JPH0772113A - Oxygen sensor controller for internal combustion engine - Google Patents

Oxygen sensor controller for internal combustion engine

Info

Publication number
JPH0772113A
JPH0772113A JP5220053A JP22005393A JPH0772113A JP H0772113 A JPH0772113 A JP H0772113A JP 5220053 A JP5220053 A JP 5220053A JP 22005393 A JP22005393 A JP 22005393A JP H0772113 A JPH0772113 A JP H0772113A
Authority
JP
Japan
Prior art keywords
oxygen sensor
output
differential circuit
circuit
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5220053A
Other languages
Japanese (ja)
Inventor
Yoichi Iwata
洋一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5220053A priority Critical patent/JPH0772113A/en
Publication of JPH0772113A publication Critical patent/JPH0772113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make it possible to prevent the generation of a low frequency oscillation concerning an oxygen sensor controller of an internal combustion engine. CONSTITUTION:A differential circuit 11 is supplied with an output voltage of an oxygen sensor 10 and output voltages of voltage generation circuits V1 and (r). A negative feedback circuit R feeds back an output of the differential circuit negatively to the differential circuit 11 to control current flowing through the oxygen sensor. A positive feedback circuit R2 feeds back an output signal of a low pass filter for removing a high pass component of the output of the differential circuit positively to the differential circuit 11. An impedance element R3 is provided in series or in parallel with the oxygen sensor 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の酸素センサ制
御装置に関し、内燃機関の空燃比を検出するのに利用さ
れる限界電流型の酸素センサの制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen sensor control device for an internal combustion engine, and more particularly to a limiting current type oxygen sensor control device used for detecting the air-fuel ratio of the internal combustion engine.

【0002】[0002]

【従来の技術】従来より、特開平2−110858号に
記載されたような酸素センサ制御装置がある。この従来
装置は、図2に示す如く、一端を電源V0 に接続された
限界電流型の酸素センサ10の他端は差動回路である演
算増幅器(オペアンプ)11の反転入力端子に接続さ
れ、オペアンプ11の非反転入力端子は抵抗rを介して
電源V1 に接続され、電源V1 は電源V0 に接続されて
いる。オペアンプ11の出力端子は負帰還回路としての
抵抗R1 を介して反転入力端子に接続されており、オペ
アンプ11の出力は低域フィルタ12を通して端子15
より出力される。また、端子15は正帰還回路としての
抵抗R2 を介してオペアンプ11の非反転入力端子に接
続されている。
2. Description of the Related Art Conventionally, there is an oxygen sensor control device as described in JP-A-2-110858. In this conventional device, as shown in FIG. 2, one end of a limiting current type oxygen sensor 10 whose one end is connected to a power source V 0 is connected to the inverting input terminal of an operational amplifier (opamp) 11 which is a differential circuit. the non-inverting input terminal of the operational amplifier 11 is connected via a resistor r to the power supply V 1, the power supply V 1 is connected to a power supply V 0. The output terminal of the operational amplifier 11 is connected to the inverting input terminal via the resistor R 1 as a negative feedback circuit, and the output of the operational amplifier 11 passes through the low-pass filter 12 and the terminal 15
Will be output. Further, the terminal 15 is connected to the non-inverting input terminal of the operational amplifier 11 via the resistor R 2 as a positive feedback circuit.

【0003】上記の酸素センサ10は固体電解質本体上
の電極上に拡散律速層を形成したもので、両端電極間の
飽和電流(限界電流)値が空燃比に対して比例関係にあ
る。オペアンプ11の出力を抵抗R1 を介して負帰還す
ることにより、オペアンプ11は酸素センサ10の両端
電極間を設定電圧に維持した上で、上記酸素センサ10
を流れる電流(ポンプ電流)に応じた電流を取り出す。
The oxygen sensor 10 described above has a diffusion-controlling layer formed on the electrodes on the solid electrolyte body, and the saturation current (limit current) value between both electrodes is proportional to the air-fuel ratio. By negatively feeding back the output of the operational amplifier 11 via the resistor R 1 , the operational amplifier 11 maintains the voltage between both electrodes of the oxygen sensor 10 at the set voltage, and then the oxygen sensor 10 is operated.
A current corresponding to the current flowing through (pump current) is taken out.

【0004】また、電源V0 は酸素センサ10の出力電
流が正となるようオフセットさせている。電源V1 は酸
素センサ10の起電力に相当するもので、抵抗rはセン
サの内部抵抗(インピーダンスの実数部のみ)に相当す
る。低域フィルタ12はオペアンプ11出力の交流分を
遮断してポンプ電流に応じた電流を取り出し、帰還抵抗
2 はポンプ電流に応じた電流を抵抗rに流し、オペア
ンプ11の非反転入力端子電圧を上昇させる。これによ
り、酸素センサ10の印加電圧を全空燃比にわたって飽
和領域を通過させ、限界電流の測定範囲を拡大してい
る。
The power source V 0 is offset so that the output current of the oxygen sensor 10 becomes positive. The power supply V 1 corresponds to the electromotive force of the oxygen sensor 10, and the resistance r corresponds to the internal resistance of the sensor (only the real part of the impedance). The low-pass filter 12 cuts off the alternating current component of the output of the operational amplifier 11 to take out a current corresponding to the pump current, and the feedback resistor R 2 causes a current corresponding to the pump current to flow through the resistor r, so that the non-inverting input terminal voltage of the operational amplifier 11 is changed. To raise. As a result, the voltage applied to the oxygen sensor 10 passes through the saturation region over the entire air-fuel ratio, and the measurement range of the limiting current is expanded.

【0005】[0005]

【発明が解決しようとする課題】従来装置では低域フィ
ルタ12の出力を抵抗R2 を介して正帰還しており、低
域フィルタ12で遮断できる例えば100Hz以上の高
周波数の発振は防止できるが、酸素センサ10のインピ
ーダンスが小さい場合、低域フィルタ12の通過域(1
00Hz未満)の低周波数の発振を防止できない。ま
た、酸素センサ出力はエンジン制御に使用され、高い応
答性が望まれるため安易に低周波数成分を除去すること
はできない。
In the conventional device, the output of the low-pass filter 12 is positively fed back through the resistor R 2, and it is possible to prevent oscillation at a high frequency of, for example, 100 Hz or higher which can be cut off by the low-pass filter 12. , If the impedance of the oxygen sensor 10 is small, the pass band (1
Oscillation of low frequency (less than 00 Hz) cannot be prevented. Further, the oxygen sensor output is used for engine control, and since high responsiveness is desired, low frequency components cannot be easily removed.

【0006】現在使用されている酸素センサは酸化ジル
コニアの固体電解質をプラチナ電極で挟む構造で単一構
造ではなく、インピーダンス特性は周波数fによって変
化し、図3に示す如く複素平面上に2つの半円を描き、
高周波数では低周波数に比してインピーダンスが小さく
なる傾向がある。特に分極容量の大きい酸素センサでは
周波数10Hz程度の低周波数でのインピーダンスが直
流時に比べはるかに小さくなる。
The oxygen sensor currently used has a structure in which a solid electrolyte of zirconia oxide is sandwiched between platinum electrodes, and the impedance characteristic changes depending on the frequency f. As shown in FIG. Draw a circle,
At high frequencies, the impedance tends to be smaller than at low frequencies. Particularly in an oxygen sensor having a large polarization capacity, the impedance at a low frequency of about 10 Hz is much smaller than that at the time of direct current.

【0007】一方、酸素センサの近傍にはセンサ活性化
のためにヒータが設けられ、このヒータは10Hz程度
の低周波数でオン・オフされることが多く、このヒータ
のオン・オフに伴う誘導ノイズが酸素センサ出力に混入
しやすい。このため、従来装置では低周波発振を生じる
ことがあるという問題があった。
On the other hand, a heater is provided in the vicinity of the oxygen sensor for activating the sensor, and this heater is often turned on and off at a low frequency of about 10 Hz. Easily mixes with the oxygen sensor output. Therefore, the conventional device has a problem that low frequency oscillation may occur.

【0008】本発明は上記の点に鑑みなされたもので、
酸素センサと直列又は並列にインピーダンス素子を設け
ることにより、低周波発振の発生を防止する内燃機関の
酸素センサ制御装置を提供することを目的とする。
The present invention has been made in view of the above points,
It is an object of the present invention to provide an oxygen sensor control device for an internal combustion engine that prevents occurrence of low frequency oscillation by providing an impedance element in series or in parallel with the oxygen sensor.

【0009】[0009]

【課題を解決するための手段】本発明の内燃機関の酸素
センサ制御装置は、内燃機関の空燃比に応じて飽和電流
が変化する限界電流型酸素センサと、上記酸素センサの
起電力に相当する所定電圧を発生して上記酸素センサの
内部抵抗に相当する抵抗を通して出力する電圧発生回路
と、上記酸素センサの出力電圧と上記電圧発生回路の出
力電圧とを夫々反転入力端子と非反転入力端子に供給さ
れる差動回路と、上記差動回路出力を差動回路の酸素セ
ンサ出力の入力端子に負帰還して酸素センサに流れる電
流を制御する負帰還回路と、上記差動回路出力の高域成
分を除去する低域フィルタと、上記低域フィルタの出力
信号を上記差動回路の電圧発生回路出力の入力端子に正
帰還する正帰還回路とを有し、上記酸素センサを流れる
電流に応じた電流を上記低域フィルタから出力する内燃
機関の酸素センサ制御装置において、上記酸素センサと
直列又は並列にインピーダンス素子を設け、上記インピ
ーダンス素子を通した酸素センサ出力を上記差動回路に
供給する。
An oxygen sensor control apparatus for an internal combustion engine according to the present invention corresponds to a limiting current type oxygen sensor whose saturation current changes according to the air-fuel ratio of the internal combustion engine, and an electromotive force of the oxygen sensor. A voltage generating circuit that generates a predetermined voltage and outputs it through a resistance corresponding to the internal resistance of the oxygen sensor, and an output voltage of the oxygen sensor and an output voltage of the voltage generating circuit are applied to an inverting input terminal and a non-inverting input terminal, respectively. The supplied differential circuit, a negative feedback circuit that negatively feeds back the differential circuit output to the input terminal of the oxygen sensor output of the differential circuit to control the current flowing to the oxygen sensor, and the high range of the differential circuit output. It has a low-pass filter that removes components, and a positive feedback circuit that positively feeds back the output signal of the low-pass filter to the input terminal of the output of the voltage generation circuit of the differential circuit, and responds to the current flowing through the oxygen sensor. Electric current In the oxygen sensor control apparatus for an internal combustion engine that outputs from the low-pass filter, an impedance element provided in the oxygen sensor in series or in parallel, supplying oxygen sensor output through the impedance element to said differential circuit.

【0010】[0010]

【作用】本発明においては、インピーダンス素子を酸素
センサと直列又は並列に設けることにより、酸素センサ
のインピーダンスを見掛け上増加させ、低周波発振が発
生しないような回路状態とする。
In the present invention, the impedance element is provided in series or in parallel with the oxygen sensor so that the impedance of the oxygen sensor is apparently increased, and the circuit state is such that low frequency oscillation does not occur.

【0011】[0011]

【実施例】図1は本発明装置の一実施例の回路図を示
す。同図中、図2と同一部分には同一符号を付し、その
説明を省略する。
FIG. 1 shows a circuit diagram of an embodiment of the device of the present invention. 2, those parts which are the same as those corresponding parts in FIG. 2 are designated by the same reference numerals, and a description thereof will be omitted.

【0012】図1において、酸素センサ10は内燃機関
の排気管中に固定されており、安定化ジルコニア等で形
成した筒状の固体電解質本体上の内周及び外周夫々に一
対の電極を形成し、外周の電極上に例えばアルミナを焼
結して拡散律速層を形成して構成されている。この拡散
律速層は排気管中の排気ガスに接触しており、一対の電
極間の飽和電流値が上記排気ガスの空燃比に対して比例
関係にある。オペアンプ11は酸素センサ10の両端電
極間を設定電圧に維持した上で酸素センサ10を流る電
流を取り出し、低域フィルタ12を介して端子15より
出力する。
In FIG. 1, an oxygen sensor 10 is fixed in an exhaust pipe of an internal combustion engine, and a pair of electrodes are formed on the inner and outer circumferences of a cylindrical solid electrolyte body made of stabilized zirconia or the like. , A diffusion-controlling layer is formed by sintering alumina, for example, on the outer peripheral electrodes. The diffusion-controlling layer is in contact with the exhaust gas in the exhaust pipe, and the saturation current value between the pair of electrodes is proportional to the air-fuel ratio of the exhaust gas. The operational amplifier 11 keeps a voltage between both electrodes of the oxygen sensor 10 at a set voltage and then takes out a current flowing through the oxygen sensor 10 and outputs it from a terminal 15 via a low-pass filter 12.

【0013】上記の酸素センサ10と直列にインピーダ
ンス素子としての抵抗R3 が接続され、酸素センサ10
の他端はこの抵抗R3 を介して、オペアンプ11の反転
入力端子11に接続されている。
A resistor R 3 as an impedance element is connected in series with the oxygen sensor 10 described above.
The other end of is connected to the inverting input terminal 11 of the operational amplifier 11 via this resistor R 3 .

【0014】ここで、オペアンプ11の非反転入力端子
及び反転入力端子の交流入力信号をVIN,オペアンプ1
1の出力信号をV3 端子15の交流出力信号をVOUT
酸素センサ10のインピーダンスをZ(Z=a+b
i),このインピーダンスZに抵抗R3 を含むインピー
ダンスをZa(Za=R3 +Z),低域フィルタ12の
ゲインをGとすると、次式の関係がある。
Here, the AC input signals of the non-inverting input terminal and the inverting input terminal of the operational amplifier 11 are V IN and the operational amplifier 1
1 is the output signal of V 3 and the AC output signal of the terminal 15 is V OUT ,
Set the impedance of the oxygen sensor 10 to Z (Z = a + b
i), the impedance including the resistance R 3 in this impedance Z is Za (Za = R 3 + Z), and the gain of the low-pass filter 12 is G.

【0015】[0015]

【数1】 (1)式に(3)式を代入すると、[Equation 1] Substituting equation (3) into equation (1),

【0016】[0016]

【数2】 この式を変形すると、[Equation 2] When this equation is transformed,

【0017】[0017]

【数3】 (4)式をVINについて解き、(3)式に代入すると、[Equation 3] Solving equation (4) for V IN and substituting equation (3),

【0018】[0018]

【数4】 上記(5)式の右辺の分母が0のときが発振条件である
ので、この分母が正であれば発振を防止できる。従っ
て、
[Equation 4] Since the oscillation condition is when the denominator on the right side of the above equation (5) is 0, oscillation can be prevented if this denominator is positive. Therefore,

【0019】[0019]

【数5】 抵抗R3 は(6)式を満足するもののうち、できるだけ
値の小さいものを選択する。更に、酸素センサ10のイ
ンピーダンスを抵抗R3 で補償したことに対応して、セ
ンサの内部抵抗に相当する抵抗rの抵抗値は酸素センサ
10の内部抵抗(インピーダンスZの実数部a)に抵抗
3 を加算した値とする。つまり(6)式から
[Equation 5] As the resistor R 3, one having a value as small as possible is selected among those satisfying the expression (6). Further, the resistance value of the resistor r corresponding to the internal resistance of the oxygen sensor 10 corresponds to the internal resistance of the oxygen sensor 10 (the real part a of the impedance Z) and the resistance R 3 corresponding to the impedance of the oxygen sensor 10 being compensated by the resistance R 3. The value is the sum of 3 . In other words, from equation (6)

【0020】[0020]

【数6】 とすることにより、酸素センサ10の見掛け上のインピ
ーダンスを増加させて低周波発振が発生しないような回
路状態とし、酸素センサ10の温度が上昇しインピーダ
ンスZが低下した場合でも、正帰還に起因する発振が発
生することがない。
[Equation 6] As a result, the apparent impedance of the oxygen sensor 10 is increased to a circuit state in which low frequency oscillation does not occur, and even if the temperature of the oxygen sensor 10 rises and the impedance Z decreases, the positive feedback results. Oscillation does not occur.

【0021】また、従来装置では電源V1 に高周波の交
流電圧を重畳させて酸素センサ10の温度と比例関係に
あるインピーダンスZを一定とするような制御を行なっ
ているが、本発明装置にも上記の制御をそのまま取り入
れることができ、この場合も低周波発振を防止すること
ができる。
In the conventional device, a high-frequency AC voltage is superimposed on the power source V 1 to control the impedance Z, which is proportional to the temperature of the oxygen sensor 10, to be constant. The above control can be incorporated as it is, and also in this case, low frequency oscillation can be prevented.

【0022】なお、インピーダンス素子としてはコンデ
ンサ又はコイル等の他のインピーダンス素子を用いても
良い。コンデンサの場合は酸素センサ10と並列に設
け、酸素センサ10の見掛け上のインピーダンスを増加
させるようにする。
As the impedance element, another impedance element such as a capacitor or a coil may be used. In the case of a capacitor, the oxygen sensor 10 is provided in parallel to increase the apparent impedance of the oxygen sensor 10.

【0023】[0023]

【発明の効果】上述の如く、本発明の内燃機関の酸素セ
ンサ制御装置によれば、酸素センサと直列にインピーダ
ンス素子を設けることにより、低周波発振の発生を防止
することができ、実用上きわめて有用である。
As described above, according to the oxygen sensor control apparatus for an internal combustion engine of the present invention, by providing the impedance element in series with the oxygen sensor, the occurrence of low frequency oscillation can be prevented, which is extremely practical. It is useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の回路図である。FIG. 1 is a circuit diagram of a device of the present invention.

【図2】従来装置の回路図である。FIG. 2 is a circuit diagram of a conventional device.

【図3】酸素センサのインピーダンス特性を示す図であ
る。
FIG. 3 is a diagram showing impedance characteristics of an oxygen sensor.

【符号の説明】[Explanation of symbols]

10 酸素センサ 11 演算増幅器(オペアンプ) 12 低域フィルタ r 抵抗 R1 負帰還抵抗 R2 正帰還抵抗 R3 抵抗10 Oxygen Sensor 11 Operational Amplifier (Op Amp) 12 Low-pass Filter r Resistance R 1 Negative Feedback Resistance R 2 Positive Feedback Resistance R 3 Resistance

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の空燃比に応じて飽和電流が変
化する限界電流型酸素センサと、上記酸素センサの起電
力に相当する所定電圧を発生して上記酸素センサの内部
抵抗に相当する抵抗を通して出力する電圧発生回路と、
上記酸素センサの出力電圧と上記電圧発生回路の出力電
圧とを夫々反転入力端子と非反転入力端子に供給される
差動回路と、上記差動回路出力を差動回路の酸素センサ
出力の入力端子に負帰還して酸素センサに流れる電流を
制御する負帰還回路と、上記差動回路出力の高域成分を
除去する低域フィルタと、上記低域フィルタの出力信号
を上記差動回路の電圧発生回路出力の入力端子に正帰還
する正帰還回路とを有し、上記酸素センサを流れる電流
に応じた電流を上記低域フィルタから出力する内燃機関
の酸素センサ制御装置において、 上記酸素センサと直列又は並列にインピーダンス素子を
設け、上記インピーダンス素子を通した酸素センサ出力
を上記差動回路に供給するよう構成したことを特徴とす
る内燃機関の酸素センサ制御装置。
1. A limiting current type oxygen sensor whose saturation current changes according to the air-fuel ratio of an internal combustion engine, and a resistance corresponding to the internal resistance of the oxygen sensor, which generates a predetermined voltage corresponding to the electromotive force of the oxygen sensor. Voltage generation circuit that outputs through
A differential circuit in which the output voltage of the oxygen sensor and the output voltage of the voltage generation circuit are supplied to an inverting input terminal and a non-inverting input terminal, respectively, and the differential circuit output is an input terminal of the oxygen sensor output of the differential circuit. Negative feedback circuit that controls the current flowing through the oxygen sensor by negative feedback to the low-pass filter that removes the high-frequency component of the differential circuit output, and the output signal of the low-pass filter to generate the voltage of the differential circuit. A positive feedback circuit that positively feeds back to the input terminal of the circuit output, in an oxygen sensor control device of an internal combustion engine that outputs a current according to the current flowing through the oxygen sensor from the low-pass filter, in series with the oxygen sensor or An oxygen sensor control device for an internal combustion engine, wherein impedance elements are provided in parallel, and the oxygen sensor output through the impedance elements is supplied to the differential circuit.
JP5220053A 1993-09-03 1993-09-03 Oxygen sensor controller for internal combustion engine Pending JPH0772113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5220053A JPH0772113A (en) 1993-09-03 1993-09-03 Oxygen sensor controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5220053A JPH0772113A (en) 1993-09-03 1993-09-03 Oxygen sensor controller for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0772113A true JPH0772113A (en) 1995-03-17

Family

ID=16745195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5220053A Pending JPH0772113A (en) 1993-09-03 1993-09-03 Oxygen sensor controller for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0772113A (en)

Similar Documents

Publication Publication Date Title
US8052863B2 (en) Gas sensor control apparatus designed to ensure accuracy of measurement in gas sensor
US6083370A (en) Gas sensor
EP0136144B1 (en) Engine air/fuel ratio sensing device
JP2008102056A (en) Gas concentration detection device
JP2008203142A (en) Sensor control apparatus
US7288175B2 (en) Noiseless gas concentration measurement apparatus
US5181420A (en) Hot wire air flow meter
JP5563734B2 (en) Electronic load device and battery internal resistance measuring device
US6763697B2 (en) Method and device for operating a linear lambda probe
US6160404A (en) Circuit for measuring the electrode current of a ceramic gas sensor
JP5041488B2 (en) Sensor control device
US5632883A (en) Method and a device for detecting the oxygen content in gases
JPH0772113A (en) Oxygen sensor controller for internal combustion engine
JPH11344466A (en) Heater control device of gas concentration sensor
JPH10153576A (en) Air-fuel ratio sensor
JP6110262B2 (en) Sensor control device
KR100230537B1 (en) Device for finding the concentration of a component in a gas mixture
JP2009042242A (en) Control device for gas concentration sensor
JP3969627B2 (en) Gas sensor
JP2008304272A (en) Gas concentration detector
JPS59208451A (en) Air-fuel ratio sensor for engine
JP3695408B2 (en) Control device for gas concentration sensor
JP2019056673A (en) Sensor control device
JP2007127540A (en) Sensor control device
JP2007057544A (en) Control device for gas concentration sensor