JPH077065B2 - Radon concentration measuring device in water and radon concentration measuring method using the same - Google Patents

Radon concentration measuring device in water and radon concentration measuring method using the same

Info

Publication number
JPH077065B2
JPH077065B2 JP4334393A JP4334393A JPH077065B2 JP H077065 B2 JPH077065 B2 JP H077065B2 JP 4334393 A JP4334393 A JP 4334393A JP 4334393 A JP4334393 A JP 4334393A JP H077065 B2 JPH077065 B2 JP H077065B2
Authority
JP
Japan
Prior art keywords
radon
water
radon concentration
film
concentration measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4334393A
Other languages
Japanese (ja)
Other versions
JPH06235773A (en
Inventor
保典 馬原
Original Assignee
保典 馬原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保典 馬原 filed Critical 保典 馬原
Priority to JP4334393A priority Critical patent/JPH077065B2/en
Publication of JPH06235773A publication Critical patent/JPH06235773A/en
Publication of JPH077065B2 publication Critical patent/JPH077065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、現位置で極低濃度の
水中溶存ラドンを簡便に測定する装置とこれを用いた水
中ラドン測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for simply measuring dissolved radon in water of extremely low concentration at the present position and a method for measuring radon in water using the apparatus.

【0002】[0002]

【従来の技術】従来、大気中のラドン濃度の測定方法と
してはラドンの崩壊によって放出されるα粒子のトラッ
ク法が一般的に行われている。
2. Description of the Related Art Conventionally, as a method for measuring the concentration of radon in the atmosphere, the track method of α particles released by the decay of radon is generally performed.

【0003】硝酸セルローズや酢酸セルローズのような
フィルムを被測定大気中に放置すると、ラドンの崩壊の
際に放出されるα粒子の飛跡(トラック)がフィルム表
面に生ずるが、α粒子トラック法はこのフィルムの表面
をアルカリ等で化学的エッチングを行い、トラックを光
学顕微鏡で観察してこのトラック数を検出するものであ
る。
When a film such as cellulose nitrate or cellulose acetate is left in the atmosphere to be measured, a track (track) of α particles released during the decay of radon occurs on the surface of the film. The number of tracks is detected by chemically etching the surface of the film with alkali or the like and observing the tracks with an optical microscope.

【0004】一方、水中ではラドンの崩壊により発生し
たα粒子に対する遮蔽効果が大きく、α粒子の飛程が10
(10-7 cm) 程度と極めて短いが、ラドンが崩壊して生
まれる娘核種は、214Bi に至るまでその半減期が親核種
であるラドンに比べて非常に短く、これは上述のように
水中のラドンの拡散が小さいことを考慮すると、これら
の娘核種とラドンはほぼ放射平衡に達していると考えら
れる。したがって水中ではラドンだけでなくその娘核種
218Po,214Po,214Bi からのα粒子の検出も同時に可能と
なり、検出率が一層良くなるので、水中でのα粒子飛跡
検出はラドン濃度の測定にとって極めて有効である。
On the other hand, in water, the effect of shielding α particles generated by the decay of radon is great, and the range of α particles is 10
Although it is extremely short (about 10 -7 cm), the daughter nuclide produced by radon decay is very short in half-life up to 214 Bi, which is much shorter than that of the parent nuclide radon. Considering the small diffusion of radon in, it is considered that these daughter nuclides and radon have almost reached radiative equilibrium. Therefore, not only radon but also its daughter nuclide in water
Since α particles can be detected simultaneously from 218 Po, 214 Po, and 214 Bi, and the detection rate is further improved, the α particle track detection in water is extremely effective for the measurement of radon concentration.

【0005】しかし、上述のようなα粒子トラック法で
使用されるフィルムは大気中のα粒子の検出用に開発さ
れたものであり、水中で使用する場合には表面が剥離す
る等の難点がある。
However, the film used in the α particle track method as described above was developed for the detection of α particles in the atmosphere, and when used in water, there are problems such as surface peeling. is there.

【0006】また、水中ではα粒子に対する遮蔽効果が
大きく、α粒子の飛程が極めて短いため、フィルムの極
近傍にあるラドン原子がフィルムにあたった場合にのみ
フィルム表面に傷を残すことができる等の難点がある。
Further, in water, the effect of shielding α-particles is large and the range of α-particles is extremely short. Therefore, only when the radon atoms in the immediate vicinity of the film hit the film, scratches can be left on the film surface. There are drawbacks such as.

【0007】そこで、従来水中ラドン濃度の測定は、図
6に示すように例えば試料水として地下水の場合には1
〜5l, 海水の場合には約200lをポリ容器8に採水し、こ
れを抽出器9に入れ、更にトルエン等の有機溶剤を加え
て撹拌板10で撹拌して迅速に試料水中のラドンをトルエ
ンで抽出し、抽出されたラドンのα線を液体シンチレー
ション・カウンター等で計測する方法が一般的に採用さ
れている。
Therefore, conventionally, the radon concentration in water is measured as shown in FIG.
In the case of seawater, about 200 l of seawater is sampled in a poly container 8, put in an extractor 9, and an organic solvent such as toluene is further added to stir with a stir plate 10 to rapidly remove radon in the sample water. A method of extracting with toluene and measuring the extracted α ray of radon with a liquid scintillation counter or the like is generally adopted.

【0008】[0008]

【発明が解決しようとする問題点】しかし、この方法に
おける最大の欠点はラドン(222Rn) の半減期が3.8 日と
非常に短く、迅速な測定が要求されるに拘らず、大量の
試料水の採水が必要であり、且つトルエンへの抽出操作
に非常に手間が係る点にある。
However, the biggest drawback of this method is that the half-life of radon ( 222 Rn) is very short (3.8 days) and rapid measurement is required. Is required, and the extraction operation to toluene is very troublesome.

【0009】そこで、この発明は水中でのα粒子飛跡の
検出して原位置での極低濃度の水中溶存ラドンを簡便に
測定することを目的とするものである。
Therefore, an object of the present invention is to detect the traces of α particles in water and to easily measure dissolved radon in water at an extremely low concentration in situ.

【0010】[0010]

【問題点を解決するための手段】以上の問題点を解決す
るために、この発明ではフィルム表面に炭素を蒸着させ
てなる炭素蒸着フィルムを有する水中ラドン濃度測定装
置を提案するものである。
In order to solve the above problems, the present invention proposes a radon concentration measuring device in water having a carbon vapor deposition film obtained by vapor depositing carbon on the film surface.

【0011】更に、この発明では炭素蒸着フィルムを有
する測定装置を被測定水中に浸漬し、上記炭素蒸着フィ
ルム表面でのラドンより発生するα粒子の飛跡を検出す
る水中ラドン濃度測定方法を提案するものである。
Further, the present invention proposes a method for measuring the radon concentration in water, in which a measuring device having a carbon vapor deposition film is immersed in water to be measured to detect the traces of α particles generated from the radon on the surface of the carbon vapor deposition film. Is.

【0012】[0012]

【作用】この発明で使用する測定用フィルムは、大気中
のラドンに対しては殆ど反応せず、且つ蒸着した炭素膜
は水中で剥離することなく、しかもトルエン等の有機溶
剤に対しても安定であるという特徴がある。
The film for measurement used in the present invention hardly reacts to radon in the atmosphere, the deposited carbon film does not peel off in water, and is stable to organic solvents such as toluene. It is characterized by

【0013】したがって、この発明の方法によれば炭素
蒸着フィルムを例えばテフロン製のフィルムホルダーに
セットして所定の深度に吊すことにより、その場所での
水中ラドン濃度を簡便且つ安価の方法で測定できる。
Therefore, according to the method of the present invention, by setting the carbon vapor deposition film on a film holder made of, for example, Teflon and suspending it at a predetermined depth, the radon concentration in water at that location can be measured by a simple and inexpensive method. .

【0014】またこの方法は、従来の採水・抽出による
放射能測定方法が、ラドンの測定時点での放射能の微分
値を計測しているのに対し、フィルムを吊している間の
放射能の積分値を計測できる点で極低濃度のラドン測定
に有利である。
Further, this method measures the differential value of the radioactivity at the time of measurement of radon in the conventional radioactivity measuring method by water sampling / extraction, whereas the radioactivity during the suspension of the film is measured. This is advantageous for the measurement of extremely low concentrations of radon because it can measure the integral value of Noh.

【0015】[0015]

【実施例】以下、この発明を図示の実施例に基づいて詳
細に説明すると、図1はこの発明で使用する炭素蒸着フ
ィルムの製造例を示すものであり、真空室1に炭素電極
2,2を設け、この下に例えば20×20×1mm のプラスチ
ックフィルム3を配置し、真空度〜5 ×10-4Pa,スパー
ク電流35A で放電時間90秒間炭素電極2と2間でスパー
ク放電させてプラスチックフィルム3上に厚さ10〜15μ
m の炭素蒸着膜4を均一に形成して炭素蒸着フィルム5
を製造する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the illustrated embodiments. FIG. 1 shows an example of producing a carbon vapor deposition film used in the present invention. A plastic film 3 of, for example, 20 × 20 × 1 mm is placed under this, and a spark discharge is made between the carbon electrodes 2 and 2 at a vacuum degree of 5 × 10 −4 Pa and a spark current of 35 A for 90 seconds to perform plastic discharge. 10 to 15μ thick on film 3
Carbon vapor deposition film 4 of m is uniformly formed and carbon vapor deposition film 5 is formed.
To manufacture.

【0016】このようにして製造された炭素蒸着フィル
ム5は図2、図3に示すように例えばテフロン製のフィ
ルムホルダー6にセットし、ワイヤー7に吊すことによ
りこの発明の水中ラドン濃度測定装置が得られる。
The carbon vapor-deposited film 5 thus produced is set in a film holder 6 made of, for example, Teflon as shown in FIGS. can get.

【0017】この発明に係る水中ラドン濃度の測定方法
は、上述のような測定装置を被測定水中に所定期間浸漬
した後、炭素蒸着フィルム5の表面を6NのNaOH溶液等で
アルカリエッチングしてから、顕微鏡でα粒子のトラッ
ク数をカウントし、これより被測定水中のラドン濃度を
測定するものである。
The method for measuring the concentration of radon in water according to the present invention is such that the surface of the carbon deposited film 5 is alkali-etched with a 6N NaOH solution or the like after the measuring device as described above is immersed in the water to be measured for a predetermined period. The number of α particle tracks is counted with a microscope, and the radon concentration in the measured water is measured from this.

【0018】そして、この発明に係る水中ラドン濃度の
測定方法にしたがって、地層のボーリング孔内の水中ラ
ドン濃度を測定する場合、ラドン濃度が高い程、地下水
の供給量が多く、したがってこの発明によれば単一孔内
における地下水の流速を測定できる。
When the radon concentration in water in the boring hole of the formation is measured according to the method for measuring radon concentration in water according to the present invention, the higher the radon concentration, the greater the amount of ground water supplied, and therefore the present invention. For example, the flow velocity of groundwater in a single hole can be measured.

【0019】また、地下水流動区間並びに岩盤内亀裂開
口部或は断層位置では常に新しいラドンが供給されるた
めラドン濃度が周辺より高く、またラドンの半減期が3.
8 日と短いため地下水の動きは、一般に遅く水中をラド
ンが拡散移動して広がる範囲も狭い部分に限定されるの
で、原位置での水中ラドン濃度のピークとその位置関係
を正確に測定できることによりボーリング孔内での地下
水流動区間並びに岩盤内亀裂開口部或は断層位置の特定
が可能となる。
Further, since new radon is constantly supplied in the groundwater flow section and in the crack opening or fault position in the rock mass, the radon concentration is higher than that in the surrounding area and the half-life of radon is 3.
Since it is as short as 8 days, the movement of groundwater is generally slow and the range in which radon diffuses and moves in water is limited to a narrow area.Therefore, it is possible to accurately measure the peak radon concentration in water and its positional relationship in situ. It is possible to identify the groundwater flow section in the borehole and the crack opening in the rock mass or the fault location.

【0020】そして、従来法においてはボーリング孔内
をパッカー等で区切り、それぞれの区間における地下水
を採取してこれに含まれるラドンのα線をシンチレーシ
ョンカウンターで計測し、これよりボーリング孔内の各
区分でのラドン濃度を測定し、これに基づいてボーリン
グ孔内での地下水流動区間並びに岩盤内亀裂開口部或は
断層位置の特定が行われていた。
In the conventional method, the borehole is divided by a packer or the like, groundwater in each section is sampled, and the radon α ray contained in the groundwater is measured by a scintillation counter. The radon concentration in the borehole was measured, and the groundwater flow section in the borehole and the crack opening in the rock mass or the fault location were identified based on the measured radon concentration.

【0021】しかし、この発明による水中ラドン濃度測
定方法によりボーリング孔内でのラドン検層を行えば、
ボーリング孔内をパッカー等で区切らなくても地下水流
動区間並びに岩盤内亀裂開口部或は断層位置の特定が可
能である。
However, if the radon logging in the boring hole is performed by the method for measuring the radon concentration in water according to the present invention,
It is possible to identify the groundwater flow section and the crack opening in the bedrock or the fault position without dividing the borehole with a packer.

【0022】図4は、従来法のボーリング孔内の地下水
を採取して行うボーリング孔内の割れ目開口部、断層、
地下水流動部の特定方法とこの発明を用いた水中のα飛
跡検出法によるボーリング孔内の割れ目開口部、断層、
地下水流動部の特定方法との差異を示す図である。
FIG. 4 shows a crack opening in a borehole, a fault, which is obtained by collecting groundwater in the conventional borehole.
A method for identifying a groundwater flow section and a crack opening in a boring hole, a fault by an α track detection method in water using the present invention,
It is a figure which shows a difference with the identification method of a groundwater flow part.

【0023】図5は、この発明を用いた水中のα飛跡検
出法によるボーリング孔内の地下水流動区間、岩盤内亀
裂開口部並びに断層位置の特定方法の概念図であり、図
5aは地下水流動区間、岩盤内亀裂開口部、断層等があ
る調査対象の地層にボーリング孔Aを穿設し、該ボーリ
ング孔Aに炭素蒸着フィルム5を適宜間隔に設けたワイ
ヤー7を垂設した状態を示すものである。
FIG. 5 is a conceptual diagram of a method for identifying a groundwater flow section in a borehole, a crack opening in a rock mass, and a fault position by the method of detecting α track in water according to the present invention. FIG. 5a is a groundwater flow section. , A state in which a boring hole A is bored in a stratum to be investigated, which has a crack opening portion in a rock, a fault, etc., and a wire 7 having a carbon vapor deposition film 5 provided at appropriate intervals is hung vertically in the boring hole A. is there.

【0024】地質・地下水調査はワイヤー7をボーリン
グ孔Aに1〜7日間垂設した後、これを引き上げて炭素
蒸着フィルム5をアルカリ・エッチングしてから顕微鏡
にてα粒子のトラック数をカウントし、このトラック密
度より水中ラドン濃度を測定する。
In the geological and groundwater investigation, after the wire 7 was hung vertically in the boring hole A for 1 to 7 days, the wire was pulled up and the carbon vapor-deposited film 5 was alkali-etched, and then the number of α particle tracks was counted with a microscope. , The radon concentration in water is measured from this track density.

【0025】図5bは、この結果得られた深度とαトラ
ック数及び水中ラドン濃度の関係を示す図であり、これ
よりボーリング柱状図等と比較して水中ラドン濃度が高
いところに断層部乃至割れ目開口部があり、水中ラドン
濃度が中程度のところに地下水流動部があり、水中ラド
ン濃度が低いところは地下水の流入が少ないか殆どない
ところであることがわかる。
FIG. 5b is a diagram showing the relationship between the depth, the number of α tracks, and the radon concentration in water obtained as a result of this. The fault or crack is formed at a place where the radon concentration in water is higher than that in the borehole columnar diagram. It can be seen that there is an opening and there is a groundwater flow part where the radon concentration in water is medium, and where the radon concentration in water is low, there is little or no inflow of groundwater.

【0026】以上のように、この発明を利用した地下水
調査によってボーリング孔内での地下水の流出区間の特
定と岩盤の割れ目位置並びに断層の位置の特定が可能と
なるが、同時にこの発明を利用して地下水中の溶存ラド
ン濃度の変動を測定することにより地震予知のためのモ
ニタリングが可能となる。
As described above, it is possible to specify the outflow section of groundwater in the borehole and the position of the rock fracture and the position of the fault by the groundwater survey using the present invention. At the same time, the present invention is used. It is possible to monitor for earthquake prediction by measuring the fluctuation of dissolved radon concentration in groundwater.

【0027】[0027]

【発明の効果】以上要するに、この発明によれば水中の
極低濃度溶存ラドンを簡便に、且つ安価に測定できるの
で、地下水調査においてボーリング孔内で地下水の流出
区間の特定と岩盤の割れ目位置並びに断層の位置の特定
或は地下水の流速の測定が可能となり、更には地震予知
のためのモニタリングが可能となる。
In summary, according to the present invention, extremely low concentration dissolved radon in water can be measured easily and inexpensively. It is possible to identify the location of the fault or measure the velocity of groundwater, and also to monitor for earthquake prediction.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明で使用する炭素蒸着フィルムの製造例
を示す図
FIG. 1 is a diagram showing a production example of a carbon vapor deposition film used in the present invention.

【図2】この発明に係る水中ラドン濃度測定装置の側面
FIG. 2 is a side view of an underwater radon concentration measuring device according to the present invention.

【図3】同上の上面図FIG. 3 is a top view of the above.

【図4】従来法とこの発明を用いた方法によるボーリン
グ孔内の割れ目開口部、断層、地下水流動部の特定方法
との差異を示す図
FIG. 4 is a diagram showing a difference between a conventional method and a method of identifying a crack opening in a boring hole, a fault, and a groundwater flow part by the method using the present invention

【図5】この発明を用いたボーリング孔内の地下水流動
区間、岩盤内亀裂開口部並びに断層位置の特定方法の概
念的に示すものであり、図5aはその概念図、図5bは
深度とαトラック数及び水中ラドン濃度の関係を示す図
5A and 5B conceptually show a method of identifying a groundwater flow section in a borehole, a crack opening in a rock and a fault position using the present invention. FIG. 5A is a conceptual diagram thereof and FIG. 5B is depth and α. Diagram showing the relationship between the number of tracks and radon concentration in water

【図6】従来法による地下水中のラドン濃度測定におけ
る野外でのラドン抽出操作を示す図
FIG. 6 is a view showing a radon extraction operation in the field in measuring radon concentration in groundwater by a conventional method.

【符号の説明】[Explanation of symbols]

1 真空室 2 炭素電極 3 プラスチックフィルム 4 炭素蒸着膜 5 炭素蒸着フィルム 6 フィルムホルダー 7 ワイヤー 8 ポリ容器 9 抽出器 10 撹拌板 1 Vacuum chamber 2 Carbon electrode 3 Plastic film 4 Carbon vapor deposition film 5 Carbon vapor deposition film 6 Film holder 7 Wire 8 Poly container 9 Extractor 10 Stirrer plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フィルム表面に炭素を蒸着させてなる炭
素蒸着フィルムを有することを特徴とする水中ラドン濃
度測定装置。
1. An apparatus for measuring radon concentration in water, comprising a carbon vapor deposition film obtained by vapor depositing carbon on the film surface.
【請求項2】 炭素蒸着フィルムを有する測定装置を被
測定水中に浸漬し、上記炭素蒸着フィルム表面に吸着し
たラドン及びその娘核種より発生するα粒子の飛跡を検
出することを特徴とする水中ラドン濃度測定方法。
2. A radon in water characterized in that a measuring device having a carbon vapor deposition film is immersed in water to be measured, and the traces of α-particles generated from the radon adsorbed on the surface of the carbon vapor deposition film and its daughter nuclide are detected. Concentration measurement method.
JP4334393A 1993-02-09 1993-02-09 Radon concentration measuring device in water and radon concentration measuring method using the same Expired - Fee Related JPH077065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4334393A JPH077065B2 (en) 1993-02-09 1993-02-09 Radon concentration measuring device in water and radon concentration measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4334393A JPH077065B2 (en) 1993-02-09 1993-02-09 Radon concentration measuring device in water and radon concentration measuring method using the same

Publications (2)

Publication Number Publication Date
JPH06235773A JPH06235773A (en) 1994-08-23
JPH077065B2 true JPH077065B2 (en) 1995-01-30

Family

ID=12661203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4334393A Expired - Fee Related JPH077065B2 (en) 1993-02-09 1993-02-09 Radon concentration measuring device in water and radon concentration measuring method using the same

Country Status (1)

Country Link
JP (1) JPH077065B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100978838B1 (en) * 2009-09-14 2010-08-30 한국지질자원연구원 Technics of underground structure survey using radon alpha tracks

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441105B2 (en) * 2009-05-15 2014-03-12 一般財団法人電力中央研究所 Rock bed looseness measuring device
CN106569253B (en) * 2016-10-28 2019-04-16 核工业北京地质研究院 A kind of method of the total measurement type Activated Carbon Instrument for testing Radon of fine adjustment gamma
CN106569252A (en) * 2016-10-28 2017-04-19 核工业北京地质研究院 Method of correcting consistency of gamma total amount measurement type active carbon emanometer
CN115453604B (en) * 2022-11-14 2023-03-24 中国海洋大学 Full-sea deep radon concentration in-situ measurement device and measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100978838B1 (en) * 2009-09-14 2010-08-30 한국지질자원연구원 Technics of underground structure survey using radon alpha tracks

Also Published As

Publication number Publication date
JPH06235773A (en) 1994-08-23

Similar Documents

Publication Publication Date Title
Fleischer et al. Mapping of integrated radon emanation for detection of long‐distance migration of gases within the Earth: Techniques and principles
Alter et al. Passive integrating radon monitor for environmental monitoring
Virk et al. Radon anomalies in soil-gas and groundwater as earthquake precursor phenomena
Mogro‐Campero et al. Changes in subsurface radon concentration associated with earthquakes
Belcher The measurement of soil moisture and density by neutron and gamma-ray scattering
US3665194A (en) Radon detection
Monnin et al. Radon in soil-air and in groundwater related to major geophysical events: A survey
US5001342A (en) Radioactive tracer cement thickness measurement
Fleischer et al. Radon emanation over an ore body: search for long-distance transport of radon
US4297574A (en) Radon detection
US2390931A (en) Well logging method
Monnin et al. An automatic radon probe for earth science studies
JPH077065B2 (en) Radon concentration measuring device in water and radon concentration measuring method using the same
Nakahara et al. Some basic studies on the absolute determination of radon concentration in the air by a cellulose nitrate track detector
US6498341B2 (en) Method for characterizing ground water measurement points by distinguishing ground water from subterranean water accumulation
Segovia et al. Variations of radon in soils induced by external factors
US2320643A (en) Well surveying method and apparatus
US3571591A (en) Method for determining the origin of hydrocarbon seeps in water-covered areas as an air to petroleum exploration activities
RU2060384C1 (en) Method for investigation into reservoirs of oil and gas and device for implementing the same
Khan Usefulness of radon measurements in earth sciences
CA2155558A1 (en) Apparatus for measuring radon concentration in water, and associated measuring methods
Savvides et al. A simple device for measuring radon exhalation from the ground
Horiuchi et al. A new method for the determination of radon in soil air by the “open vial” and integral counting with a liquid scintillation counter
US4268748A (en) Field method for detecting deposits containing uranium or thorium
US4336451A (en) Field method for detecting deposits containing uranium and thorium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 18

LAPS Cancellation because of no payment of annual fees