JPH0770823A - Fiber having damping and elastic performances and its production - Google Patents

Fiber having damping and elastic performances and its production

Info

Publication number
JPH0770823A
JPH0770823A JP22810693A JP22810693A JPH0770823A JP H0770823 A JPH0770823 A JP H0770823A JP 22810693 A JP22810693 A JP 22810693A JP 22810693 A JP22810693 A JP 22810693A JP H0770823 A JPH0770823 A JP H0770823A
Authority
JP
Japan
Prior art keywords
fiber
damping
materials
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22810693A
Other languages
Japanese (ja)
Other versions
JP2545039B2 (en
Inventor
Saburo Kubota
三郎 窪田
Keiichi Suzuki
敬一 鈴木
Tokumitsu Sanae
徳光 早苗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYAMA PREF GOV
Toyama Prefecture
Original Assignee
TOYAMA PREF GOV
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYAMA PREF GOV, Toyama Prefecture filed Critical TOYAMA PREF GOV
Priority to JP5228106A priority Critical patent/JP2545039B2/en
Publication of JPH0770823A publication Critical patent/JPH0770823A/en
Application granted granted Critical
Publication of JP2545039B2 publication Critical patent/JP2545039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a damping fiber capable of being applied to leg materials, joint materials, sealing materials, flooring materials, etc., in vibration- accompanied machines, devices, automatic members, houses, factories, etc., to reduce adverse effects and unpleasant touches caused by the vibrations. CONSTITUTION:Polynorbornene as a matrix, and additives selected in response to the purpose are sufficiently melted and kneaded, subsequently formed into a fibrous shape with an extruder, and furthermore thermally treated for suitably crosslinking the formed product to provide the damping and shrinkable fiber raw material improved in the strength. The fiber raw materials are formed into a knitted web. The fiber raw material may be mixed with fine fibers, power, etc., to provide the damping fiber improved in processability and in mechanical physical properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、振動の減衰が必要と
思われる電動機器、自動車部材、住宅、工場などにおい
て、ジョイント材、ワッシャー、ボルトシール、或いは
衝撃吸収、振動吸収用の繊維素材として適用でき、振
動、衝撃発生源等に用いて、その影響をより低減させる
ための素材として利用する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a joint material, a washer, a bolt seal, or a fiber material for shock absorption and vibration absorption in electric equipment, automobile parts, houses, factories, etc., where vibration damping is considered necessary. It can be applied and is used as a material to further reduce the effect of vibration and impact sources.

【0002】[0002]

【従来の技術】[Prior art]

【0003】制振材は、振動を内部摩擦による熱として
吸収し、その制振能力は、通常、損失係数で示され、値
が大きい程、制振性は良好とされている。又、損失係数
は、温度や周波数により大きく変動する場合が多い。
The damping material absorbs vibrations as heat due to internal friction, and its damping capacity is usually represented by a loss coefficient. The larger the value, the better the damping performance. In addition, the loss coefficient often varies greatly depending on temperature and frequency.

【0004】伸縮性を大きく有する繊維素材として、代
表的なものにウレタン系繊維が上市されているが、制振
性は全く有していない。従来品の制振材は、ロール加工
によるシート状が殆どを占め、或いは、予め設計された
型によりプレス成形する場合が多く、一定な形状のため
適用範囲が限定される。充分な制振性能を具備して、且
つ伸縮性に富む繊維素材はなく、これらの繊維を応用し
た編み織物は、見あたならい。
Urethane fibers have been put on the market as a typical fiber material having large elasticity, but they have no vibration damping property. Most of the conventional vibration damping materials are sheet-shaped by roll processing or press-molded by a predesigned mold, and the application range is limited because of a fixed shape. There is no fibrous material that has sufficient vibration damping performance and is highly stretchable, and knitted fabrics using these fibers are notable.

【0005】[0005]

【発明が解決しようとする課題】本発明は、母材として
ポリノルボルネンを用いて、従来の制振材(イソブチレ
ンイソプレンラバー:IIR、天然ゴム:NR、ウレタ
ン系など)で達成できなかった大きな損失係数を保持
し、且つ、伸縮性に富む繊維素材を溶融押出し、後加工
の熱処理により適度な架橋をおこさせ、引張強さなどの
機械的強度を増大せしむることを課題とした繊維素材を
提供することを目的とする。
SUMMARY OF THE INVENTION The present invention uses polynorbornene as a base material, and has a large loss that cannot be achieved by conventional vibration damping materials (isobutylene isoprene rubber: IIR, natural rubber: NR, urethane type, etc.). A fiber material that has the object of increasing the mechanical strength such as tensile strength by melt-extruding a fiber material that retains the coefficient and is highly stretchable and causes appropriate cross-linking by heat treatment of post-processing. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】ポリノルボルネンのガラ
ス転移点は、34℃付近に存在する。損失係数のピーク
はガラス転移温度に依存するので、本樹脂の損失係数の
ピークはほぼ使用温度域にあり、常温で損失係数が大き
い(制振性能が大きい)ことを示している。本樹脂は分
子量が300万以上と巨大なため単独では、極めて流動
性が悪く繊維状に押出しが困難である。また、ピークの
温度は図.1に示すように配合剤、特にプロセスオイル
の量により大きく変化する。
The glass transition point of polynorbornene exists near 34 ° C. Since the peak of the loss coefficient depends on the glass transition temperature, the peak of the loss coefficient of the present resin is almost in the operating temperature range, which indicates that the loss coefficient is large at room temperature (vibration damping performance is large). Since this resin has a huge molecular weight of 3,000,000 or more, it has extremely poor fluidity and is difficult to extrude into a fibrous state by itself. The peak temperature is shown in Fig. As shown in 1, the amount of the compounding agent, particularly the amount of process oil, greatly varies.

【0007】本樹脂とエックスパンダーオイルとしてア
ロマティック系など粘性率の大きいオイルを添加させる
ことにより大きな損失係数の発現とノズルから押出し可
能な流動性になり、低い圧力で繊維状に加工できる。
By adding the present resin and an oil having a high viscosity such as an aromatic oil as an expander oil, a large loss coefficient is exhibited and the fluidity that can be extruded from the nozzle is obtained, so that the fibrous material can be processed at a low pressure.

【0008】配合系には、予め加硫系薬剤を添加してい
るが、押出し時に架橋が生じると良好な繊維状にならな
いことと、後加工の延伸熱処理も困難になるため、押出
し時には、架橋が起こらないような低い温度(添加した
加硫剤がラジカルを発生しない)で加工することが必要
となる。
A vulcanizing agent has been added to the compounding system in advance, but if crosslinking occurs during extrusion, a good fibrous state will not be obtained, and stretching heat treatment for post-processing will be difficult. It is necessary to process at a low temperature (the added vulcanizing agent does not generate radicals) so that the above does not occur.

【0009】押出された未加硫な繊維は、大きな制振性
能を有するので用途によってはこのまま応用が可能であ
るが、より強度を増大させるため熱処理(延伸のための
張力をかけてもよい)を行い、この過程で適度の架橋を
おこさせ機械強度を向上させた繊維素材となる。
The extruded unvulcanized fiber has a large vibration damping property, so that it can be applied as it is depending on the application, but it is heat treated to increase its strength (tension for stretching may be applied). And a suitable degree of cross-linking is performed in this process to obtain a fiber material having improved mechanical strength.

【0010】制振性能、伸縮性能、破断強度などの機械
的強度において、特に、いずれかの性能を主眼におく場
合、配合剤の選定により、制御させることも可能であ
る。
Regarding mechanical strength such as vibration damping performance, expansion and contraction performance, breaking strength, etc., particularly when any one of the performances is to be the main purpose, it is possible to control by selecting the compounding agent.

【0011】[0011]

【作用】本発明の繊維素材は、損失係数のピーク温度を
オイル添加量を変化させることにより、5℃から30℃
前後まで制御が可能であり、ピーク損失係数も大きく制
振性を発現する。配合系において、微細繊維、ウィス
カ、パウダー状フィラーを添加することにより、アロマ
ティックオイルの粘着性を改善から加工性の向上や強度
の増大を可能にする。
The fiber material of the present invention has a loss temperature peak temperature of 5 ° C to 30 ° C by changing the amount of oil added.
It can be controlled to the front and back, and has a large peak loss coefficient and exhibits damping properties. By adding fine fibers, whiskers, and powdered filler in the compounding system, it is possible to improve the tackiness of the aromatic oil, improve processability, and increase strength.

【0012】繊維、ウィスカ、フィラーの配合は、オイ
ルが配合されているため30部程度までは表面処理をし
なくても、二軸スクリュー押出し機、ロール混練等の装
置で均一分散が容易に可能である。混練物は、シート状
に成形し、シートフィーダにより押出し機に導入され、
100℃前後の低い温度で押出すことができる。
The fibers, whiskers, and fillers are blended with oil, so that even up to about 30 parts can be easily uniformly dispersed by a twin-screw extruder, roll-kneading device, etc. Is. The kneaded product is molded into a sheet and introduced into an extruder by a sheet feeder,
It can be extruded at a low temperature of around 100 ° C.

【0013】熱処理は、加硫剤のラジカル発生温度より
数℃高い温度雰囲気(空気加熱、加熱蒸気、油浴など)
で行い、適度な量の加硫剤と処理時間により架橋させ
て、機械物性を増大させる。この過程で、繊維に張力を
かけることにより、繊維方向に樹脂分子を配向させる
と、一段と強度は向上する。熱処理工程において、過架
橋にさせると、弾性率、引張強度などの機械的物性は増
大するが、制振性能は極端に低下するので、用途により
処理条件を決める必要がある。
The heat treatment is carried out in an atmosphere having a temperature several degrees higher than the radical generation temperature of the vulcanizing agent (air heating, heating steam, oil bath, etc.).
And increase the mechanical properties by crosslinking with an appropriate amount of vulcanizing agent and treatment time. In this process, by applying tension to the fibers to orient the resin molecules in the fiber direction, the strength is further improved. In the heat treatment step, if the material is over-crosslinked, mechanical properties such as elastic modulus and tensile strength increase, but the vibration damping performance extremely decreases. Therefore, it is necessary to determine the treatment conditions depending on the application.

【0014】[0014]

【実施例】本発明を実施例により更に詳細に説明する。
又、本発明はこれら実施例に限定されない。例えば、表
1に示す原材料をその重量割合でドライミキシングし、
ニーダもしくはロールにより100〜110℃で溶融混
練する。この場合、伸展油が多量に配合されているた
め、微細繊維や粉体試料等の表面処理をしなくても母材
に分散できる。この段階では、架橋を起こさせないよう
な加硫剤の選択と混練温度、混練時間を考慮しなければ
ならない。即ち、混練過程で安定であり、熱処理過程で
活性になる加硫剤の使用が必要である。添加剤を均一に
分散した後、シート状に圧延し、ストリップ状にカット
して、シートフィーダ付き押出し機により100℃前後
の温度でノズルから押出し、繊維状にした。ノズルの形
状をキャピラリーから色々な形状にした異形押出しにも
応用できる。
EXAMPLES The present invention will be described in more detail by way of examples.
Moreover, the present invention is not limited to these examples. For example, dry-mixing the raw materials shown in Table 1 in the weight ratio,
Melt and knead with a kneader or roll at 100 to 110 ° C. In this case, since a large amount of the extender oil is blended, the extender oil can be dispersed in the base material without surface treatment of fine fibers or powder samples. At this stage, selection of a vulcanizing agent that does not cause crosslinking, kneading temperature, and kneading time must be taken into consideration. That is, it is necessary to use a vulcanizing agent that is stable in the kneading process and becomes active in the heat treatment process. After the additive was uniformly dispersed, it was rolled into a sheet, cut into strips, and extruded from a nozzle at a temperature of around 100 ° C. by an extruder equipped with a sheet feeder to be fibrous. It can also be applied to profile extrusion with various nozzle shapes from capillaries.

【0015】[0015]

【表1】 原材料の配合例の表である。 Table 1 is a table of examples of raw material formulations.

【0016】本樹脂系は、押出し時にバラス効果による
膨れが大きいノズル(キャピラリー)のL/Dを大きく
することと、スクリュー回転数を大きくしないこと(キ
ャピラリー中で緩和させる)が必要である。押出された
樹脂は、巻取り時の延伸で少し分子配向が期待でき、強
度の増大化が考えられる。同時架橋(動的架橋)を促進
させることも可能であるが、再現性に問題があり、安定
な性能を有する繊維になりにくいため未架橋状で巻取
り、架橋の熱処理は別工程が望ましい。
This resin system is required to have a large L / D of a nozzle (capillary) having a large swelling due to a ballast effect at the time of extrusion and not to have a large screw rotation speed (to relax in the capillary). The extruded resin can be expected to have a little molecular orientation by stretching during winding, and it is considered that the strength is increased. It is possible to accelerate simultaneous crosslinking (dynamic crosslinking), but there is a problem in reproducibility, and since it is difficult to form a fiber having stable performance, it is desirable to take a separate step for winding in an uncrosslinked state and heat treatment for crosslinking.

【0017】熱処理加工は、空気または油浴雰囲気で加
硫剤のラジカル発生温度より5〜10℃高い温度で行
い、分子架橋をおこさせ安定な構造にする。また、テン
ションをかけて延伸した状態で架橋を促進させることも
可能である。この場合、非晶分子の配向から引っ張り強
度などの力学的強度が一段と増大するが制振性能は低下
するので、用途を考慮した製品設計上から対応すること
が望ましい。
The heat treatment is carried out in air or in an oil bath atmosphere at a temperature 5 to 10 ° C. higher than the radical generation temperature of the vulcanizing agent to cause molecular crosslinking to form a stable structure. It is also possible to accelerate the cross-linking in a stretched state by applying tension. In this case, the mechanical strength such as tensile strength is further increased due to the orientation of the amorphous molecules, but the vibration damping performance is deteriorated. Therefore, it is desirable to take measures from the product design considering the application.

【0018】熱処理温度、時間を変えることにより、架
橋の程度(架橋密度)が大きく変動し、表.2に示すよ
うに破断強度に大きく影響する。処理温度を高く、長い
時間を施したほうが強度は大きい傾向にあるが、150
℃においては20分の熱処理時間では、強度は低下し
た。本樹脂は耐熱性にやや欠けるため、熱劣化を生じる
恐れがあるので熱処理による架橋は、比較的低温により
加硫できる添加剤が望ましい。
By changing the heat treatment temperature and time, the degree of cross-linking (cross-linking density) varied greatly. As shown in 2, the breaking strength is greatly affected. The strength tends to be higher when the treatment temperature is higher and the treatment is performed for a longer period of time.
At 20 ° C., the strength decreased when the heat treatment time was 20 minutes. Since the present resin is slightly lacking in heat resistance, it may be deteriorated by heat. Therefore, for crosslinking by heat treatment, an additive capable of vulcanizing at a relatively low temperature is desirable.

【0019】[0019]

【表2】 熱処理条件(温度,時間)と破断強度(空気
雰囲気)の表である。
[Table 2] A table of heat treatment conditions (temperature, time) and breaking strength (air atmosphere).

【0020】熱処理温度が制振性能に及ぼす影響を損失
係数でみると、図.2に示すように130℃から150
℃まで高温になるに従い損失係数のピークは、小さくな
り更に高温側にシフトする。架橋の促進とともに制振性
能は少し低減する傾向を示している。
The loss coefficient shows the effect of heat treatment temperature on damping performance. As shown in 2, from 130 ℃ to 150
The peak of the loss coefficient becomes smaller as the temperature rises to ℃, and shifts to the higher temperature side. The damping performance shows a tendency to decrease a little with the promotion of crosslinking.

【0021】破断強度と制振性能は、架橋の程度に関し
て相反する傾向になるので、用途を考慮して、熱処理条
件を決定することが望ましい。
Since the breaking strength and the vibration damping performance tend to conflict with each other with respect to the degree of crosslinking, it is desirable to determine the heat treatment conditions in consideration of the application.

【0022】本樹脂の配合系では、伸展油が大量に添加
されているので、粘着性が大きく加工上問題がある。粉
体系(酸化亜鉛や炭酸カルシウム)を5〜10部程度添
加することにより対応できる。酸化亜鉛の場合、有機系
加硫剤における加硫促進の作用もある。この程度の配合
量では、制振性能に殆ど影響を及ぼさない。
In the compounding system of the present resin, a large amount of extending oil is added, and therefore the tackiness is large and there is a problem in processing. It can be dealt with by adding about 5 to 10 parts of a powder system (zinc oxide or calcium carbonate). In the case of zinc oxide, it also has an action of promoting vulcanization in the organic vulcanizing agent. With such a blending amount, the vibration damping performance is hardly affected.

【0023】チタン酸カリウムウイスカ、径1〜2μ
m、長さ15〜20μm程度の微細繊維を用いて押出す
と本繊維素材(径100〜1000μm)の繊維方向に
配向し、この方向における強度の増大が期待できる。ガ
ラス繊維、カーボン繊維の比較的太いものでは、制振性
能を大きく低減するが、弾性率、引張強度など向上が期
待できる。
Potassium titanate whiskers, diameter 1-2 μ
When extruded using fine fibers having a length of m and a length of 15 to 20 μm, the fibers are oriented in the fiber direction of the fiber material (diameter 100 to 1000 μm), and an increase in strength in this direction can be expected. A relatively thick glass fiber or carbon fiber greatly reduces vibration damping performance, but can be expected to have improved elastic modulus and tensile strength.

【0024】本制振繊維をよこ糸にして編み上げた編地
は、その編地構造に起因する伸縮性と繊維が有する振動
吸収特性により制振や振動吸収性に富む布帛が可能とな
る。
The knitted fabric in which the damping fiber is knitted as a weft yarn enables a fabric having excellent vibration damping and vibration absorbing properties due to the elasticity due to the knitted fabric structure and the vibration absorbing property of the fiber.

【0025】[0025]

【発明の効果】本発明は、ポリノルボルネン−アロマテ
ィックオイル添加系において、添加物、添加量を目的に
応じて決定し、混練、押出し、熱処理を行い制振性、伸
縮性が大きい繊維素材であり、これを用いて布帛化した
編地である。これらにより機械装置の振動防止や集合住
宅の床材などの制振材として利用できる。
INDUSTRIAL APPLICABILITY The present invention provides a polynorbornene-aromatic oil addition system in which the additives and the amount to be added are determined according to the purpose and kneading, extruding, and heat-treating to obtain a fiber material having a large vibration damping property and elasticity. Yes, this is a knitted fabric that is made into a fabric using this. With these, it can be used as a vibration-damping material for preventing vibrations of mechanical devices and flooring of apartments.

【図面の簡単な説明】[Brief description of drawings]

【図1】オイル添加量による損失係数の温度分散を示し
たグラフである。
FIG. 1 is a graph showing the temperature dispersion of a loss coefficient depending on the amount of oil added.

【図2】熱処理条件による損失係数への影響を示したグ
ラフである。
FIG. 2 is a graph showing the effect of heat treatment conditions on the loss coefficient.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C08L 23/18 LCZ ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display area // C08L 23/18 LCZ

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポリノルボルネンにアロマティックオイ
ル、カーボンブラック、加硫剤、加硫促進剤、老化防止
剤、更に必要に応じてチタン酸カリウムウイスカ、ガラ
ス繊維、カーボン繊維、フレーク状金属亜鉛粉、酸化チ
タンなどを繊維状に溶融押出した未加硫な素材。
1. Polynorbornene, an aromatic oil, carbon black, a vulcanizing agent, a vulcanization accelerator, an antioxidant and, if necessary, potassium titanate whiskers, glass fibers, carbon fibers, flaky metallic zinc powder, An unvulcanized material obtained by melt-extruding fibrous titanium oxide.
【請求項2】 繊維状に押出した未加硫な素材を、油浴
または空気加熱で架橋させて、制振性能を保持し、且つ
強度を向上させた繊維素材。
2. A fibrous material obtained by cross-linking an unvulcanized material extruded into a fibrous shape with an oil bath or air heating to maintain vibration damping performance and improve strength.
【請求項3】 これらの繊維素材を用いて、衝撃、振動
吸収を主目的とした編地。
3. A knitted fabric mainly made for absorbing impact and vibration using these fiber materials.
JP5228106A 1993-08-20 1993-08-20 Fiber with vibration damping and stretchability and its manufacturing method Expired - Lifetime JP2545039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5228106A JP2545039B2 (en) 1993-08-20 1993-08-20 Fiber with vibration damping and stretchability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5228106A JP2545039B2 (en) 1993-08-20 1993-08-20 Fiber with vibration damping and stretchability and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH0770823A true JPH0770823A (en) 1995-03-14
JP2545039B2 JP2545039B2 (en) 1996-10-16

Family

ID=16871301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5228106A Expired - Lifetime JP2545039B2 (en) 1993-08-20 1993-08-20 Fiber with vibration damping and stretchability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2545039B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832720A (en) * 2017-03-14 2017-06-13 青岛科技大学 A kind of preparation method of fixed rate high recovery rate shape-memory material high

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633488A (en) * 1979-08-22 1981-04-03 Asahi Glass Co Ltd Method for electrolysis of aqueous solution of alkali chloride
JPS6416923A (en) * 1987-07-10 1989-01-20 Matsushita Electric Ind Co Ltd Rotational angle detector
JPH0345744A (en) * 1989-07-13 1991-02-27 Zeon Kasei Co Ltd Shape-memory net

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633488A (en) * 1979-08-22 1981-04-03 Asahi Glass Co Ltd Method for electrolysis of aqueous solution of alkali chloride
JPS6416923A (en) * 1987-07-10 1989-01-20 Matsushita Electric Ind Co Ltd Rotational angle detector
JPH0345744A (en) * 1989-07-13 1991-02-27 Zeon Kasei Co Ltd Shape-memory net

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832720A (en) * 2017-03-14 2017-06-13 青岛科技大学 A kind of preparation method of fixed rate high recovery rate shape-memory material high

Also Published As

Publication number Publication date
JP2545039B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
Huang et al. A novel strategy to construct co-continuous PLA/NBR thermoplastic vulcanizates: Metal-ligand coordination-induced dynamic vulcanization, balanced stiffness-toughness and shape memory effect
GB2140429A (en) Orthopaedic cast
CN108047595B (en) Thermoplastic dynamic vulcanized acrylate rubber composition and preparation method thereof
JPH07207131A (en) Polyester/hydrogenated diene rubber composition
Xu et al. Improved mechanical and EMI shielding properties of PLA/PCL composites by controlling distribution of PIL-modified CNTs
JP2545039B2 (en) Fiber with vibration damping and stretchability and its manufacturing method
CN109021583B (en) Three-component anti-tear silicone rubber and preparation method thereof
CN111777821A (en) Poly 4-methyl-1-pentene/silicone rubber thermoplastic elastomer and preparation and application thereof
Sabri et al. Effect of compatibilizer on mechanical properties and water absorption behaviour of coconut fiber filled polypropylene composite
JPH0696642B2 (en) Shape memory rubber elastic body and method of using the same
CN111057311B (en) Thermoplastic vulcanized rubber-based composite material with high dielectric constant and low dielectric loss and preparation method thereof
JP3488860B2 (en) Damping material
WO2020165914A1 (en) A sound absorbing material and a process for manufacturing thereof
JP6681166B2 (en) Seal or hose made of rubber composition
Cai et al. Dynamic vulcanization of thermoplastic copolyester elastomer/nitrile rubber alloys: I. Various mixing methods
KR101642575B1 (en) Investigate crosslinking fluorine rubber compound application to insulated electric wire
CN116656017B (en) Damping composite system, damping composite material and preparation method of damping composite material
JPS6019328B2 (en) Flexible crystalline polyolefin resin composite material
JPH0224336A (en) Reinforced rubber composition
JP2000007857A (en) Ethylene.alpha-olefinic copolymer rubber composition
JPH09157953A (en) Naturally degradable electroconductive fiber
JPH02189340A (en) Production of thermosetting polymer blend
JP2007515516A (en) Rubber material
CN114316606A (en) Polyolefin base material thermoplastic dynamic vulcanized silicone rubber particles and preparation method thereof
Annie et al. Effect of Dynamic Vulcanization on Properties of Linear Low Density Polyethylene/Natural Rubber Filled with Calcium Carbonate