは凸部11b
が嵌合する状態となることから、完成した嵌め込み原子
炉しゃへい体10としての強度が増加する効果がある。さ
らに、上段、中間、下段嵌め込み原子炉しゃへい体10
a,10b,10cの両側面に図示しない凹、凸部を形成し
て、接着部13において互いに嵌合させることにより、嵌
め込み原子炉しゃへい体10の強度がさらに増加する。
According to this, the man-hours for fitting and dismantling increase, but the convex portion 11b or the concave portion 12 of one block is increased.
In contrast, the concave portion 12 or the convex portion 11b of the two blocks
Since they are in a fitted state, there is an effect that the strength of the completed inlaid reactor shield body 10 is increased. Furthermore, the upper, middle, and lower stages of the fitted reactor shield 10
By forming recesses and protrusions (not shown) on both side surfaces of a, 10b, and 10c and fitting them together at the bonding portion 13, the strength of the inlaid reactor shield 10 is further increased.

【0032】次ぎに上記構成による作用について説明す
る。原子炉運転中は、図1に示すように嵌め込み原子炉
しゃへい体10は、B部原子炉しゃへい体8bの内面に装
着、固定されており、この嵌め込み原子炉しゃへい体10
を形成する上段、中間、下段嵌め込み原子炉しゃへい体
10a,10b,10cの各ブロックは、図6および図7に示
すように、各ブロック同士の上下は凸部11bと凹部12で
嵌合し、左右は接着部13で、またB部原子炉しゃへい体
8bとは接合部14において接合されている。
Next, the operation of the above configuration will be described. During operation of the reactor, as shown in FIG. 1, the inlaid reactor shield 10 is attached and fixed to the inner surface of the B part reactor shield 8b.
Upper, middle, and lower-stage inlaid reactor shields that form the
As shown in FIG. 6 and FIG. 7, the blocks 10a, 10b, and 10c are fitted with convex portions 11b and concave portions 12 on the upper and lower sides of each block, with the bonding portions 13 on the left and right, and the B portion reactor shield. It is joined to the body 8b at the joint portion 14.

【0033】原子炉の廃止措置に伴う解体時には、先
ず、図2に示す原子炉しゃへい体8において内面に突出
しているB部原子炉しゃへい体8bの凹状部9の上部
を、図示しない切り離し治具により切り離す。
At the time of dismantling due to decommissioning of the reactor, first, the upper portion of the concave portion 9 of the B-section reactor shield 8b protruding inward in the reactor shield 8 shown in FIG. To disconnect.

【0034】次にB部原子炉しゃへい体8bの内面で凹
状部9内に環状に装着されている嵌め込み原子炉しゃへ
い体10の上段、中間、下段嵌め込み原子炉しゃへい体10
a,10b,10cを各ブロック毎に、上段嵌め込み原子炉
しゃへい体10aより順次取り出して解体する。
Next, the upper, middle and lower stages of the fitted reactor shield 10 which is annularly mounted in the concave portion 9 on the inner surface of the B part reactor shield 8b.
For each block, a, 10b and 10c are sequentially taken out from the upper shielded reactor shield 10a and disassembled.

【0035】また、必要に応じて中間嵌め込み原子炉し
ゃへい体10bおよび下段嵌め込み原子炉しゃへい体10c
の最下段部の接着部13に対しても、切り離し治具により
切り離すことにより、さらに解体が容易となる。なお、
切り離し作業時に発生するダストについては、従来と同
様に切断局所集塵装置により回収して周囲に放散するこ
とを防止するが、その発生量は従来の切断装置4による
切断作業に比べて極めて少ない。
If necessary, an intermediate fitting reactor shield body 10b and a lower fitting reactor shield body 10c.
Even the adhesive portion 13 at the lowermost step can be disassembled more easily by separating it with a separating jig. In addition,
The dust generated during the separating operation is prevented from being collected by the cutting local dust collector and diffused to the surroundings as in the conventional case, but the generated amount is extremely smaller than that in the conventional cutting operation by the cutting apparatus 4.

【0036】これにより原子炉しゃへい体8において
は、放射性廃棄物処理を実施する必要のある放射線の高
照射領域に嵌め込み原子炉しゃへい体10が装着されてい
ることにより、原子炉しゃへい体8の解体時に、嵌め込
み原子炉しゃへい体10をブロック毎に接着部13を切り離
し治具で切り離すだけで、各上段、中間、下段嵌め込み
み原子炉しゃへい体10a,10b,10cの複数のブロック
に容易に分離して取り出すことができる。
As a result, in the reactor shield body 8, the reactor shield body 8 is disassembled because the reactor shield body 10 is fitted in the high radiation area where the radioactive waste treatment is required. At any time, the in-fit reactor shield body 10 can be easily separated into a plurality of blocks of the upper, middle, and lower-stage inlaid reactor shield bodies 10a, 10b, 10c simply by separating the adhesive portion 13 for each block and separating with a jig. Can be taken out.

【0037】従って、解体作業の工程や工数が削減され
ると共に、放射化箇所が嵌め込み原子炉しゃへい体10ま
たは、その近傍に特定できるのでコンリート放射性廃棄
物が削減できる。さらに、解体時における原子炉しゃへ
い体3内の切断装置4の据付け調整やブレード5の交換
等の作業が不要となるため、作業員の被曝が大幅に低減
される。
Therefore, the steps and man-hours of the dismantling work can be reduced, and since the activation site can be fitted to the reactor shield 10 or its vicinity, the radioactive waste can be reduced. Further, since work such as installation adjustment of the cutting device 4 in the nuclear reactor shield 3 and replacement of the blades 5 at the time of disassembling is unnecessary, the radiation exposure of workers is greatly reduced.

【0038】[0038]

【発明の効果】以上本発明によれば、原子炉しゃへい体
の放射化箇所の解体作業に際して大規模な切断装置を必
要としないため、作業工程、工数および放射性廃棄物の
削減ができて作業期間も短縮できる。また、切断に先立
ち、原子炉しゃへい体の内部における作業員による切断
装置の据付け、調整やブレード交換等の作業が不要とな
るため、作業員の被曝を低減する効果がある。
As described above, according to the present invention, since a large-scale cutting device is not required for the dismantling work of the activation part of the reactor shield, it is possible to reduce the working process, the number of man-hours and the radioactive waste, and the working period. Can also be shortened. Further, prior to cutting, there is no need for a worker to install, adjust, or replace the blade inside the shielded body of the nuclear reactor, which has the effect of reducing the exposure of the worker.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の原子炉しゃへい体の断
面図。
FIG. 1 is a cross-sectional view of a nuclear reactor shield according to an embodiment of the present invention.

【図2】本発明に係る一実施例のB部原子炉しゃへい体
の凹状部拡大断面図。
FIG. 2 is an enlarged cross-sectional view of a concave portion of a B-section nuclear reactor shield according to an embodiment of the present invention.

【図3】本発明に係る一実施例の上段嵌め込み原子炉し
ゃへい体斜視図。
FIG. 3 is a perspective view of an upper fitting nuclear reactor shield body according to an embodiment of the present invention.

【図4】本発明に係る一実施例の中間嵌め込み原子炉し
ゃへい体斜視図。
FIG. 4 is a perspective view of an intermediate fitting nuclear reactor shield according to an embodiment of the present invention.

【図5】本発明に係る一実施例の下段嵌め込み原子炉し
ゃへい体斜視図。
FIG. 5 is a perspective view of a lower-stage inlaid reactor shield body according to an embodiment of the present invention.

【図6】本発明に係る一実施例のB部原子炉しゃへい体
で図1のA−A矢視断面図。
FIG. 6 is a cross-sectional view taken along the line AA of FIG. 1 showing a B-section nuclear reactor shield according to an embodiment of the present invention.

【図7】本発明に係る一実施例の嵌め込み原子炉しゃへ
い体の一部切断斜視図。
FIG. 7 is a partially cutaway perspective view of an embedded nuclear reactor shield according to an embodiment of the present invention.

【図8】従来の原子炉しゃへい体の断面図。FIG. 8 is a sectional view of a conventional nuclear reactor shield.

【図9】従来の切断装置の設置斜視図。FIG. 9 is an installation perspective view of a conventional cutting device.

【図10】コンクリート厚さに対する中性子線の減衰率
特性図。
FIG. 10 is a neutron beam attenuation rate characteristic diagram with respect to concrete thickness.

【符号の説明】[Explanation of symbols]

1…原子炉燃料、2…原子炉圧力容器、3,8…原子炉
しゃへい体、3a,8a…A部原子炉しゃへい体、3
b,8b…B部原子炉しゃへい体、4…切断装置、5…
ブレード、6…切断片、7…把持機、9…凹状部、10…
嵌め込み原子炉しゃへい体、10a…上段嵌め込み原子炉
しゃへい体、10b…中間嵌め込み原子炉しゃへい体、10
c…下段嵌め込み原子炉しゃへい体、11a〜11c…凸
部、12…凹部、13…接着部、14…接合部。
1 ... Reactor fuel, 2 ... Reactor pressure vessel, 3, 8 ... Reactor shield, 3a, 8a ... A part reactor shield, 3
b, 8b ... B part reactor shield, 4 ... cutting device, 5 ...
Blade, 6 ... Cutting piece, 7 ... Gripping machine, 9 ... Recessed portion, 10 ...
Fitting reactor shield, 10a ... Upper fitting reactor shield, 10b ... Intermediate fitting reactor shield, 10
c ... Lower-stage fitted reactor shield body, 11a to 11c ... Convex portion, 12 ... Recessed portion, 13 ... Adhesive portion, 14 ... Joined portion.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原子炉圧力容器の周囲に設ける原子炉し
ゃへい体において、原子炉しゃへい体で放射線照射量の
多い領域に中性子しゃへい材を使用して複数に分割され
たブロック構造のしゃへい体を分離可能に装着したこと
を特徴とする原子炉しゃへい体。
1. A shielded body having a block structure divided into a plurality of parts using a neutron shield material in a region of the reactor shielded body having a large radiation dose in a reactor shielded body provided around a reactor pressure vessel. Reactor shield body characterized by being installed as much as possible.
JP5219836A 1993-09-03 1993-09-03 Reactor shielding body Pending JPH0772294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5219836A JPH0772294A (en) 1993-09-03 1993-09-03 Reactor shielding body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5219836A JPH0772294A (en) 1993-09-03 1993-09-03 Reactor shielding body

Publications (1)

Publication Number Publication Date
JPH0772294A true JPH0772294A (en) 1995-03-17

Family

ID=16741817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5219836A Pending JPH0772294A (en) 1993-09-03 1993-09-03 Reactor shielding body

Country Status (1)

Country Link
JP (1) JPH0772294A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304070A (en) * 2006-05-15 2007-11-22 Taisei Corp Shielding structure of nuclear reactor pressure vessel
JP2008525809A (en) * 2004-12-29 2008-07-17 ゲゼルシャフト フューア シュヴェリオネンフォーシュング エム.ベー.ハー Multi-layer radiation barrier and radiation protection room
JP2012093233A (en) * 2010-10-27 2012-05-17 Toshiba Corp Ray-shielding equipment
CN112489827A (en) * 2020-11-26 2021-03-12 中广核研究院有限公司 Shielding structure for compactly arranging small stacks
CN112530608A (en) * 2020-11-26 2021-03-19 中广核研究院有限公司 Near-stack shielding device for small stack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525809A (en) * 2004-12-29 2008-07-17 ゲゼルシャフト フューア シュヴェリオネンフォーシュング エム.ベー.ハー Multi-layer radiation barrier and radiation protection room
JP2007304070A (en) * 2006-05-15 2007-11-22 Taisei Corp Shielding structure of nuclear reactor pressure vessel
JP2012093233A (en) * 2010-10-27 2012-05-17 Toshiba Corp Ray-shielding equipment
CN112489827A (en) * 2020-11-26 2021-03-12 中广核研究院有限公司 Shielding structure for compactly arranging small stacks
CN112530608A (en) * 2020-11-26 2021-03-19 中广核研究院有限公司 Near-stack shielding device for small stack
CN112530608B (en) * 2020-11-26 2024-03-01 中广核研究院有限公司 Near stack shielding device for small stacks

Similar Documents

Publication Publication Date Title
ES2048166T3 (en) THIN WALLS CHANNEL.
JPH06103359B2 (en) Storage cask for radioactive structure and method of making the same
JPH0772294A (en) Reactor shielding body
JPH04158297A (en) Cutting out of large sized block of activation part in biological shielding structure of nuclear reactor
JP2017125715A (en) Neutron shielding body
JPS6191599A (en) Radiation shielding block
Son et al. The assessment and reduction plan of radiation exposure during decommissioning of the steam generator in Kori Unit 1
WO2020166355A1 (en) Shielding body and radioactivation suppression structure
KR102244627B1 (en) Method for dismantling reactor vessel
JPH0758354B2 (en) How to dismantle the reactor building
JP2912391B2 (en) Nuclear facility heat shield
JPH02201291A (en) Operating method of reactor
JP6933593B2 (en) Support structure of spent nuclear fuel, manufacturing method of support structure and spent nuclear fuel container
JPS6144400A (en) Method of overhauling concrete structure
CN211207989U (en) Shielding device of AP1000 main pump
JPS631557B2 (en)
KR102035852B1 (en) Decommissioning method of biodegradable concrete of pwr type nuclear power plant
JP2769333B2 (en) Heat shield
JPS61108993A (en) Nuclear-reactor biological shielding wall structure
JPS6256473B2 (en)
Yanagihara et al. Diamond sawing and coring technique for biological shield concrete dismantlement
CN116230280A (en) Split-type shielding building block without direct through gap
RU2577783C1 (en) Process channel combined for industrial nuclear plant
JP2014098570A (en) Opening formation method
JPS6231920Y2 (en)