JPH0772090A - Setting method for observation depth in crystal defect detector - Google Patents

Setting method for observation depth in crystal defect detector

Info

Publication number
JPH0772090A
JPH0772090A JP22000093A JP22000093A JPH0772090A JP H0772090 A JPH0772090 A JP H0772090A JP 22000093 A JP22000093 A JP 22000093A JP 22000093 A JP22000093 A JP 22000093A JP H0772090 A JPH0772090 A JP H0772090A
Authority
JP
Japan
Prior art keywords
crystal
objective lens
optical system
crystal surface
observation optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22000093A
Other languages
Japanese (ja)
Other versions
JP3366066B2 (en
Inventor
Tomoya Ogawa
智哉 小川
Nagafumi Nangou
脩史 南郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RATOTSUKU SYST ENG KK
Original Assignee
RATOTSUKU SYST ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RATOTSUKU SYST ENG KK filed Critical RATOTSUKU SYST ENG KK
Priority to JP22000093A priority Critical patent/JP3366066B2/en
Publication of JPH0772090A publication Critical patent/JPH0772090A/en
Application granted granted Critical
Publication of JP3366066B2 publication Critical patent/JP3366066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To always correctly detect a crystal defect at a predetermined depth from the surface of the crystal by automatically correcting and maintaining constant a relative distance between the surface of the crystal and an objective lens even when the distance is changed. CONSTITUTION:A half mirror 5 is set between an objective lens 3 and a sensor 4 of an observation optical system. A spot beam S for focusing is applied to the objective lens from the outside via the half mirror. A distance d0 between the objective lens and a crystal surface 2 is adjusted so that the spot beam is focused on the crystal surface 2. Moreover, a reflected light S' of the spot beam focused on the crystal surface and reflected at the crystal surface is taken outside via the objective lens and half mirror. A half-split photodetecting means 6 is arranged at a position where the reflected light forms an image. The distance between the objective lens of the observation optical system and the crystal surface 2 is feedback-controlled so as to make photodetecting intensities at two surface 61, 62 of the photodetecting means equal to each other at all times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶表面から所定深さ
位置の結晶欠陥を常に正確に検出することのできるよう
にした結晶欠陥検出装置における観察深度設定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for setting an observation depth in a crystal defect detecting apparatus which can always accurately detect a crystal defect at a predetermined depth from a crystal surface.

【0002】[0002]

【従来の技術】半導体結晶は赤外線を透過する性質を有
する。従来、この性質を利用して、図4に示すような方
法で結晶内に存在する結晶欠陥の検出が行なわれてい
た。すなわち、図4において、41は欠陥検出対象たる
半導体結晶などのウェハ、42は対物レンズ、43はC
CDセンサあるいはフォトダイオードアレイなどのセン
サであって、欠陥を観測すべき所定の深さΔz位置にお
いて、赤外線レーザービームBを結晶側壁面44から結
晶内に入射するとともに、対物レンズ42のピントを当
該深さΔz位置に合わせ、赤外線レーザービームBと対
物レンズ42の光軸との交点位置に存在する結晶欠陥d
からの散乱光を対物レンズ42で集光してセンサ43上
に結像することにより、結晶欠陥を検出するようにして
いた。
2. Description of the Related Art Semiconductor crystals have a property of transmitting infrared rays. Conventionally, by utilizing this property, crystal defects existing in the crystal have been detected by the method shown in FIG. That is, in FIG. 4, 41 is a wafer such as a semiconductor crystal as a defect detection target, 42 is an objective lens, and 43 is C
In a sensor such as a CD sensor or a photodiode array, the infrared laser beam B is incident on the crystal from the crystal side wall surface 44 and the objective lens 42 is focused at a predetermined depth Δz position where a defect should be observed. A crystal defect d existing at the intersection of the infrared laser beam B and the optical axis of the objective lens 42 in accordance with the depth Δz position.
The crystal defect is detected by condensing the scattered light from the object lens 42 with the objective lens 42 and forming an image on the sensor 43.

【0003】[0003]

【発明が解決しようとする課題】ところで、前記した従
来方法の場合、結晶表面45と対物レンズ42との間の
相対的な距離が変化すると、対物レンズ42のピント位
置が深さΔz位置からずれてしまい、設定した深さΔz
位置の結晶欠陥dを正確に検出することができなくなる
という問題があった。
By the way, in the above-mentioned conventional method, when the relative distance between the crystal surface 45 and the objective lens 42 changes, the focus position of the objective lens 42 deviates from the depth Δz position. And the set depth Δz
There is a problem that the crystal defect d at the position cannot be detected accurately.

【0004】本発明は、上記問題を解決するためになさ
れたもので、その目的とするところは、結晶表面と対物
レンズとの相対的な距離が変化してもこれを自動的に補
正して一定に維持し、結晶表面から所定深さ位置の結晶
欠陥を常に正確に検出することのできるようにした結晶
欠陥検出装置における観察深度設定方法を提供すること
である。
The present invention has been made in order to solve the above problems, and its purpose is to automatically correct even if the relative distance between the crystal surface and the objective lens changes. An object of the present invention is to provide a method for setting an observation depth in a crystal defect detection device, which is kept constant and is capable of always accurately detecting a crystal defect at a predetermined depth position from a crystal surface.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明に係る観察深度設定方法は、観測光学系の対
物レンズとセンサの間にハーフミラーを設け、該ハーフ
ミラーを介して外部からピント合わせ用のスポット光線
を対物レンズに向けて入射し、該ピント合わせ用のスポ
ット光線が結晶表面でそのピントを結ぶように観測光学
系の対物レンズと結晶表面との距離を調節するととも
に、該結晶表面にピントを結ばれたスポット光の結晶表
面からの反射光を前記対物レンズとハーフミラーを介し
て外部に取り出し、該反射光の結像位置に二分割受光手
段を配置し、該二分割受光手段の2つの受光面の受光強
度が同じになるように前記観測光学系の対物レンズと結
晶表面間の距離をフィードバック制御するようにしたも
のである。
In order to achieve the above object, the observation depth setting method according to the present invention is such that a half mirror is provided between an objective lens and a sensor of an observation optical system, and an external device is provided via the half mirror. A spot light for focusing is incident from the objective lens toward the objective lens, and the distance between the objective lens and the crystal surface of the observation optical system is adjusted so that the spot light for focusing connects the focus on the crystal surface, Reflected light from the crystal surface of the spot light focused on the crystal surface is extracted to the outside through the objective lens and a half mirror, and a two-division light receiving means is arranged at an image forming position of the reflected light. The distance between the objective lens of the observation optical system and the crystal surface is feedback-controlled so that the two light receiving surfaces of the divided light receiving means have the same light receiving intensity.

【0006】[0006]

【作用】本発明の原理を図1および図2を参照して説明
する。図1は本発明方法の原理説明図、図2は図1中の
二分割フォトセンサの受光状態の説明図である。図1に
おいて、1は半導体結晶などのウェハ、2はウェハの結
晶表面、3は対物レンズ、4はCCDセンサやフォトダ
イオードアレイなどからなる欠陥検出用のセンサ、5は
ハーフミラー、6は二分割フォトセンサ、7は減算器、
8は観測深度制御手段である。また、Bは結晶欠陥を検
出するための赤外線レーザービーム、Sはピント合わせ
用のスポット光線である。二分割フォトセンサ6は、図
2に示すように、その受光面を中央位置を境として左右
対称に二分割されており、一方の受光面61 の受光出力
は減算器7の一方の入力端子に接続され、他方の受光面
2 の受光出力は減算器7の他方の入力端子に接続され
ている。
The principle of the present invention will be described with reference to FIGS. FIG. 1 is an explanatory diagram of the principle of the method of the present invention, and FIG. 2 is an explanatory diagram of a light receiving state of the two-divided photosensor in FIG. In FIG. 1, 1 is a wafer such as a semiconductor crystal, 2 is a crystal surface of the wafer, 3 is an objective lens, 4 is a defect detection sensor including a CCD sensor or a photodiode array, 5 is a half mirror, and 6 is a two-division. Photo sensor, 7 is a subtractor,
Reference numeral 8 is an observation depth control means. Further, B is an infrared laser beam for detecting crystal defects, and S is a spot beam for focusing. As shown in FIG. 2, the two-divided photosensor 6 is bilaterally symmetrically divided with its light-receiving surface at the center position, and the light-receiving output of one light-receiving surface 6 1 is one input terminal of the subtractor 7. connected to the light-receiving output of the other light receiving surface 6 2 is connected to the other input terminal of the subtracter 7.

【0007】赤外線レーザービームBは、結晶欠陥の観
測を行なうべき所定の深さΔz位置において、ウェハ1
の側壁面から結晶内に向けて入射される。そして、観測
光学系は対物レンズ3のピントが赤外線レーザービーム
Bの通過位置である深さΔz位置に会うように調節され
る。一方、ピント合わせ用のスポット光線Sはハーフミ
ラー5を介して対物レンズ3に入射され、結晶表面2に
照射された後、結晶表面2で反射され、反射光線S′と
なって再びハーフミラー5を介して外部に導き出され
る。
The infrared laser beam B is applied to the wafer 1 at a predetermined depth Δz position where crystal defects are to be observed.
The light is incident from the side wall surface of the inside of the crystal. Then, the observation optical system is adjusted so that the focus of the objective lens 3 meets the depth Δz position which is the passing position of the infrared laser beam B. On the other hand, the spot light beam S for focusing enters the objective lens 3 through the half mirror 5, is irradiated on the crystal surface 2, and then is reflected by the crystal surface 2 to become a reflected light beam S ', and the half mirror 5 again. It is led to the outside through.

【0008】二分割フォトセンサ6は、観測光学系の対
物レンズ3のピントが前記赤外線レーザービームBの深
さ位置Δzに調節された状態において、反射光線S′の
結像スポットが図2(B)に示すように左右の受光面6
1 ,62 に対称に照射されるように配置されている。し
たがって、この状態においては左右の受光面61 と6 2
の受光強度が同じとなり、減算器7の出力は0となって
いる。
The two-divided photo sensor 6 is a pair of observation optical systems.
The focus of the object lens 3 is the depth of the infrared laser beam B.
Of the reflected ray S'in the state adjusted to the position Δz.
As shown in FIG. 2B, the imaging spots are located on the left and right light receiving surfaces 6
1, 62It is arranged so that it is irradiated symmetrically. Shi
Therefore, in this state, the left and right light receiving surfaces 61And 6 2
Has the same received light intensity, and the output of the subtractor 7 becomes 0.
There is.

【0009】上記のような設定状態において、いま観測
光学系の対物レンズ3と結晶表面2の距離d0 が変化す
ると、ピント合わせ用のスポット光線Sの結晶表面2に
おける反射点が変わるため、二分割フォトセンサ6上に
結ばれる反射光線S′の結像スポットは、図2(A)ま
たは(C)に示すように左右に移動し、これに応じて減
算器7の出力は正負に変化する。
If the distance d 0 between the objective lens 3 of the observation optical system and the crystal surface 2 changes in the above-described setting state, the reflection point of the spot light S for focusing on the crystal surface 2 changes, so that The imaging spot of the reflected light beam S ′ formed on the divided photo sensor 6 moves to the left and right as shown in FIG. 2A or 2C, and the output of the subtractor 7 changes to positive or negative in response to this. .

【0010】そこで、この減算器7の出力を観測深度制
御手段8に送り、減算器7の出力が常に0となるように
観測光学系の対物レンズ3と結晶表面2間の距離をフィ
ードバック制御する。したがって、、観測光学系の対物
レンズ3と結晶表面2間の距離は常に観測開始時に調整
した所定の距離d0 に正確に維持されるので、対物レン
ズ3の結晶表面2からのピント深さも常にΔz位置に維
持され、深さΔz位置の結晶欠陥を正確に観測すること
ができる。
Therefore, the output of the subtractor 7 is sent to the observation depth control means 8, and the distance between the objective lens 3 and the crystal surface 2 of the observation optical system is feedback-controlled so that the output of the subtractor 7 is always 0. . Therefore, the distance between the objective lens 3 of the observation optical system and the crystal surface 2 is always accurately maintained at the predetermined distance d 0 adjusted at the start of observation, and the depth of focus of the objective lens 3 from the crystal surface 2 is always maintained. The crystal defect is maintained at the Δz position and the depth Δz position can be accurately observed.

【0011】このため、観測光学系を結晶表面2に沿っ
て走査しても、観測光学系のピントは自動的に結晶表面
2から深さΔz位置に維持され、どのような位置におい
ても結晶表面2から深さΔz位置に存在する結晶欠陥を
正確に検出することができるようになる。
Therefore, even when the observation optical system is scanned along the crystal surface 2, the focus of the observation optical system is automatically maintained from the crystal surface 2 to the depth Δz position, and at any position From 2, it becomes possible to accurately detect the crystal defects existing at the depth Δz position.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図3は、本発明方法を適用して構成した結晶欠陥
検出装置の1実施例のブロック図である。図において、
1は検出対象たる半導体結晶のウェハ、2は結晶表面、
3は対物レンズ、4は赤外線TVカメラ9のCCDセン
サ、5はハーフミラー、6は二分割フォトセンサ、7は
減算器、10は結晶欠陥検出用の赤外線レーザー光源、
11は赤外線レーザー光を所定のビーム径まで絞るため
のレーザー光絞りレンズ、12はピント合わせ用の例え
ばHe−Neレーザー光源、13は反射ミラーである。
なお、図1と同一または同等部分には同一の符号を付し
て示した。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a block diagram of an embodiment of a crystal defect detecting device configured by applying the method of the present invention. In the figure,
1 is a semiconductor crystal wafer to be detected, 2 is a crystal surface,
3 is an objective lens, 4 is a CCD sensor of the infrared TV camera 9, 5 is a half mirror, 6 is a two-division photosensor, 7 is a subtractor, 10 is an infrared laser light source for crystal defect detection,
Reference numeral 11 is a laser light diaphragm lens for narrowing the infrared laser light to a predetermined beam diameter, 12 is a He-Ne laser light source for focusing, and 13 is a reflection mirror.
In addition, the same or equivalent portions as those in FIG. 1 are denoted by the same reference numerals.

【0013】15は移動ステージ16をZ(上下)方向
に移動するためのZ軸移動モータ、17は移動ステージ
16をX方向に移動するためのX軸移動モータ、18は
移動ステージ16をY方向(紙面と直交方向)に移動す
るためのY軸移動モータである。ウェハ1を載せた移動
ステージ16は、これら3つのモータによってX,Y,
Zの三軸方向に自在に移動できるようになされている。
Reference numeral 15 is a Z-axis moving motor for moving the moving stage 16 in the Z (up and down) direction, 17 is an X-axis moving motor for moving the moving stage 16 in the X direction, and 18 is a moving stage 16 in the Y direction. It is a Y-axis movement motor for moving in a direction (perpendicular to the paper surface). The moving stage 16 on which the wafer 1 is placed is moved by X, Y, and
It is designed so that it can move freely in the three Z directions.

【0014】19は観測光学系全体のZ軸方向移動モー
タ、20は観測深度可変用モータであり、これらモータ
を制御することにより、対物レンズ3のピントを希望の
深さ位置Δz位置に合わせるとともに、ピント合わせ用
のレーザースポット光線Sの結晶表面2による反射光線
S′が二分割フォトセンサ6の中央位置(図2(B))
にビームスポットとなって照射されるように調整するも
のである。
Reference numeral 19 is a Z-axis direction moving motor for the entire observation optical system, and 20 is an observation depth variable motor. By controlling these motors, the focus of the objective lens 3 is adjusted to a desired depth position Δz position. , A light beam S'reflected by the crystal surface 2 of the laser spot light beam S for focusing is located at the center position of the two-divided photosensor 6 (FIG. 2B).
It is adjusted so that it is irradiated with a beam spot.

【0015】21は減算器7の減算出力をディジタルデ
ータに変換するA/Dコンバータ、22は赤外線TVカ
メラ6のCCDセンサ4から読み出された画像信号をデ
ィジタルデータに変換するA/Dコンバータ、23は結
晶欠陥の検出処理を行なうコンピュータ、24はコンピ
ュータ23に種々の操作指令を入力するためのキーボー
ド、25は得られた1画面分の結晶欠陥の画像データを
格納するためのフレームメモリ、26はフレームメモリ
25に格納された結晶欠陥の画像データに基づいて結晶
欠陥画像を表示するモニタ装置、27はコンピュータ2
3の制御の下に各モータを駆動制御するモータコントロ
ーラである。
Reference numeral 21 is an A / D converter for converting the subtraction output of the subtractor 7 into digital data, and 22 is an A / D converter for converting the image signal read from the CCD sensor 4 of the infrared TV camera 6 into digital data. Reference numeral 23 is a computer for detecting crystal defects, 24 is a keyboard for inputting various operation commands to the computer 23, 25 is a frame memory for storing the obtained image data of crystal defects for one screen, 26 Is a monitor device for displaying a crystal defect image based on the crystal defect image data stored in the frame memory 25, and 27 is the computer 2
It is a motor controller that drives and controls each motor under the control of 3.

【0016】次に、前記実施例の動作について説明す
る。まず、結晶欠陥の検出対象となるウェハ1を移動ス
テージ16上に載置する。そして、赤外線レーザー光源
10、He−Neレーザー光源12の電源を入れるとと
もに、キーボード24からコンピュータ23に観測深度
Δzと検出開始位置を入力する。モータコントローラ2
7は、コンピュータ23の制御の下に、モータ15,1
7,18を駆動し、移動ステージ16をX,Y,Zの三
軸方向に移動することにより、赤外線レーザービームB
が結晶表面2から指定の観測深度Δz位置で結晶中に入
射されるように位置制御する。
Next, the operation of the above embodiment will be described. First, the wafer 1 which is the target of crystal defect detection is placed on the moving stage 16. Then, the infrared laser light source 10 and the He—Ne laser light source 12 are turned on, and the observation depth Δz and the detection start position are input from the keyboard 24 to the computer 23. Motor controller 2
7 is a motor 15, 1 under the control of the computer 23.
7 and 18 are driven to move the moving stage 16 in the three-axis directions of X, Y, and Z, so that the infrared laser beam B
Position control is performed so that is incident on the crystal surface 2 into the crystal at a designated observation depth Δz position.

【0017】この状態で、Z軸方向移動モータ19と観
測深度可変用モータ20を駆動制御し、対物レンズ3の
ピントが観測深度Δz位置になるように調整するととも
に、He−Neレーザー光源12から照射されたピント
合わせ用のレーザースポット光線Sの結晶表面2からの
反射光線S′が二分割フォトセンサ6の中央位置(図2
(B))にビームスポットとなって照射されるように調
整する。
In this state, the Z-axis direction moving motor 19 and the observation depth varying motor 20 are drive-controlled to adjust the focus of the objective lens 3 to the observation depth Δz position, and from the He-Ne laser light source 12. A reflected beam S ′ of the irradiated laser spot beam S for focusing from the crystal surface 2 is located at the center position of the two-divided photosensor 6 (see FIG. 2).
(B)) is adjusted so that it is irradiated as a beam spot.

【0018】上記調整が完了すると、センサ4上には、
対物レンズ3の光軸と赤外線レーザービームBの交点位
置の画像が結像されるようになる。また、二分割フォト
センサ6には、結晶表面2からの反射光線S′のビーム
スポットがその中央位置に左右対称に照射され、減算器
7の出力は0の状態となる。
When the above adjustment is completed, the sensor 4
An image is formed at the intersection of the optical axis of the objective lens 3 and the infrared laser beam B. Further, the beam spot of the reflected light beam S'from the crystal surface 2 is symmetrically applied to the two-divided photosensor 6 at its central position, and the output of the subtractor 7 becomes zero.

【0019】上記のように調整した後、キーボード24
から検出動作の開始指令を与えると、コンピュータ23
は次のようにして結晶表面2から深さΔz位置に存在す
る結晶欠陥の検出動作を開始する。すなわち、上記レン
ズ3の光軸と赤外線レーザービームBとの交点位置に結
晶欠陥dが存在すると、赤外線レーザービームBの一部
がこの結晶欠陥で散乱される。そして、この結晶欠陥か
らの散乱光は、結晶表面2の上方に配置された対物レン
ズ3によって集光され、CCDセンサ4上に欠陥画像と
なって結像される。
After making the above adjustments, the keyboard 24
When a detection operation start command is given from the computer 23,
Starts the operation of detecting a crystal defect existing at the depth Δz position from the crystal surface 2 as follows. That is, if the crystal defect d exists at the intersection of the optical axis of the lens 3 and the infrared laser beam B, a part of the infrared laser beam B is scattered by the crystal defect. Then, the scattered light from the crystal defect is condensed by the objective lens 3 arranged above the crystal surface 2, and is imaged as a defect image on the CCD sensor 4.

【0020】そして、上記検出動作中、減算器7の出力
はA/Dコンバータ21でディジタルデータに変換さ
れ、コンピュータ23に送られる。コンピュータ23
は、この減算器7からの出力を受け、その出力が常に0
となるようにZ軸方向移動モータ15を駆動制御し、対
物レンズ3と結晶表面2との距離が常にd0 となるよう
にフィードバック制御し、観測光学系による結晶表面か
らの観測深度が常にΔzとなるように制御する。この結
果、対物レンズ3のピントは、常に結晶表面2から深さ
Δzの位置に正確に維持される。
During the above detection operation, the output of the subtractor 7 is converted into digital data by the A / D converter 21 and sent to the computer 23. Computer 23
Receives the output from the subtractor 7, and its output is always 0.
The Z-axis direction moving motor 15 is driven and controlled so that the distance between the objective lens 3 and the crystal surface 2 is always d 0, and the observation depth from the crystal surface by the observation optical system is always Δz. Control so that. As a result, the focus of the objective lens 3 is always accurately maintained at the position of the depth Δz from the crystal surface 2.

【0021】CCDセンサ4上に結像された結晶欠陥の
画像データは、図示を略したCCDセンサ読出回路によ
って画素単位で順次読み出され、A/Dコンバータ22
においてディジタルデータに変換された後、コンピュー
タ23に入力される。コンピュータ23は、このCCD
センサ4から送られてくる結晶欠陥の画像データをフレ
ームメモリ25の対応するアドレス位置に書き込む。
The image data of the crystal defects formed on the CCD sensor 4 is sequentially read out in pixel units by a CCD sensor read circuit (not shown), and the A / D converter 22 is used.
After being converted into digital data in, it is input to the computer 23. The computer 23 uses this CCD
The image data of the crystal defect sent from the sensor 4 is written in the corresponding address position of the frame memory 25.

【0022】次いで、例えば、X軸移動モータ17を駆
動し、移動ステージ16を所定のピッチ、例えばCCD
センサ4の画素単位でX方向に順次移動し、それぞれの
位置における結晶欠陥の検出動作を行ない、それぞれの
位置に存在する結晶欠陥の画像データをフレームメモリ
25に格納していく。このようにしてウェハ1のX方向
全幅に亘って走査を終了すると、結晶表面2から深さΔ
z位置における赤外線レーザービームBに沿った結晶欠
陥像をすべて検出することができる。
Next, for example, the X-axis moving motor 17 is driven to move the moving stage 16 at a predetermined pitch, for example, CCD.
The pixel unit of the sensor 4 is sequentially moved in the X direction, the crystal defect detection operation at each position is performed, and the image data of the crystal defect existing at each position is stored in the frame memory 25. In this way, when scanning is completed over the entire width of the wafer 1 in the X direction, the depth Δ from the crystal surface 2 is increased.
All the crystal defect images along the infrared laser beam B at the z position can be detected.

【0023】次に、Y軸移動モータ18を駆動し、移動
ステージ16を所定のピッチ、例えばCCDセンサ4の
画素単位でY方向(紙面と直交方向)に順次移動しなが
ら、それぞれのY位置において前記したと同様の結晶欠
陥の検出動作を行なう。
Next, the Y-axis moving motor 18 is driven to sequentially move the moving stage 16 in a predetermined pitch, for example, in units of pixels of the CCD sensor 4 in the Y direction (direction orthogonal to the paper surface), and at each Y position. The same crystal defect detection operation as described above is performed.

【0024】このようにして、観測光学系を結晶表面2
の全面について順次走査していくことにより、フレーム
メモリ25には結晶表面2から深さΔz位置における結
晶全面についての結晶欠陥の画像データが得られる。し
たがって、このフレームメモリ25に格納された画像デ
ータをモニタ装置26に表示すれば、結晶表面2から所
定の深さΔz位置におけるすべての結晶欠陥を画像表示
することができる。
In this way, the observation optical system is attached to the crystal surface 2
By sequentially scanning the entire surface of the crystal, image data of crystal defects of the entire surface of the crystal at the depth Δz position from the crystal surface 2 can be obtained in the frame memory 25. Therefore, if the image data stored in the frame memory 25 is displayed on the monitor device 26, all the crystal defects at the predetermined depth Δz position from the crystal surface 2 can be displayed as an image.

【0025】なお、前記実施例は、移動ステージ16の
移動やレンズのピント合わせを各モータによって自動的
に行なうようにしたが、手動で行なってもよいことは勿
論である。また、半導体結晶を例に採ったが、レーザー
に対して透明な結晶であれば、半導体結晶に限らず他の
結晶でも適用可能である。
In the above embodiment, the movement of the moving stage 16 and the focusing of the lens are automatically performed by the respective motors, but it goes without saying that they may be manually performed. Further, although the semiconductor crystal is taken as an example, any crystal other than the semiconductor crystal can be applied as long as it is a crystal transparent to the laser.

【0026】[0026]

【発明の効果】以上説明したように、本発明方法による
ときは、欠陥検出用の赤外線とは別に、ピント合わせ用
のスポット光線を用い、このスポット光線の結晶表面か
らの反射光を利用してフィードバック制御するようにし
たので、結晶表面と対物レンズとの相対的な距離が変化
してもこれを自動的に補正して一定に維持することがで
き、結晶表面から所定深さ位置の結晶欠陥を常に正確に
検出することができる。
As described above, according to the method of the present invention, a spot light for focusing is used in addition to the infrared ray for defect detection, and the reflected light from the crystal surface of this spot light is used. Since feedback control is performed, even if the relative distance between the crystal surface and the objective lens changes, it can be automatically corrected and maintained constant, and crystal defects at a predetermined depth position from the crystal surface can be maintained. Can always be detected accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の原理説明図である。FIG. 1 is a diagram illustrating the principle of the method of the present invention.

【図2】図1中の二分割フォトセンサの受光状態の説明
図である。
FIG. 2 is an explanatory diagram of a light receiving state of a two-divided photosensor in FIG.

【図3】本発明方法を適用して構成した結晶欠陥検出装
置の1実施例のブロック図である。
FIG. 3 is a block diagram of an embodiment of a crystal defect detection device configured by applying the method of the present invention.

【図4】従来方法の原理説明図である。FIG. 4 is a diagram illustrating the principle of a conventional method.

【符号の説明】[Explanation of symbols]

1 ウェハ 2 結晶表面 3 対物レンズ 4 センサ 5 ハーフミラー 6 二分割フォトセンサ 7 減算器 8 観測深度制御手段 B 結晶欠陥検出用の赤外線レーザービーム S ピント合わせ用のスポット光線 S′ 結晶表面からの反射光線 d 結晶欠陥 Δz 結晶表面からの観測深さ d0 対物レンズと結晶表面の距離1 Wafer 2 Crystal Surface 3 Objective Lens 4 Sensor 5 Half Mirror 6 Divided Photosensor 7 Subtractor 8 Observation Depth Control Means B Infrared Laser Beam for Crystal Defect Detection S Spot Light for Focusing S ′ Reflected Light from Crystal Surface d Crystal defect Δz Observation depth from crystal surface d 0 Distance between objective lens and crystal surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも対物レンズとセンサからなる
観測光学系を備え、該観測光学系の対物レンズのピント
を結晶内に入射された赤外線レーザービームの通過経路
上の所定深さ位置に合わせ、該対物レンズのピント位置
に存在する結晶欠陥からの赤外線レーザービームの散乱
光を対物レンズで集光してセンサ上に結像させることに
より、結晶内の所定深さ位置に存在する結晶欠陥を検出
するようにした結晶欠陥検出装置において、 前記観測光学系の対物レンズとセンサの間にハーフミラ
ーを設け、該ハーフミラーを介して外部からピント合わ
せ用のスポット光線を対物レンズに向けて入射し、 該ピント合わせ用のスポット光線が結晶表面でそのピン
トを結ぶように観測光学系の対物レンズと結晶表面との
距離を調節するとともに、該結晶表面にピントを結ばれ
たスポット光の結晶表面からの反射光を前記対物レンズ
とハーフミラーを介して外部に取り出し、 該反射光の結像位置に二分割受光手段を配置し、該二分
割受光手段の2つの受光面の受光強度が同じになるよう
に前記観測光学系の対物レンズと結晶表面間の距離をフ
ィードバック制御することを特徴とする結晶欠陥検出装
置における観察深度設定方法。
1. An observation optical system including at least an objective lens and a sensor is provided, and the focus of the objective lens of the observation optical system is adjusted to a predetermined depth position on the passage path of the infrared laser beam incident on the crystal. By detecting the scattered light of the infrared laser beam from the crystal defect existing at the focus position of the objective lens by the objective lens and forming an image on the sensor, the crystal defect existing at the predetermined depth position in the crystal is detected. In the crystal defect detection device thus configured, a half mirror is provided between the objective lens of the observation optical system and the sensor, and a spot light for focusing is incident from the outside through the half mirror toward the objective lens, The distance between the objective lens of the observation optical system and the crystal surface is adjusted so that the spot light for focusing is focused on the crystal surface. The reflected light from the crystal surface of the spot light focused on the surface is extracted to the outside through the objective lens and the half mirror, and the two-divided light receiving means is arranged at the image forming position of the reflected light. A method for setting an observation depth in a crystal defect detecting apparatus, characterized in that the distance between the objective lens of the observation optical system and the crystal surface is feedback-controlled so that the two light receiving surfaces of the means have the same light receiving intensity.
JP22000093A 1993-09-03 1993-09-03 Observation depth setting method for crystal defect detection device Expired - Lifetime JP3366066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22000093A JP3366066B2 (en) 1993-09-03 1993-09-03 Observation depth setting method for crystal defect detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22000093A JP3366066B2 (en) 1993-09-03 1993-09-03 Observation depth setting method for crystal defect detection device

Publications (2)

Publication Number Publication Date
JPH0772090A true JPH0772090A (en) 1995-03-17
JP3366066B2 JP3366066B2 (en) 2003-01-14

Family

ID=16744366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22000093A Expired - Lifetime JP3366066B2 (en) 1993-09-03 1993-09-03 Observation depth setting method for crystal defect detection device

Country Status (1)

Country Link
JP (1) JP3366066B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023989A1 (en) * 1996-11-22 1998-06-04 Leica Mikroskopie Systeme Ag Method for telemeasuring and telemeter
US7633617B2 (en) 2005-02-03 2009-12-15 Raytex Corporation Defective particle measuring apparatus and defective particle measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023989A1 (en) * 1996-11-22 1998-06-04 Leica Mikroskopie Systeme Ag Method for telemeasuring and telemeter
US6307636B1 (en) 1996-11-22 2001-10-23 Leica Microsystems Ag Method for telemeasuring and telemeter
US7633617B2 (en) 2005-02-03 2009-12-15 Raytex Corporation Defective particle measuring apparatus and defective particle measuring method

Also Published As

Publication number Publication date
JP3366066B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
JPH05264221A (en) Device for detecting mark position for semiconductor exposure device and positioning deice for semiconductor exposure device using the same
JPS60115906A (en) Automatic precise focusing method and apparatus for optical apparatus
JP3733228B2 (en) Imaging device with tilt mechanism, method, and storage medium
JPS60145764A (en) Method of picture scanning and recording
JPH0772090A (en) Setting method for observation depth in crystal defect detector
JPH11271030A (en) Three-dimensional measuring apparatus
JPH0763994A (en) Infrared microscope
JP3290784B2 (en) Crystal defect detection method using confocal optical system
JP3366067B2 (en) Crystal defect detection method
JPH07280537A (en) Imaging type inspection method and apparatus
JPH07198619A (en) Crystal defect detecting method by using forward scattered light
JP3222155B2 (en) Automatic focus adjustment device
JPH08226805A (en) Method for focusing imaging device and non-contact measuring device utilizing the method
JP3348168B2 (en) Crystal defect detection method and apparatus
JPH10307252A (en) Automatic focusing optical television camera microscope
KR100190688B1 (en) Camera focus controller by using the laser beam
JPH07284003A (en) Image pickup device
JPH09325019A (en) Three-dimensional measuring device
JP3775790B2 (en) Image processing system
JP2000105111A (en) Three-dimensional input device
JP2004205289A (en) Image measuring instrument
JPH0322209Y2 (en)
CN117110311A (en) Optical detection system and image dynamic alignment method
JPH06265317A (en) Thickness measurement method using cofocal point scanning system laser microscope
JPH10281732A (en) Dimension measuring equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021015

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131101

Year of fee payment: 11